
Multi-Agent Event Detection: Localization and Role Assignment
—–Supplementary Material—–

Suha Kwak Bohyung Han Joon Hee Han
Department of Computer Science and Engineering, POSTECH, Korea

1. Overview

This supplementary material presents contents omitted
in our paper due to space limit. Section 2 describes the
scenarios of the three target events. Section 3 introduces
the scenario parsing algorithm that discovers temporal re-
lationships between roles and constructs the three tempo-
ral relationship matrices (i.e., Rss, Ree, and Rse) automat-
ically. Section 4 presents the proof omitted in Section 4.4
of the main paper. Finally, additional results in fieldgoal
sequences are illustrated in Section 5.

Our event detection results are also demonstrated in a
video. The video, ‘102.avi’ is encoded with MPEG-4 Xvid
codec, which can be found at http://www.xvid.org.

2. Scenarios of the target events

See Table 1 for the scenarios of the target events Trans-
action, Delivery, and Fieldgoal. Note that the scenario Trans-
action is described hierarchically due to its complexity.

3. How to build temporal relationship matrices

Our method penalizes a lineup candidate if its role-
specific time intervals violate scenario constraints. How-
ever, a scenario describes constraints for relationships be-
tween primitives, not between roles. We need to specify
scenario constraints in a role level to measure the fidelity of
role-specific time intervals to the scenario constraints. For
the purpose, we design three matrices that capture temporal
relationships between roles: Rss for relationships between
starting times, Ree for relationships between ending times,
and Rse for relationships between starting and ending times
(Eq. (6–8) of the main paper).

In this section, we illustrate how to construct the above
three matrices from a given scenario automatically. We
first discover temporal order of starting and ending times
of primitives. The time interval of a role is specified by the
first and last primitives of the role. Temporal order between
a pair of roles is then determined by comparing starting and
ending times of their first and last primitives.

3.1. Discovering temporal order of primitives

Let us assume that the given scenario consists of n prim-
itives. We represent temporal orders between the primitives
by two n × n matrices, Ds and De, which indicate order
of starting times and order of ending times of the primi-
tives, respectively. Formally, [Ds]i,j is r if the j-th primitive
starts its interval earlier than the i-th primitive with respect
to a binary temporal relationship operator r, and 0 other-
wise. Similarly, [De]i,j is r if the j-th primitive ends earlier
than the i-th primitive with respect to r, and 0 otherwise.
Note that r ∈ {<,∧,∼} by our description method.

Ds and De are automatically generated by parsing the
given scenario. First, for each binary temporal relationship
in the scenario, its backward and forward scopes are de-
termined by adjacent parentheses and logical relationships
(Figure 1(a)). Then, the parser determines temporal order
between the backward and forward scopes by the definition
of the binary temporal relationship (see Section 3.1 of the
main paper), and the order is recorded in Ds and De as il-
lustrated in Figure 1(b) and 1(c). Once Ds and De are con-
structed, we accumulate temporal predecessors per primi-
tive; indirect predecessors of a primitive (e.g., predecessors
of predecessors of the primitive) are also considered as its
predecessors in the matrices. The accumulations are done
by

[Ds]i,k =

 ‘<’, if [Ds]i,j = ‘<’ and [Ds]j,k 6= 0
[Ds]j,k, else if [Ds]i,j 6= 0
[Ds]i,k, otherwise

, (1)

[De]i,k =

 ‘<’, if [De]i,j = ‘<’ and [De]j,k 6= 0
[De]j,k, else if [De]i,j 6= 0
[De]i,k, otherwise

.(2)

3.2. Construction of Rss

To determine the order of starting times between a pair
of roles, we compare the first primitives of the roles. Let
ρ̂i and ρ̂j be the first primitives of the i-th role and j-th
role, respectively. If ρ̂i starts its interval earlier than ρ̂j (i.e.,
start(ρ̂i) < start(ρ̂j)), the starting time of the i-th role is
obviously earlier then that of the j-th role (i.e., Start(γi) <

