An iterated ℓ_1 Algorithm for Non-smooth Non-convex Optimization in Computer Vision - Supplementary Material -

Peter Ochs¹, Alexey Dosovitskiy¹, Thomas Brox¹, and Thomas Pock²

{ochs,dosovits,brox}@cs.uni-freiburg.de pock@icg.tugraz.at

¹ University of Freiburg, Germany 2 Graz University of Technology, Austria

Here we give a detailed proof of Lemma [1](#page-0-0) of Subsection 3.2 (Convergence analysis). We also show that the functions $F(x) = F_1(x) + F_2(|x|)$ we optimize in applications fulfill the technical Conditions (C1) and (C2) which are necessary for the results of Subsection 3.2 to hold. We remind what these conditions are:

- (C1) F_2 is twice continuously differentiable in \mathcal{H}_+ and there exists a subspace $\mathcal{H}_c \subset \mathcal{H}$ such that for all $x \in \mathcal{H}_+$ holds: $h^{\top} \partial^2 F_2(x) h < 0$ if $h \in \mathcal{H}_c$ and $h^{\top} \partial^2 F_2(x) h = 0$ if $h \in \mathcal{H}_c^{\perp}$.
- (C2) $F_2(|x|)$ is a C¹-perturbation of a convex function, i.e. can be represented as a sum of a convex function and a C^1 -smooth function.

We start by proving Lemma [1:](#page-0-0)

Lemma 1 (see Subsection 3.2 of the main text). Let (x^k) *be the sequence generated by the Algorithm* (3) *and suppose* (x^k) is bounded and the Condition (C1) holds for F_2 . Then

$$
\lim_{k \to \infty} (\partial F_2(|x^k|) - \partial F_2(|x^{k+1}|)) = 0.
$$
 (1)

Proof. Taylor theorem for F_2 gives:

$$
F_2(|x^k|) - F_2(|x^{k+1}|) = (\Delta^k)^\top \partial F_2(|x^k|) - \frac{1}{2}(\Delta^k)^\top \partial^2 F_2(|\tilde{x}^k|) \Delta^k,
$$

where $\Delta^k := |x^k| - |x^{k+1}|$, $|\tilde{x}^k| \in [|x^k|; |x^{k+1}|]$. We use this to refine the inequalities (6) from the proof of Proposi-

tion 1 in Subsection 3.2 (see main text for details):

$$
F(x^{k}) - F(x^{k+1})
$$

\n
$$
= F_{1}(x^{k}) - F_{1}(x^{k+1}) + F_{2}(|x^{k}|) - F_{2}(|x^{k+1}|)
$$

\n
$$
\geq (d^{k+1})^{\top}(x^{k} - x^{k+1}) + (w^{k})^{\top} \Delta^{k}
$$

\n
$$
-\frac{1}{2}(\Delta^{k})^{\top}\partial^{2}F_{2}(|\tilde{x}^{k}|)\Delta^{k} = (A^{\top}q^{k+1})^{\top}(x^{k} - x^{k+1})
$$

\n
$$
+(w^{k})^{\top}(|x^{k}| - |x^{k+1}| - c^{k+1} \cdot (x^{k} - x^{k+1}))
$$

\n
$$
-\frac{1}{2}(\Delta^{k})^{\top}\partial^{2}F_{2}(|\tilde{x}^{k}|)\Delta^{k} = (q^{k+1})^{\top}(Ax^{k} - Ax^{k+1})
$$

\n
$$
+(w^{k})^{\top}(|x^{k}| - c^{k+1} \cdot x^{k}) - \frac{1}{2}(\Delta^{k})^{\top}\partial^{2}F_{2}(|\tilde{x}^{k}|)\Delta^{k}
$$

\n
$$
= (q^{k+1})^{\top}(b - b) + \sum_{i} w_{i}^{k}(|x_{i}^{k}| - c_{i}^{k+1}x_{i}^{k})
$$

\n
$$
-\frac{1}{2}(\Delta^{k})^{\top}\partial^{2}F_{2}(|\tilde{x}^{k}|)\Delta^{k} \geq -\frac{1}{2}(\Delta^{k})^{\top}\partial^{2}F_{2}(|\tilde{x}^{k}|)\Delta^{k} \geq 0.
$$

