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We prove here that the negative log likelihoods of Eq. 2 and 3 can be written as linear and quadratic functions of
the xijk indicator variables defined in Section 3.1.

1. Likelihood Term Derivation
In Eq. 2, we wrote

− log(P (I,G|X = x)) =
∑

eijk∈F

wijkxijk, (A.1)

where wijk is a cost term that accounts for the quality of the geodesic paths associated with the edge pair eijk. To
prove this, we introduce two sets of auxiliary random variables into our formulation: one denoting presence of edges
in the final solution and the other accounting for compatibility of consecutive edge pairs. Let Y = {Yjk} be the vector
of binary random variables denoting whether edges {ejk} truly belong to the underlying curvilinear structure, and
y = {yjk} the corresponding set of indicator variables.

Since we do not allow edges to have more than one active incoming edge pair, we have yjk =
∑

eij∈E xijk ≤ 1.
As a result, for each edge ejk in the solution, there can be at most one parent edge eij such that xijk = 1. Let Zjk

be the random variable standing for the parent of ejk and Z be the vector of all such variables. That is, Zjk can take
values from the set {eij | eij ∈ E \{ekj}}. There is a one to one deterministic mapping between X and (Y,Z). More
specifically, we have

Xijk = Yjk 1(Zjk = eij), ∀eijk ∈ F (A.2)

where 1(.) is an indicator function. We express the likelihood term of Eq. 1 in terms of Y and Z and drive the unary
objective of Eq. 2 as follows:

P (I,G|X = x) = P (I,G|Y = y,Z = z) (A.3)

=
∏

ejk∈E

P (Ijk, Ejk|Yjk = yjk, Zjk = zjk) (A.4)

=
∏

ejk∈E

P (Zjk = zjk|Yjk = yjk, Ijk, Ejk)P (Yjk = yjk|Ijk, Ejk)P (Ijk, Ejk)

P (Yjk = yjk, Zjk = zjk)
(A.5)

∝
∏

ejk∈E

P (Zjk = zjk|Yjk = yjk, Ijk, Ejk)P (Yjk = yjk|Ijk, Ejk) (A.6)

∝
∏

ejk∈E

[P (Zjk = zjk|Yjk = 1, Ijk, Ejk)P (Yjk = 1|Ijk, Ejk)]
yjk ×

[P (Zjk = zjk|Yjk = 0, Ijk, Ejk)P (Yjk = 0|Ijk, Ejk)]
1−yjk (A.7)

∝
∏

ejk∈E

 ∏
eij∈E

P (Zjk = eij |Yjk = 1, Ijk, Ejk)
xijk

P (Yjk = 1|Ijk, Ejk)

yjk

×

[
1

deg∗(vj)
P (Yjk = 0|Ijk, Ejk)

]1−yjk

(A.8)

∝
∏

ejk∈E

 ∏
eij∈E

P (Zjk = eij |Yjk = 1, Ijk, Ejk)
xijk

[P (Yjk = 1|Ijk, Ejk)deg
∗(vj , vk)

P (Yjk = 0|Ijk, Ejk)

]∑
eij∈E

xijk


(A.9)
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where Ejk denotes the set of edges containing ejk and its incoming edges in the graph, and Ijk denotes the image
evidence around these edges. The term deg∗(vj , vk) is the number of in-edges of vertex vj excluding the edge ekj , if
it exists.

Eq. A.4 is obtained using the assumption that the image evidence around edge pairs are conditionally independent
given that we know whether they belong to the curvilinear structures or not. In Eq. A.5 and A.6, we first use Bayes’ rule
and then remove the constant terms P (Ijk, Ejk) and P (Yjk = yjk, Zjk = zjk), assuming a uniform prior for both.
We derive Eq. A.7 and A.8 by using the fact that yjk, xijk ∈ {0, 1} and substituting P (Zjk = zjk|Yjk = 0, Ijk, Ejk)
with 1

deg∗(vj)
. Finally, in Eq. A.9, we drop the constant terms and express yjk in terms of xijk’s. Taking the negative

logarithm of Eq. A.9 and substituting pqjk = P (Yjk = 1|Ijk, Ejk) and pcijk = P (Zjk = eij |Yjk = 1, Ijk, Ejk), we
obtain ∑

fijk∈F

−log

(
pcijkp

q
jkdeg

∗(vj , vk)

(1− pqjk)

)
xijk =

∑
fijk∈F

wijk xijk, (A.10)

which is what we wanted to prove. The probability pqjk denotes the likelihood that edge ejk belongs to the curvilinear
structure given the associated geodesic path and corresponding image evidence. This is an image-based term that
accounts for the quality of the paths associated with the edges. In practice, instead of relying only on the image
evidence around the edge ejk, we evaluate the path classifier on a larger neighbourhood including its in edges {eij}
and use the corresponding probabilities in the above summation. Therefore, for each pqjk term in the above summation,
we use the path probability corresponding to the edge pair eijk, which we obtain using the path classification approach
of [2].