1

http://www.xvid.org

Transaction
TakeItem[γ]⇒ MoveDesk[γ] < MoveOut[γ] ∧WithItem[γ]
BringItem[γ]⇒ (WithItem[γ] ∼ MoveDesk[γ]) < MoveOut[γ]

TakeMoney[γ]⇒ WithoutMoney[γ] < WithMoney[γ] ∧MoveOut[γ]
BringMoney[γ]⇒ WithMoney[γ] ∧MoveDesk[γ]) < WithoutMoney[γ]

ScanItem[γ]⇒ WithItem[γ] ∧ (MoveScanner[γ] < MoveDesk[γ])
Payment[γctm, γcsh]⇒ (BringMoney[γctm] ∼ TakeMoney[γcsh]) < # | (BringMoney[γcsh] ∼ TakeMoney[γctm])

Transaction[γctm, γcsh]⇒ (BringItem[γctm]+ ∼ ScanItem[γcsh]+) < Payment[γctm, γcsh] < TakeItem[γctm]+

Delivery
Delivery[γdel, γrec]⇒ GetOff[γdel] < ComeClose[γrec] & HoldObj[γdel] < (GetAway[γrec] ∧ HoldObj[γrec]) & GetInto[γdel]

Fieldgoal
Fieldgoal[γrec, γsnp, γkck]⇒ Sit[γrec] ∧ (GetBall[γsnp] < ThrowBall[γsnp] < GetBall[γrec] ∧ (Kick[γkck] ∧ GetBall[γkicker]))

Table 1. Scenarios of the target events.

backward

backward

forward

forward

A ଵߛ ∧ B ଶߛ ൏ C ଵߛ

(a) Scenario

A B C
A 0 0 0
B ∧ 0 0
C ൏ ൏ 0

(b) Ds

A B C
A 0 ∧ 0
B 0 0 0
C ൏ ൏ 0

(c) De

Figure 1. An example of Ds and De (best viewed in color). (a) The
two relationship operators in the scenario, ‘∧’ and ‘<’ are denoted
by red and blue, respectively. (b) Each binary relationship deter-
mines the order of starting times between its backward and for-
ward scopes. In this example, ‘<’ constrains its backward scope
(A[γ1] and B[γ2]) to start earlier than its forward scope (C[γ1]); the
corresponding elements in Ds are denoted by blue. (c) De repre-
sents the order of ending times in the same manner.

Start(γj)), and consequently [Rss]i,j = 1 and [Rss]j,i =
−1. So, we focus on how to find the first primitives of each
role and how to determine their order in starting times. Both
of the above problems are solved simply by searching Ds.

Let Pi denote the set of primitives involved in the i-th
role. ρ̂i is the first primitive of the i-th role if ρ̂i ∈ Pi and
[Ds]ρ̂i,ρi = 0 for all ρi ∈ Pi because

[Ds]ρ̂i,ρi = 0, ∀ρi ∈ Pi
⇔ start(ρ̂i) ≤ start(ρi), ∀ρi ∈ Pi. (3)

Given ρ̂i and ρ̂j , the corresponding element of Rss is deter-
mined by comparing their order in starting times as follow:

[Rss]i,j =


∞, if i = j,
1, else if [Ds]ρ̂j ,ρ̂i 6= 0,
−1, else if [Ds]ρ̂i,ρ̂j 6= 0,

0, otherwise.

(4)

3.3. Construction of Ree

We determine the order of ending times between a pair
of roles by comparing the last primitives of the roles. Let ρ̌i
and ρ̌j be the last primitives of the i-th role and j-th role,
respectively. Note that ρ̌i is obtained by searching De in
a similar manner to Section 3.2. Given ρ̌i and ρ̌j , [Ree]i,j
is determined by comparing their order in ending times as
follow:

[Ree]i,j =


∞, if i = j,
1, else if [De]ρ̌j ,ρ̌i 6= 0,
−1, else if [De]ρ̌i,ρ̌j 6= 0,

0, otherwise.

