An iterated ℓ_1 Algorithm for Non-smooth Non-convex Optimization in Computer Vision - Supplementary Material -

Peter Ochs¹, Alexey Dosovitskiy¹, Thomas Brox¹, and Thomas Pock²

¹ University of Freiburg, Germany {ochs,dosovits,brox}@cs.uni-freiburg.de ² Graz University of Technology, Austria pock@icg.tugraz.at

Here we give a detailed proof of Lemma 1 of Subsection 3.2 (Convergence analysis). We also show that the functions $F(x) = F_1(x) + F_2(|x|)$ we optimize in applications fulfill the technical Conditions (C1) and (C2) which are necessary for the results of Subsection 3.2 to hold. We remind what these conditions are:

- (C1) F_2 is twice continuously differentiable in \mathcal{H}_+ and there exists a subspace $\mathcal{H}_c \subset \mathcal{H}$ such that for all $x \in \mathcal{H}_+$ holds: $h^{\top} \partial^2 F_2(x)h < 0$ if $h \in \mathcal{H}_c$ and $h^{\top} \partial^2 F_2(x)h = 0$ if $h \in \mathcal{H}_c^{\perp}$.
- (C2) $F_2(|x|)$ is a C¹-perturbation of a convex function, i.e. can be represented as a sum of a convex function and a C¹-smooth function.

We start by proving Lemma 1:

Lemma 1 (see Subsection 3.2 of the main text). Let (x^k) be the sequence generated by the Algorithm (3) and suppose (x^k) is bounded and the Condition (C1) holds for F_2 . Then

$$\lim_{k \to \infty} (\partial F_2(|x^k|) - \partial F_2(|x^{k+1}|)) = 0.$$
 (1)

Proof. Taylor theorem for F_2 gives:

$$F_2(|x^k|) - F_2(|x^{k+1}|) = (\Delta^k)^\top \partial F_2(|x^k|) - \frac{1}{2} (\Delta^k)^\top \partial^2 F_2(|\widetilde{x}^k|) \Delta^k,$$

where $\Delta^k := |x^k| - |x^{k+1}|, |\widetilde{x}^k| \in [|x^k|; |x^{k+1}|]$. We use this to refine the inequalities (6) from the proof of Proposi-

tion 1 in Subsection 3.2 (see main text for details):

$$\begin{split} F(x^{k}) &- F(x^{k+1}) \\ &= F_{1}(x^{k}) - F_{1}(x^{k+1}) + F_{2}(|x^{k}|) - F_{2}(|x^{k+1}|) \\ &\geq (d^{k+1})^{\top}(x^{k} - x^{k+1}) + (w^{k})^{\top}\Delta^{k} \\ &- \frac{1}{2}(\Delta^{k})^{\top}\partial^{2}F_{2}(|\tilde{x}^{k}|)\Delta^{k} = (A^{\top}q^{k+1})^{\top}(x^{k} - x^{k+1}) \\ &+ (w^{k})^{\top}(|x^{k}| - |x^{k+1}| - c^{k+1} \cdot (x^{k} - x^{k+1})) \\ &- \frac{1}{2}(\Delta^{k})^{\top}\partial^{2}F_{2}(|\tilde{x}^{k}|)\Delta^{k} = (q^{k+1})^{\top}(Ax^{k} - Ax^{k+1}) \\ &+ (w^{k})^{\top}(|x^{k}| - c^{k+1} \cdot x^{k}) - \frac{1}{2}(\Delta^{k})^{\top}\partial^{2}F_{2}(|\tilde{x}^{k}|)\Delta^{k} \\ &= (q^{k+1})^{\top}(b - b) + \sum_{i} w_{i}^{k}(|x_{i}^{k}| - c_{i}^{k+1}x_{i}^{k}) \\ &- \frac{1}{2}(\Delta^{k})^{\top}\partial^{2}F_{2}(|\tilde{x}^{k}|)\Delta^{k} \geq -\frac{1}{2}(\Delta^{k})^{\top}\partial^{2}F_{2}(|\tilde{x}^{k}|)\Delta^{k} \geq 0. \end{split}$$