The term pcijk denotes the probability that the edge pair eijk belongs to the structures given that its target edge ejk
belongs to them. In our experiments, this probability is expressed as a sigmoid function of a distinctive feature, which
helps reconstructing the right connectivity at crossovers such as the one of Fig. 2. More specifically, for the brightfield
micrographs shown in the third row of Fig. 4, this feature is taken as the tortuosity of the path (z axis is discarded)
associated to eijk, because most of the fibers appear as linear filaments in the x-y plane. For the brainbow stacks, it is
taken as the sum of the squared color distances in the CIELAB color space of pairs of vertices (vi, vj), (vj , vk) and
(vi, vk). In both cases, the sigmoid function parameters are learned from the same training samples used for training
the path classifier [1].

For inherently loopy structures such as blood vessels and road networks, we assume a uniform probability for pcijk
since for these structures, we don’t need to disambiguate crossovers to obtain a loop-free solution, and hence, we are
not interested in the true states of Zjk variables. Therefore, we substitute 1

deg∗(vj ,vk)
for pcijk in Eq A.10, which then

simplifies to the negative log-likelihood ratio of the probabilities pqjk.

2. Prior Term Derivation
In Eq. 3, we wrote

− log(P (X = x)) = −
∑

eij∈E

[ ∑
emi∈E

log(pt)xmij +
∑

ejn∈E
log

(
pc

pt

)
xijn +

∑
ejn∈E

∑
ejk∈E
k<n

log

(
pbpt

(pc)2

)
xijnxijk

]
,

where pt, pc and pb are probabilities introduced in the main text. They are defined in terms of Mij =
∑

emij∈F Xmij

and Oij =
∑

eijn∈F Xijn, two latent variables that denote the true number of incoming and outgoing edge pairs into
and out of edge eij , respectively. Note that the Mij are binary variables since we limit the number of active incoming
edge pairs into an edge to one. Without loss of generality, assuming that the Oij variables take values from the set
{0, 1, 2} and using a Bayesian network to model the dependencies between the variables Mij and Oij , we get

P (X = x) =
∏

eij∈E

P (Xij = xij |Oij = oij)P (Oij = oij |Mij = mij) (B.1)

∝
∏

eij∈E

P (Oij = oij |Mij = mij) (B.2)

∝
∏

eij∈E

P (Oij = oij |Mij = 1)mij P (Oij = oij |Mij = 0)(1−mij) (B.3)

∝
∏

eij∈E

P (Oij = oij |Mij = 1)mij (B.4)

∝
∏

eij∈E

[
P (Oij = 0|Mij = 1)1(oij=0) P (Oij = 1|Mij = 1)1(oij=1) P (Oij = 0|Mij = 2)1(oij=2)

]mij

(B.5)



where Xij denotes the vector of random variables Xijn, ∀eijn ∈ F . In this work, we assume that all configurations
Xij are equally likely for an edge eij given that we know the total number of outgoing edge pairs out of it. Under this
assumption, we obtain Eq. B.2, which we then decompose into two terms in Eq. B.3 using the fact that mij ∈ {0, 1}.
In Eq. B.4, we remove the second term P (Oij = oij |Mij = 0)(1−mij) in the product because we have oij = 0 when
mij = 0 due to the connectedness constraints we impose, and hence, the term is always equal to 1. Finally, we drive
Eq. B.5 by expressing the probability P (Oij = oij |Mij = 1) as a product of three admissible event probabilities,
namely termination, continuation and bifurcation, only one of which contribute to the product for each edge eij . The
indicator functions are defined as follows:

1(oij = 2) =
∑

ejn∈E

∑
ejk∈E
k<n

xijn xijk (B.6)

1(oij = 1) =
∑

ejn∈E

xijn − 2
∑

ejn∈E

∑
ejk∈E
k<n

xijn xijk (B.7)

1(oij = 0) =
∑

emi∈E

xmij −
∑

ejn∈E

xijn +
∑

ejn∈E

∑
ejk∈E
k<n

xijn xijk (B.8)

Note that multiplying these functions with mij =
∑

emi∈E xmij results in themselves since they are all equal to zero
when mij = 0. Substituting them in Eq. B.5 and taking the negative logarithm, we obtain the desired result

−
∑

eij∈E

[ ∑
emi∈E

log(pt)xmij +
∑

ejn∈E

log

(
pc

pt

)
xijn +

∑
ejn∈E

∑
ejk∈E
k<n

log

(
pbpt

(pc)2

)
xijnxijk

]
, (B.9)

where pt = P (Oij = 0|Mij = 1), pc = P (Oij = 1|Mij = 1) and pb = P (Oij = 2|Mij = 1). We estimate these
probabilities from the training data by first counting the total number of graph edges that intersect with the ground
truth tracings and then finding the ratio of the number of bifurcating, continuing and terminating edges to this number.

Note that Eq. B.9 always results in positive values, which act as a regularizer. When the task is to reconstruct a
tree structure, this helps penalize spurious bifurcations and early terminations at branch crossings. However, for loopy
networks, it also penalizes legitimate bifurcations that are part of the loops. We therefore don’t use this term for the
blood vessel and the road network datasets.
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