(5)

3.4. Construction of Rse

An element of Rse indicates temporal order between the
starting time of a role and the ending time of another role.
Let ρ̂i and ρ̌j be the first primitive of the i-th role and the
last primitive of the j-th role, respectively. Then [Rse]i,j
is determined by comparing temporal order between ρ̂i and
ρ̌j ; it is more complicated than constructing Rss and Ree,
but also done by searching Ds and De:

[Rse]i,j =


∞, if i = j,
1, else if [Ds]ρ̌j ,ρ̂i 6= 0,
1, else if [De]ρ̌j ,ρ̂i 6= 0,
−1, else if [De]ρ̂i,ρ̌j = <,

0, otherwise.

(6)

2

4. The proof for two-step optimization
When estimating true lineups, we substitute the two-step

optimization (Eq. (10) and Eq. (13) in the main paper) for
the original joint optimization (Eq. (9) in the main paper) to
reduce search space significantly. The solutions of the two
optimization problems are identical, which is proved by the
following proposition.

Proposition 1. The optimization problem in Eq. (9) of the
main paper is equivalent to the joint optimization problem
given by Eq. (10) and Eq. (13) of the main paper.

Proof. For notational simplicity, let

h(x1, . . . ,xl) = f(x1, . . . ,xl)−A>c0, (7)

ĥ = f̂ −A>c0. (8)

Then

ĥ
>
y ≥ h(x1, . . . ,xl)

>y, ∀x1, . . . ,xl,y (9)

because A>c0 is a constant vector, y is a binary vector,
and fk(x̂k) ≥ fk(xk) for all xk of all k = 1, . . . , l. The
optimization problems in Eq. (9) and Eq. (13) of the main
paper can be rewritten respectively by

max
y,x1,...,xl

h(x1, . . . ,xl)
>y s.t. Ay ≤ 1m, (10)

max
y

ĥ
>
y s.t. Ay ≤ 1m, (11)

where the constant c>0 1m is dropped. Let Y be the set of
feasible y’s, i.e., Y = {y|Ay ≤ 1m,y ∈ {0, 1}l}, and ŷ
denote the solution of Eq. (11). By the inequality in Eq. (9),

ĥ
>
ŷ ≥ ĥ

>
y ≥ h(x1, . . . ,xl)

>y, ∀y ∈ Y. (12)

Therefore, the maximum value of the optimization Eq. (11)
is same with the maximum value of the optimization
Eq. (10), which indicates the equivalence of the optimiza-
tion problems in Eq. (13) and Eq. (9) of the main paper.

5. Results in fieldgoal sequences
In this section, we present event detection results in all

five fieldgoal sequences. Each fieldgoal sequence contains
20 or more agents and one Fieldgoal event. Because all
agents are spatially close to others in the sequences, we
counted all possible agent groups. Despite of a large num-
ber of groups (see Table 2), our method successfully local-
izes and detects the true target events with no misidentified
lineups; the detection results are illustrated in Figure 2.

We compare our results with the naı̈ve approach in terms
of detection accuracy (Table 2) and execution time (Ta-
ble 3). The naı̈ve approach applies the event detection algo-
rithm in Section 3 of the main paper to all possible lineup

Role anal. Lineup est. Event det. Overall

fieldgoal1
Ours 10.9 165.7 0.1 176.6
Naı̈ve - - 464.8 464.9

fieldgoal2
Ours 13.2 303.2 0.1 316.4
Naı̈ve - - 826.2 826.4

fieldgoal3
Ours 16.7 284.2 0.1 301.0
Naı̈ve - - 1063.5 1063.7

fieldgoal4
Ours 14.6 343.6 0.1 358.3
Naı̈ve - - 899.5 899.7

fieldgoal5
Ours 14.3 224.8 0.1 239.2
Naı̈ve - - 839.1 839.3

Table 3. Execution times in seconds in fieldgoal sequences.

candidates, and rejects candidates if the numbers of halluci-
nations in their interpretations are larger than a threshold θ.
Note that our method also verifies the identified lineups by
the event detection algorithm in the same manner.

