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We analyze the convergence properties of Algorithm 1. Recall that our goal is to find the parameter vector w∗ that
minimizes the empirical objective function:

L(w) =

N∑
n=1

l(Y n, Y ∗,w) +
1

2C
||w||2 . (1)

At each iteration, Algorithm 1 chooses a random training example (Xn, Y n) by picking an index n ∈ {1 . . . N} uniformly
at random. We then replace the objective given by Eq. 1 with an approximation based on the training example (Xn, Y n),
yielding:

f(w, n) = l(Y n, Y ∗,w) +
1

2C
||w||2 . (2)

We consider the case where l : W → R is a convex loss function so that f(w) is a λ-strongly convex function where
λ = 1

C .
Recall that the definition of an ε-subgradient of f(w) is:

∀w′ ∈ W,gT (w −w′) ≥ f(w)− f(w′)− ε. (3)

In the following, we will assume that the magnitude of the ε-subgradients we compute is bounded by a constant G,
i.e. ||g||22 ≤ G2.

Let w∗ be the minimizer of L(w). The following relation then holds trivially for w∗:

gT (w −w∗) ≥ f(w)− f(w∗)− ε. (4)

1. Convergence properties of the tth parameter vector
1.1. Proof of convergence

This proof for subgradients was derived in [1] and we extend it to approximate subgradients here. We first present some
inequalities that will be used in the following proof.

By the strong convexity of f(w), we have:

〈g(t),w(t) −w∗〉 ≥ f(w(t))− f(w∗) + λ

2
‖w(t) −w∗‖22 − ε. (5)

Because w∗ minimizes f(w), g(w∗) and we have:

f(w(t))− f(w∗) ≥ λ

2
‖w(t) −w∗‖22. (6)

By combining Eq. 5 and 6 we get:

〈g(t),w(t) −w∗〉 ≥ λ‖w(t) −w∗‖22 − ε. (7)

In the following, we first start by bounding ‖w(1) −w∗‖ and then derive a bound for E‖w(t+1) −w∗‖.
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Lemma 1. The error of w(1) is:

‖w(1) −w∗‖22 ≤
G2 + 2ελ

λ2
. (8)

Proof. From Eq. 5, we deduce:

〈g(1),w(1) −w∗〉 ≥ f(w(1))− f(w∗) + λ

2
‖w(1) −w∗‖22 − ε

≥ λ

2
‖w(1) −w∗‖22 +

λ

2
‖w(1) −w∗‖22 − ε

≥ λ‖w(1) −w∗‖22 − ε, (9)

where the last inequality follows from the fact that f(w(1))− f(w∗) ≥ 0.
Using the Cauchy-Schwarz inequality (|〈X,Y 〉| ≤ ‖X‖‖Y ‖), we get:

‖g(1)‖22 ≥
(
λ‖w(1) −w∗‖22 − ε

)2
‖w(1) −w∗‖22

= λ2‖w(1) −w∗‖22 − 2ελ+
ε2

‖w(1) −w∗‖22
, (10)

and from the assumption that ‖g(t)‖2 ≤ G2, we have that:

G2 ≥ λ2‖w(1) −w∗‖22 − 2ελ+
ε2

‖w(1) −w∗‖22
. (11)

We then derive the following bound for ‖w(1) −w∗‖22:

‖w(1) −w∗‖22 ≤ max

(
G2 + 2ελ

λ2
,

ε2

G2 + 2ελ

)
. (12)

G2 + 2ελ

λ2
− ε2

G2 + 2ελ
=

(G2 + 2ελ)(G2 + 2ελ)− ε2λ2

λ2(G2 + 2ελ)
=

(G2 + 2ελ)2 − ε2λ2

λ2(G2 + 2ελ)

=
(G2 + 2ελ+ ελ)(G2 + 2ελ− ελ)

λ2(G2 + 2ελ)
=

(G2 + 3ελ)(G2 + ελ)

λ2(G2 + 2ελ)
≥ 0. (13)

Therefore, we see that:

max

(
G2 + 2ελ

λ2
,

ε2

G2 + 2ελ

)
=
G2 + 2ελ

λ2
. (14)

We get Eq. 8 by combining Eq. 12 and 14 .

