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In this supplementary material, we provide more related work, more details of structured output tracking and online latent
structural learning for visual tracking, and more experimental results (both qualitative and quantitative). The experimental
results includes demonstration videos, more quantitative results of our tracking algorithm with and without parts in Tab.
and Fig. [T} more quantitative comparisons of different part initialisations in Tab. [3] and Fig. 2 visual tracking result on
representative frames in Fig. [3]to Fig.[I3] and more CLE and VOR plots in Fig.[I6 and Fig.

1. More related work

Here we provide more related work which may not fit in the main text. Shu et al. [9] propose a part-based multiple-person
tracker to handle partial occlusions. They only consider three possible subsets of parts: head only, upper body parts, and all
body parts, which restricts its application to our general object tracking case where most objects are not human. Also data
association plays an important role in their case, whereas it is not applicable to our single object tracking case. Similarly,
Yang and Nevatia [11] propose a part-based multiple-person tracker, where they use rigid parts to model human: 1 part for
head, 6 parts for upper body and 8 parts for lower body. Instead of learning the locations of the parts, they fix the locations,
and focus on learning data association (as for multiple-person tracking). Overall, both [9]] and [[11]] use parts specifically
designed for human bodies, and they much emphasise on data association for multiple-person tracking, thus they are not
applicable to our single general object tracking.

2. Demonstration videos

We show all tracking results of our tracker and competing trackers over all frames on thirteen sequences. In our experi-
ments, we ran nine competing trackers, for clarity only the results of five trackers are marked in the videos. We also marked
the part boxes (with index number) of our tracker on the demonstration videos.

3. More details of online latent structural learning for visual tracking

In this section, we show more details of visual tracking via online latent structural learning. In Section @], we will
show the overall procedure of “tracking-by-detection” approach with structured output learning, and in Section we will
describe the latent structural SVM for visual tracking and how to get the objective function for online learning shown in the
main text of this paper.

3.1. Tracking-by-detection with structured output learning

The proposed algorithm is a novel tracking-by-detection approach to track generic objects. To give readers a better
understanding of this kind of approach, we describe the overall procedure of visual tracking with structured output learning
in this section. There are several papers related to structured output tracking. Hare et al. [6] applied structured learning
to online visual tracking, which builds upon its previous successful application to object detection [[L]. Yao et al. [12] use
weighted online structural learning to deal with the inevitable changes in target appearance over time.

A structural tracking-by-detection approach maintain a structured output classifier trained online to distinguish the target
object from the background. During tracking, the prediction of object location is obtained by the combination of the object



Experimental sequence

Demonstration video of tracking result

faceoccl faceoccl.mp4
faceocc2 faceocc2.mp4
threemen threemen.mp4
fskater fskater.mp4
dollar dollar.mp4
david david.mp4
trellis trellis.mp4
board board.mp4
sylvester sylvester.mp4
girl girl.mp4
coke coke.mp4
tigerl tigerl.mp4
tiger2 tiger2.mp4

Table 1. The illustration of demonstration videos.

location estimated in previous frame and the offset of object location in current frame, where the offset is estimated by
searching for the maximum classification score of candidate offsets using the structured output classifier.

Suppose at the ¢-th frame, the object location is represented by bounding box B, = (¢t, 74, wy, bt ), where ¢, 7, are the col-
umn and row coordinates of the upper-left corner, and wy, h; are the width and height. The offsetis y; = (Act, Ary, Awy, Ahy) €
Y. The bounding box on the target object is given in the 1st frame of the video, and the tracker is then required to track the
object from the 2nd frame to the end of the video. Given the ¢-th frame x; € X, and the bounding box B;_ in the (¢ — 1)-th
frame, the bounding box B; in the ¢-th frame can be obtained via

By =Bi_1+y;, y; = arglr;aXf(Xt,y)- 6]
ye

Here f : X x Y — R is the discriminant function, it can be learned via structured SVM [10] with y # y, generated randomly
in the vicinity of the true y, by optimising
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where the label cost is

(Bi—1 +y:) (Be—1 +y)
(Bi—1 +y:) U(Bi—1 +y)’

which was introduced in [4] to measure the VOC bounding box overlap ratio. In practice, y’s are uniformly sampled in the
vicinity of the y, in [6].