Therefore,

$$F(x^k) - F(x^{k+1}) \ge -\frac{1}{2} (\Delta^k)^\top \partial^2 F_2(|\widetilde{x}^k|) \Delta^k \ge 0$$

and, hence,

$$\lim_{k \to \infty} (\Delta^k)^\top \partial^2 F_2(|\tilde{x}^k|) \Delta^k = 0.$$

Using definition of the space \mathcal{H}_c we get that

$$\lim_{k \to \infty} (\Pr_{\mathcal{H}_c} \Delta^k)^\top \partial^2 F_2(|\tilde{x}^k|) \Pr_{\mathcal{H}_c} \Delta^k = 0, \quad (2)$$

where $\Pr_{\mathcal{H}_c}$ denotes orthogonal projection onto \mathcal{H}_c . From boundedness of (x^k) and negativity of $\partial^2 F_2\Big|_{\mathcal{H}_c}$ we conclude that there exists $\nu > 0$ such that for all k:

$$(\operatorname{Pr}_{\mathcal{H}_c}\Delta^k)^{\top}\partial^2 F_2(|\widetilde{x}^k|)\operatorname{Pr}_{\mathcal{H}_c}\Delta^k \leq -\nu \|\operatorname{Pr}_{\mathcal{H}_c}\Delta^k\|^2.$$

Together with (2) this gives

$$\lim_{k \to \infty} \|\Pr_{\mathcal{H}_c} \Delta^k\|^2 = 0.$$
(3)

Now we note that

$$\partial F_2(|x^k|) - \partial F_2(|x^{k+1}|) = \partial^2 F_2(|\widehat{x}^k|) \operatorname{Pr}_{\mathcal{H}_c} \Delta^k,$$

for some $|\hat{x}^k| \in [|x^k|; |x^{k+1}|]$. Together with (3) this completes the proof.

Now we show that the Conditions (C1) and (C2) actually hold for the functions F_2 used in applications, namely (cf. Equations (8) and (9) of the main text):

$$\begin{split} F_2(|x|) &= \sum_i \lambda_i f(|x_i|), \qquad \text{where} \\ f(|x_i|) &= (|x_i| + \varepsilon)^p \quad \text{or} \quad f(|x_i|) = \log(1 + \beta |x_i|), \end{split}$$

with $\varepsilon > 0$, $\beta > 0$ and $\lambda_i \ge 0$, $\forall i$. Obviously, for both choices the functions are infinitely differentiable and concave in \mathbb{R}_+ . Therefore it suffices to prove the following lemma:

Lemma 3. Let $F_2(|x|) = \sum_i \lambda_i f(|x_i|)$, where $\lambda_i \ge 0$, $\forall i$ and $f : \mathbb{R}_+ \to \mathbb{R}$ is increasing, twice continuously differentiable and has strictly negative second derivative. Then the Conditions (C1) and (C2) hold for F_2 .

Proof. We start with proving (C1). Obviously,

 $\partial^2 F_2(x) = \operatorname{diag}((\lambda_i f''(x_i)))_{i=1:\operatorname{dim}(\mathcal{H})}), \text{ for } x \in \mathcal{H}_+.$

Hence,

$$h^{\top} \partial^2 F_2(x) h = \sum_i \lambda_i f''(x_i) h_i^2.$$

Denote by Λ a diagonal operator with λ_i 's on diagonal. Then for $\mathcal{H}_c = (\ker \Lambda)^{\perp}$ the desired condition holds.

Now we prove (C2). For each term of F_2 we perform the following decomposition:

$$\lambda_i f(|x_i|) = \lambda_i f'(0) |x_i| + \lambda_i (f(|x_i|) - f'(0) |x_i|).$$

The first summand is convex due to non-negativity of λ_i and f'(0). The second summand is continuously differentiable for $x_i \neq 0$ and its derivative equals

$$\begin{cases} \lambda_i (f'(x_i) - f'(0)), & \text{if } x_i > 0, \\ \lambda_i (-f'(-x_i) + f'(0)), & \text{if } x_i < 0. \end{cases}$$

Both these values approach zero when x_i approaches 0, so the function is differentiable at 0 and, therefore, continuously differentiable on \mathbb{R} .

We proved that each term of F_2 is a sum of a convex function and a C¹-smooth function. Sum of C¹-perturbations of convex functions is a C¹-perturbation of a convex function, so this completes the proof.