Therefore,

$$
F(x^k) - F(x^{k+1}) \ge -\frac{1}{2} (\Delta^k)^\top \partial^2 F_2(|\tilde{x}^k|) \Delta^k \ge 0,
$$

and, hence,

$$
\lim_{k \to \infty} (\Delta^k)^\top \partial^2 F_2(|\tilde{x}^k|) \Delta^k = 0.
$$

Using definition of the space \mathcal{H}_c we get that

$$
\lim_{k \to \infty} (\Pr \mathcal{H}_c \Delta^k)^{\top} \partial^2 F_2(|\widetilde{x}^k|) \Pr \mathcal{H}_c \Delta^k = 0,
$$
 (2)

where $Pr_{\mathcal{H}_c}$ denotes orthogonal projection onto \mathcal{H}_c . From boundedness of (x^k) and negativity of $\partial^2 F_2\Big|_{\mathcal{H}_c}$ we conclude that there exists $\nu > 0$ such that for all k:

$$
(\Pr{\mathcal{H}_c} \Delta^k)^\top \partial^2 F_2(|\tilde{x}^k|) \Pr{\mathcal{H}_c} \Delta^k \leq -\nu ||\Pr{\mathcal{H}_c} \Delta^k||^2.
$$

Together with [\(2\)](#page-0-1) this gives

$$
\lim_{k \to \infty} \|\Pr_{\mathcal{H}_c} \Delta^k\|^2 = 0. \tag{3}
$$

Now we note that

$$
\partial F_2(|x^k|) - \partial F_2(|x^{k+1}|) = \partial^2 F_2(|\widehat{x}^k|) \Pr_{\mathcal{H}_c} \Delta^k,
$$

for some $|\hat{x}^k| \in [|x^k|; |x^{k+1}|]$. Together with [\(3\)](#page-0-2) this completes the proof. \Box

Now we show that the Conditions (C1) and (C2) actually hold for the functions F_2 used in applications, namely (cf. Equations (8) and (9) of the main text):

$$
F_2(|x|) = \sum_i \lambda_i f(|x_i|), \quad \text{where}
$$

$$
f(|x_i|) = (|x_i| + \varepsilon)^p \quad \text{or} \quad f(|x_i|) = \log(1 + \beta |x_i|),
$$

with $\varepsilon > 0$, $\beta > 0$ and $\lambda_i \geq 0$, $\forall i$. Obviously, for both choices the functions are infinitely differentiable and concave in \mathbb{R}_+ . Therefore it suffices to prove the following lemma:

Lemma 3. Let $F_2(|x|) = \sum_i \lambda_i f(|x_i|)$, where $\lambda_i \geq 0$, $\forall i$ and $f: \mathbb{R}_+ \to \mathbb{R}$ is increasing, twice continuously differen*tiable and has strictly negative second derivative. Then the Conditions* (C1) *and* (C2) *hold for* F_2 *.*

Proof. We start with proving (C1). Obviously,

$$
\partial^2 F_2(x) = \text{diag}((\lambda_i f''(x_i)))_{i=1:\text{dim}(\mathcal{H})}), \text{ for } x \in \mathcal{H}_+.
$$

Hence,

$$
h^{\top} \partial^2 F_2(x) h = \sum_i \lambda_i f''(x_i) h_i^2.
$$

Denote by Λ a diagonal operator with λ_i 's on diagonal. Then for $\mathcal{H}_c = (\ker \Lambda)^{\perp}$ the desired condition holds.

Now we prove (C2). For each term of F_2 we perform the following decomposition:

$$
\lambda_i f(|x_i|) = \lambda_i f'(0)|x_i| + \lambda_i (f(|x_i|) - f'(0)|x_i|).
$$

The first summand is convex due to non-negativity of λ_i and $f'(0)$. The second summand is continuously differentiable for $x_i \neq 0$ and its derivative equals

$$
\begin{cases} \lambda_i(f'(x_i) - f'(0)), & \text{if } x_i > 0, \\ \lambda_i(-f'(-x_i) + f'(0)), & \text{if } x_i < 0. \end{cases}
$$

Both these values approach zero when x_i approaches 0, so the function is differentiable at 0 and, therefore, continuously differentiable on R.

We proved that each term of F_2 is a sum of a convex function and a C^1 -smooth function. Sum of C^1 perturbations of convex functions is a $C¹$ -perturbation of a convex function, so this completes the proof. \Box