As mentioned above, visual tracking is an online process which deals with a dynamic stream data. It is necessary for
tracking algorithm to maintain and update the parameter for adapting new data. In [6} [12], they updated the dual variables
online following the work of [2,3]. Following the formulation in [2]], Eq. @]) can be converted as:
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Algorithm 1: Tracking-by-detection with structured output learning

Input: C, searching radius s for tracking, searching radius 7 for training, the bounding box of target object in the first
frame By, the frame set {x1,- -+ ,xp}

Output: By, --- , Br

Initialisation

So =0, By = By;

fort=1,2,---,7Tdo

Estimate the bounding box By

By = Bi_1 +y;3;

y; = argmax,cy f(x¢,y), where Y = {(Acy, Ary, 0,0)[(Acy)? 4 (Ary)? < s}, the offsets ys are sampled via

searching Y exhaustively;

7 Update the dual variables and the set of support vectors Sy

A R W N =

8 Sample a set of example pairs {X;,y, ; Y |, where Y, is sampled via searching

{(Acy, Ary,0,0)|(Act)? + (Ary)? < 72} on a polar grid.
9 Perform OLaRank algorithm on {x;,y, ;}/*, using S;_; and the dual variables estimated in the (¢ — 1)-th frame.
10 end

where §(y,y;) is 1 wheny = y; and 0 otherwise, and k(-, -) is the kernel function. The discriminant function f becomes

f(xe,y) = Zﬂ?k((x&y), (xt,¥))- )

5,y

OLaRank algorithm introduced in [3] is used to online update the dual variables and the set of support vectors S; at the
t-th frame, where support vectors refers to those pairs (x;, y) for which 37 # 0. OLaRank is an SMO-style [[7] optimisation
method, it use three basic operations. At each iteration, the OLaRank algorithm perform one PROCESSNEW step. Then
perform ten REPROCESS step, which is the combination of one PROCESSOLD step followed by ten OPTIMIZE steps. We
refer the readers to [3, 6] for more details of OLaRank algorithm.

By using the above-mentioned online structured output learning, a visual tracking algorithm can be obtained. We assume
By = By ie.y; = (0,0,0,0) and sample some y # y;. The sampled ys, and y;, are provided to our online learner to
update the dual variables and the set of support vectors Si. We then use this dual variables to predict y, to obtain tracking
result for the 2nd frame i.e. the bounding box By. We then take the predicted y,, as the true label, sample y # y, and feed
them into the online learner to update dual variables and S, and so on. Algorithm[I|shows the complete tracking procedure.

3.2. Latent structural SVM in primal form

In this section, we show how to get the unconstrained form of latent pegasos defined by Eq. (8) in the main text of this
paper. We use z; = (z},--- ,2z) € Z to represent the offsets of M part boxes at the ¢-th frame. z; can be treat as a latent
variable, which is not provided by user. Here we use the notation in the main text of this paper. Latent variables have been
used with SVMs previously [} 13 [14]] in a batch learning scenario.

We incorporate latent variables into structural SVM, and learn the discriminant function f : X x Y x Z — R defined by
Eq. (3) in the main text via latent structural SVM. Since visual tracking is an online process, we propose latent pegasos to
allow the use of latent variables in an online manner. Suppose we have 7' many frames, and we sample N many offsets at
each frame i.e. {y, ; # y;} ¥, the discriminant function f can be learnt via:
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However, the above is a batch learning process; whereas in tracking we need an online learning algorithm. Same as typical

online learning settings in [8]], at each iteration/frame, the algorithm only has access to the samples from the current frame.
Denote w; the parameter that predicts y, for the ¢-th frame ie. y, = argmaxy, max, f(x;,y,z; w;), we sample offsets



Vi # v } N | near the predicted y,. The online learning algorithm is supposed to update the parameter w;.;1. By converting
Eq. @ at t-th frame into unconstrained form, we have the following (mini-batch) online learning objective similar to [8]],

N
min *||WH2 + = Z (Ve ye,i) + max(w D(x¢, ¥1,i,2')) — max(w, D(xt,¥1,2))] , - )

Eq. is the same as Eq. (8) in the main text of this paper for estimating w;; at ¢-th frame. The proposed online learning
algorithm uses gradient descent to update w,; with an appropriate step size 7, as described in the main paper. From Lemma
1 and Lemma 2 in [8]], we know that for appropriate step sizes, the online learning method using Eq. as objective has a
well known online regret bound of O(log T'), since the objective function in Eq. (7) is Lipschitz (i.e. bounded (sub)gradient)
and \-strongly convex.