Theorem 1. The error of w(t+1) is:

E‖w(t+1) −w∗‖22 ≤
G2

λ2t
+
ε

λ
. (15)

Proof.

E‖w(t+1) −w∗‖22 = E‖w(t) − η(t)g(t) −w∗‖22
= E‖w(t) −w∗‖22 − 2η(t)E(〈g(t), (w(t) −w∗)〉) + (η(t))2(E‖g(t)‖22)
≤ E‖w(t) −w∗‖22 − 2η(t)(λE‖w(t) −w∗‖22 − ε) + (η(t))2G2

= (1− 2η(t)λ)E‖w(t) −w∗‖22 + (η(t))2G2 + 2η(t)ε (16)



By applying the inequality recursively:

E‖w(t+1) −w∗‖22 ≤ (1− 2η(t)λ)E‖w(t) −w∗‖22 + (η(t))2G2 + 2η(t)ε

≤ (1− 2η(t)λ)((1− 2η(t−1)λ)E‖w(t−1) −w∗‖22 + (η(t−1))2G2 + 2η(t−1)ε) + (η(t))2G2 + 2η(t)ε

≤

(
t∏
i=2

(1− 2η(i)λ)

)
(E‖w(2) −w∗‖22) +

t∑
i=2

t∏
j=i+1

(1− 2η(j)λ)(η(i))2G2 +

t∑
i=2

t∏
j=i+1

(1− 2η(j)λ)2η(i)ε. (17)

Plugging in η(i) = 1
λi , we get:

E‖w(t+1) −w∗‖22 ≤
t∏
i=2

(
1− 2

i

)
(E‖w(2) −w∗‖22) +

t∑
i=2

t∏
j=i+1

(
1− 2

j

)(
1

i

)2
G2

λ2

+

t∑
i=2

t∏
j=i+1

(
1− 2

j

)
2ε

iλ

=
G2

λ2

t∑
i=2

t∏
j=i+1

(
1− 2

j

)(
1

i

)2

+

t∑
i=2

t∏
j=i+1

(
1− 2

j

)
2ε

iλ
(18)

Rakhlin [1] showed that setting η(i) = 1
λi gives us a O(1/t) rate. Indeed, we have:

t∏
j=i+1

(
1− 2

j

)
=

t∏
j=i+1

(
j − 2

j

)
=

(i− 1)i

(t− 1)t
, (19)

and therefore
t∑
i=2

1

i2

t∏
j=i+1

(
1− 2

j

)
=

t∑
i=2

(i− 1)

i(t− 1)t
≤ 1

t
, (20)

t∑
i=2

t∏
j=i+1

(
1− 2

j

)
2ε

iλ
=

t∑
i=2

2(i− 1)iε

i(t− 1)tλ
=

2ε

(t− 1)tλ

t−1∑
i=1

i =
2ε

(t− 1)tλ

(
(t− 1)t

2

)
=
ε

λ
(21)

By combining Eq. 18 with Eq. 20 and Eq. 21, we then get:

E‖w(t+1) −w∗‖22 ≤
G2

λ2t
+
ε

λ
. (22)

We can deduce that the conditions of convergence are the same as the ones for subgradient descent (i.e. for ε = 0) :

lim
T→+∞

T∑
i=1

η(i) →∞

lim
T→+∞

T∑
i=1

(η(i))2 <∞ (23)

As long as the choice of the step size satisfies Eq. 23, we can see that the first term on the right side of Eq. 22 goes to 0 so
stochastic ε-subgradient descent will convergence to a distance ε

λ away from the optimal value.
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