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We analyze the convergence properties of Algorithm 1. Recall that our goal is to find the parameter vector w* that
minimizes the empirical objective function:
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At each iteration, Algorithm 1 chooses a random training example (X, Y™) by picking an index n € {1... N} uniformly
at random. We then replace the objective given by Eq. | with an approximation based on the training example (X", Y™),

yielding:
1
f(w,n) :l(Yn7Y*aW)+7HW||2 (2)
2C
We consider the case where [ : W — R is a convex loss function so that f(w) is a A-strongly convex function where
A= L.
c
Recall that the definition of an e-subgradient of f(w) is:

vw' e W, g"(w—w') > f(w) — f(w) —e 3)
In the following, we will assume that the magnitude of the e-subgradients we compute is bounded by a constant G,
. 2
ie. ||g]l5 < G2
Let w* be the minimizer of £(w). The following relation then holds trivially for w*:
g”(w—w") > f(w) - f(w") —c. )
1. Convergence properties of the ¢t'* parameter vector

1.1. Proof of convergence

This proof for subgradients was derived in [1] and we extend it to approximate subgradients here. We first present some
inequalities that will be used in the following proof.
By the strong convexity of f(w), we have:

(9, w —w) > f(w) — f(w") + S[w® — w5 — e )
Because w* minimizes f(w), g(w*) and we have:
Fw) = flw) > Wl w3 ©
By combining Eq. 5 and 6 we get:
(g0, w —w*) = AW — w5 e @)

In the following, we first start by bounding |[w(!) — w*|| and then derive a bound for E[ w1 — w*|.
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Lemma 1. The error of w'V) is:

. G? + 2e)
[w® —w[[§ < =5 ®)
Proof. From Eq. 5, we deduce:
0w W) = ) = )+ S w3 e
> 2w w3 S w3 e
> Alw® - w2 - e ©)
where the last inequality follows from the fact that f(w(!)) — f(w*) > 0.
Using the Cauchy-Schwarz inequality ([(X, Y)| < || X|||IY]]), we get:
(1) _ w*l2 _ )2
gogg > I el 2o
w0 — w3
2
2w (D) w2 €
and from the assumption that ||| < G2, we have that:
2 21, (1) |2 e
We then derive the following bound for [|w(!) — w*||3:
G? + 2e) €
1 * (|12
[w) — w*||2 < max ( SN +2€>\> . (12)
G* 2\ €& (GP+2eN)(G? +2eX) — X2 (G2 +2eX)? — 202
A2 G2 +2e)N A2(G? + 2¢)) O A2(G2Z 4 26))
(GPH2eA+eN) (G2 +2ed —€eX)  (G? +3e))(G? 4 €)) >0 (13)
- X2(G2 + 2e)) TN +2N)
Therefore, we see that:
g (G260 € G? 4 2e) (14
X = .
A2 T G2+ 26 A2
We get Eq. 8 by combining Eq. 12 and 14 .
O
Theorem 1. The error of wt1) is:
G? ¢
t+1 * 12
Ellw! ) — w3 < 5+ 1 (15)

Proof.

E[lw D — w3 = Ellw® —n®gl —w*|3

E[w —w*||3 — 2nWE((g®, (W) —w*))) + ()2 (E|g™|[3)

E[[w® — w3 — 20 AE[|w® — w*|]3 — ¢) + (nV)?G?

(1= 2pDNE[w® —w* |3+ (n)*G* + 2n')e (16)
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By applying the inequality recursively:

Efw) — w3 < (1- 2O NE[w® - we [ + (10)°G + 29V
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Plugging in () =

t 2 i i 2 1\? G2
Ellw( ) — w3 < H(l‘i) (Efw® —wi5)+ > 1 (1—‘) (Z) N
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Rakhlin [1] showed that setting ) = 3 gives us a O(1/t) rate. Indeed, we have:

I (5= I (57) =63 ®

and therefore

t .
I U
_Zi(t—l)t =3 (20)

Z H ( ) :g?((z_—ll)):;_ = AZZ t_lﬂ ((t—21)t>:; on

=2 j=i+1

By combining Eq. 18 with Eq. 20 and Eq. 21, we then get:

G2
w*||? < it X (22)

We can deduce that the conditions of convergence are the same as the ones for subgradient descent (i.e. for e = 0) :

E”W(t—i-l)

T
lim n(i) — 00
T—4o00 =
T .
lim Z(n(’))2 < o0 (23)

T—+o0 4 1

As long as the choice of the step size satisfies Eq. 23, we can see that the first term on the right side of Eq. 22 goes to 0 so
stochastic e-subgradient descent will convergence to a distance § away from the optimal value.
O
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