4. Evaluation of our tracking algorithm with and without part

In this section, we show more results of our tracking algorithm with and without part. Tab. [2] shows the VOC overlap
ratio(VOR), centre location error (CLE) and success rate (SR) of three methods on sequence board, david, sylvester, fskater.
Fig.[l|shows the VOR plots of tracking result on those four sequences.

board david sylvster fskater
VOR [CLE [ SR [ VOR [ CLE [ SR | VOR [ CLE [ SR | VOR | CLE [ SR
Struck Linear 0.59 | 72.1 | 0.65 | 036 | 60.1 | 0.38 | 0.66 | 10.7 | 0.72 | 0.73 | 11.7 | 0.99

Ours without part | 0.63 | 45.0 | 0.70 | 0.40 | 53.7 | 034 | 0.70 | 8.6 0.75 | 0.68 | 12.9 | 0.87
Ours with part 0.83 | 14.1 | 098 | 0.81 | 7.6 1.00 | 0.76 | 5.7 095 | 0.81 | 7.9 1.00

Table 2. Performance of the proposed tracking with/without part and Struck with linear kernel on four sequences.

5. Evaluation of different part initialisations

In this section, we show more results of our tracking algorithm with and different part initialisations. Tab. 2| shows the
VOC overlap ratio(VOR), centre location error (CLE) and success rate (SR) of three methods on sequence sylvester, fskater.
Fig.[I]shows the VOR plots of tracking result on those two sequences.

sylvster fskater
VOR \ CLE \ SR | VOR \ CLE \ SR
Initialise Part Manually 0.76 | 5.7 0951|081 | 7.9 1.00
Initialise Part Automatically | 0.76 | 5.8 0.97 | 0.80 | 8.0 1.00

Table 3. Performance of the proposed tracking with different part initialisations on two sequences.

6. Qualitative visual tracking results

In this section, we show the qualitative visual tracking results of the competing trackers over several representative frames
of thirteen sequences in Fig. [3]to Fig.[I5] The frame index numbers of these representative frames are drawn in the top-left
corner of image.
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Figure 1. Evaluation of the proposed tracking with/without part and Struck with linear kernel in VOC overlap ratio plots on four sequences.
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Figure 2. Evaluation of different part initialisations in VOC overlap ratio plots on two sequences.

7. Quantitative Comparison of competing tracking algorithms

In this section, we show the frame-by-frame CLE and VOR plots of eleven tracking algorithms on thirteen sequences in

Fig.[I6]and Fig.[I7}
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Figure 3. Qualitative visual tracking results of our tracker and competing trackers over representative frames of board sequence. Note that
the number marked on small rectangles represents the index of object parts.
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Figure 4. Qualitative visual tracking results of our tracker and competing trackers over representative frames of david sequence. Note that
the number marked on small rectangles represents the index of object parts.
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Figure 5. Qualitative visual tracking results of our tracker and competing trackers over representative frames of threemen sequence. Note
that the number marked on small rectangles represents the index of object parts.
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Figure 6. Qualitative visual tracking results of our tracker and competing trackers over representative frames of fskater sequence. Note that
the number marked on small rectangles represents the index of object parts.
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Figure 7. Qualitative visual tracking results of our tracker and competing trackers over representative frames of dollar sequence. Note that
the number marked on small rectangles represents the index of object parts.
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Figure 8. Qualitative visual tracking results of our tracker and competing trackers over representative frames of faceoccl sequence. Note
that the number marked on small rectangles represents the index of object parts.
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Figure 9. Qualitative visual tracking results of our tracker and competing trackers over representative frames of gril sequence. Note that
the number marked on small rectangles represents the index of object parts.
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Figure 10. Qualitative visual tracking results of our tracker and competing trackers over representative frames of trellis sequence. Note that
the number marked on small rectangles represents the index of object parts.
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Figure 11. Qualitative visual tracking results of our tracker and competing trackers over representative frames of faceocc2 sequence. Note
that the number marked on small rectangles represents the index of object parts.
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Figure 12. Qualitative visual tracking results of our tracker and competing trackers over representative frames of sylvester sequence. Note
that the number marked on small rectangles represents the index of object parts.
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Figure 13. Qualitative visual tracking results of our tracker and competing trackers over representative frames of coke sequence.
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Figure 14. Qualitative visual tracking results of our tracker and competing trackers over representative frames of tiger/ sequence.
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Figure 15. Qualitative visual tracking results of our tracker and competing trackers over representative frames of tiger2 sequence.
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Figure 16. Quantitative evaluation of different trackers in centre location error plots on thirteen sequences.
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Figure 17. Quantitative evaluation of different trackers in VOC overlap ratio plots on thirteen sequences.



