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Here we give a detailed proof of Lemma 1 of Subsec-
tion 3.2 (Convergence analysis). We also show that the
functions F'(x) = Fi(z) + F2(|x|) we optimize in appli-
cations fulfill the technical Conditions (C1) and (C2) which
are necessary for the results of Subsection 3.2 to hold. We
remind what these conditions are:

(Cl) Fy is twice continuously differentiable in 4 and
there exists a subspace H. C H such that for all
r € H, holds: hT9*Fy(z)h < 0if h € H,. and
hTO?Fy(x)h = 0if h € HE.

(C2) Fx(]z|) is a C!'-perturbation of a convex function, i.e.
can be represented as a sum of a convex function and
a Cl-smooth function.

We start by proving Lemma 1:

Lemma 1 (see Subsection 3.2 of the main text). Let (x*)
be the sequence generated by the Algorithm (3) and suppose
(x*) is bounded and the Condition (C1) holds for I. Then

Jim (OFy(|2*|) — 0Fy(|z**1])) = 0. (1)

Proof. Taylor theorem for F; gives:

Fi(a¥]) — Fala 1)) = (A%)T R ()
— AT R(F A"

where AF = |2F| — |2* L) |ZF| € [|aF]; |2 T1]]. We use
this to refine the inequalities (6) from the proof of Proposi-
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tion 1 in Subsection 3.2 (see main text for details):

F(l‘k) F($k+1)
= Fi(a") = Fi(a"") + Fy(|2*]) — Fa(l2"))
> (dk+1)T(x _l,k+l) +( k)TAk
%(Ak)'l'a F2(|fk|)Ak (AT k-‘rl) (C(Jk— k+1)
(W) T (|ah] = et = (@ -2t )
(AN TP By ([ AT RN
+(w'“)T(\x'“|— M ak) — (Ak)T@2 H(|Z*) Ak
— (qk—i-l —b +Zw |$k‘ k+1 k)
1<M)T52 (A > (M)TaQ (35)AF > 0.
Therefore,
F(a*) = F(z"*1) > (A")Ta2 H(|Z5) AR > 0,
and, hence,

lim (AM)To2Fy(|2%) A% = 0.

k—o0

Using definition of the space . we get that

lim (Pry, AF)TO?Fy(|7%)Pry. AF =0, (2

k— o0

where Pr 4, denotes orthogonal projection onto .. From

boundedness of (z*) and negativity of 82F2’ we con-

clude that there exists v > 0 such that for all k: ‘
(Pra, AF) T O Fy(|2%])Pr o, AF < —v||Pryy AF|2

Together with (2) this gives

lim |[Prq, A2 =0. 3)
k—o0 :
Now we note that
OF,(|2¥]) — OFy(|a" 1)) = 9* Fa(|2"|)Pry, AF,



for some |Z%| € [|a*|; |#¥*1]]. Together with (3) this com-
pletes the proof. O

Now we show that the Conditions (C1) and (C2) actually
hold for the functions F> used in applications, namely (cf.
Equations (8) and (9) of the main text):

Fy(|z|) :Z)\if(|a:i|), where

flail) = (Joi| + )" or f(lil) = log(1 + Bli]),

withe > 0, 8 > 0and \; > 0, Vi. Obviously, for both
choices the functions are infinitely differentiable and con-
cave in Ry. Therefore it suffices to prove the following
lemma:

Lemma 3. Let F5(|z|) = >, Aif(|xi]), where \; > 0, Vi
and f: Ry — Ris increasing, twice continuously differen-
tiable and has strictly negative second derivative. Then the
Conditions (C1) and (C2) hold for F5.

Proof. We start with proving (C1). Obviously,
O Fy(x) = diag((Ni f" (21)))i=1:aim(r)),  for = € Hy.

Hence,

WP Fy(x)h =Y Nif"(zi)hi.

Denote by A a diagonal operator with \;’s on diagonal.
Then for H,. = (ker A)* the desired condition holds.

Now we prove (C2). For each term of F> we perform the
following decomposition:

Aif(Jil) = N f'(0)|zi| + Ni(f (|i]) — £/(0)]i]).-

The first summand is convex due to non-negativity of \; and
£/(0). The second summand is continuously differentiable
for z; # 0 and its derivative equals

Ail(f' (i) = f1(0)), if ;i >0,

Ai(=f(=zi) + f(0), if x; <O0.
Both these values approach zero when x; approaches 0, so
the function is differentiable at 0 and, therefore, continu-
ously differentiable on R.

We proved that each term of F, is a sum of a con-

vex function and a C'-smooth function. Sum of C!-

perturbations of convex functions is a C!-perturbation of
a convex function, so this completes the proof. O



