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Here we give a detailed proof of Lemma 1 of Subsec-
tion 3.2 (Convergence analysis). We also show that the
functions F (x) = F1(x) + F2(|x|) we optimize in appli-
cations fulfill the technical Conditions (C1) and (C2) which
are necessary for the results of Subsection 3.2 to hold. We
remind what these conditions are:

(C1) F2 is twice continuously differentiable in H+ and
there exists a subspace Hc ⊂ H such that for all
x ∈ H+ holds: h>∂2F2(x)h < 0 if h ∈ Hc and
h>∂2F2(x)h = 0 if h ∈ H⊥

c .

(C2) F2(|x|) is a C1-perturbation of a convex function, i.e.
can be represented as a sum of a convex function and
a C1-smooth function.

We start by proving Lemma 1:

Lemma 1 (see Subsection 3.2 of the main text). Let (xk)
be the sequence generated by the Algorithm (3) and suppose
(xk) is bounded and the Condition (C1) holds for F2. Then

lim
k→∞

(∂F2(|xk|)− ∂F2(|xk+1|)) = 0. (1)

Proof. Taylor theorem for F2 gives:

F2(|xk|)− F2(|xk+1|) = (∆k)>∂F2(|xk|)

− 1

2
(∆k)>∂2F2(|x̃k|)∆k,

where ∆k := |xk| − |xk+1|, |x̃k| ∈ [|xk|; |xk+1|]. We use
this to refine the inequalities (6) from the proof of Proposi-

tion 1 in Subsection 3.2 (see main text for details):

F (xk)− F (xk+1)

= F1(xk)− F1(xk+1) + F2(|xk|)− F2(|xk+1|)
≥ (dk+1)>(xk − xk+1) + (wk)>∆k

−1

2
(∆k)>∂2F2(|x̃k|)∆k = (A>qk+1)>(xk − xk+1)

+(wk)>(|xk| − |xk+1| − ck+1 · (xk − xk+1))

−1

2
(∆k)>∂2F2(|x̃k|)∆k = (qk+1)>(Axk −Axk+1)

+(wk)>(|xk| − ck+1 · xk)− 1

2
(∆k)>∂2F2(|x̃k|)∆k

= (qk+1)>(b− b) +
∑
i

wk
i (|xki | − ck+1

i xki )

−1

2
(∆k)>∂2F2(|x̃k|)∆k ≥ −1

2
(∆k)>∂2F2(|x̃k|)∆k ≥ 0.

Therefore,

F (xk)− F (xk+1) ≥ −1

2
(∆k)>∂2F2(|x̃k|)∆k ≥ 0,

and, hence,

lim
k→∞

(∆k)>∂2F2(|x̃k|)∆k = 0.

Using definition of the spaceHc we get that

lim
k→∞

(Pr Hc
∆k)>∂2F2(|x̃k|)Pr Hc

∆k = 0, (2)

where Pr Hc denotes orthogonal projection onto Hc. From
boundedness of (xk) and negativity of ∂2F2

∣∣∣
Hc

we con-

clude that there exists ν > 0 such that for all k:

(Pr Hc
∆k)>∂2F2(|x̃k|)Pr Hc

∆k ≤ −ν‖Pr Hc
∆k‖2.

Together with (2) this gives

lim
k→∞

‖Pr Hc∆k‖2 = 0. (3)

Now we note that

∂F2(|xk|)− ∂F2(|xk+1|) = ∂2F2(|x̂k|)Pr Hc
∆k,



for some |x̂k| ∈ [|xk|; |xk+1|]. Together with (3) this com-
pletes the proof.

Now we show that the Conditions (C1) and (C2) actually
hold for the functions F2 used in applications, namely (cf.
Equations (8) and (9) of the main text):

F2(|x|) =
∑
i

λif(|xi|), where

f(|xi|) = (|xi|+ ε)p or f(|xi|) = log(1 + β|xi|),

with ε > 0, β > 0 and λi ≥ 0, ∀ i. Obviously, for both
choices the functions are infinitely differentiable and con-
cave in R+. Therefore it suffices to prove the following
lemma:

Lemma 3. Let F2(|x|) =
∑

i λif(|xi|), where λi ≥ 0, ∀ i
and f : R+ → R is increasing, twice continuously differen-
tiable and has strictly negative second derivative. Then the
Conditions (C1) and (C2) hold for F2.

Proof. We start with proving (C1). Obviously,

∂2F2(x) = diag((λif
′′(xi)))i=1:dim(H)), for x ∈ H+.

Hence,
h>∂2F2(x)h =

∑
i

λif
′′(xi)h

2
i .

Denote by Λ a diagonal operator with λi’s on diagonal.
Then forHc = (ker Λ)⊥ the desired condition holds.

Now we prove (C2). For each term of F2 we perform the
following decomposition:

λif(|xi|) = λif
′(0)|xi|+ λi(f(|xi|)− f ′(0)|xi|).

The first summand is convex due to non-negativity of λi and
f ′(0). The second summand is continuously differentiable
for xi 6= 0 and its derivative equals{

λi(f
′(xi)− f ′(0)), if xi > 0,

λi(−f ′(−xi) + f ′(0)), if xi < 0.

Both these values approach zero when xi approaches 0, so
the function is differentiable at 0 and, therefore, continu-
ously differentiable on R.

We proved that each term of F2 is a sum of a con-
vex function and a C1-smooth function. Sum of C1-
perturbations of convex functions is a C1-perturbation of
a convex function, so this completes the proof.