Our method achieves perfect accuracy in all the exper-
iments except only one while the naı̈ve approach typically
has many false alarms. This is because our method can pre-
vent conflicting lineups by using a single objective function
while the naı̈ve approach evaluates each lineup candidate
independently. Imperfect primitive detection is another rea-
son for the false alarms. For example, the primitives associ-
ated with the snapper role γsnp (GetBall and ThrowBall) are
also detected with high confidences from agents near the
true snapper, and the action detector for the Kick primitive
often fail to distinguish kicking and running. Our method is
also 2∼3 times faster than the naı̈ve approach even though
there are a large number of lineup candidates and the cost
of event detection is relatively small.

3

Number of detected events (precision/recall)
θ = 2 θ = 1 θ = 0

Agents Groups Ours Naı̈ve Ours Naı̈ve Ours Naı̈ve

fieldgoal1 20 1140 1 (1.00/1.00) 56 (0.02/1.00) 1 (1.00/1.00) 6 (0.17/1.00) 1 (1.00/1.00) 2 (0.50/1.00)

fieldgoal2 24 2024 1 (1.00/1.00) 132 (0.01/1.00) 1 (1.00/1.00) 9 (0.11/1.00) 1 (1.00/1.00) 4 (0.25/1.00)

fieldgoal3 24 2024 1 (1.00/1.00) 107 (0.01/1.00) 1 (1.00/1.00) 5 (0.20/1.00) 1 (1.00/1.00) 3 (0.33/1.00)

fieldgoal4 24 2024 1 (1.00/1.00) 131 (0.01/1.00) 1 (1.00/1.00) 4 (0.25/1.00) 0 (0.00/0.00) 0 (0.00/0.00)

fieldgoal5 23 1771 1 (1.00/1.00) 301 (0.00/1.00) 1 (1.00/1.00) 9 (0.11/1.00) 1 (1.00/1.00) 3 (0.33/1.00)

Table 2. Event detection results by varying the threshold for the number of hallucinations (θ) in fieldgoal sequences.

 0 63 126 189

Sit [hld]
GetBall [snp]

ThrowBall [snp]
GetBall [hld]

Kick [kck]
GetBall [kck]

holder: 18, snapper: 17, kicker: 20

170

01

23 45
6

7 8
9

10
1112

13 14

15
16

17

18

20170
200

01
23 45

6 7
8

910
1112

13

14
15

16

17

18
20

200
230

0 1

23
4

5
6 7

8

910
1112

13

14
15

16

17

18 20

230

(a) Detection result in fieldgoal1 sequence

 0 57 114 171

Sit [hld]
GetBall [snp]

ThrowBall [snp]
GetBall [hld]

Kick [kck]
GetBall [kck]

holder: 22, snapper: 0, kicker: 23

150

01
2

34
5

6
7

89
1011

1213
141516

17

18
192021

22

23150
180

0
1

2

345678
9
10

111213141516

17

18
192021

22
23

180
210

0
1

2

3

4 5
6 78

9
10

11
1213141516

17

18
1920

21
22 23

210

(b) Detection result in fieldgoal2 sequence

 0 88 176 264

Sit [hld]
GetBall [snp]

ThrowBall [snp]
GetBall [hld]

Kick [kck]
GetBall [kck]

holder: 2, snapper: 3, kicker: 0

240

0

2

3 4 5 6
7

891011
12 13

14
151617 18 19 20

21 22 23 24

240
260

0
2

3 4 5 6
7

89 101112 13

14

151617 18 19 20

21 22 23 24

260
320

02

3
4

5 6
7

89 10 11

12

13

14

15 16 1718 19

20

21
22

23 24

320

(c) Detection result in fieldgoal3 sequence

 0 54 108 162

Sit [hld]
GetBall [snp]

ThrowBall [snp]
GetBall [hld]

Kick [kck]
GetBall [kck]

holder: 23, snapper: 14, kicker: 24

120

123

4

5
6
7

8
9

1011
12

13

1415
1617
181920

2122

23

24
120

170

1234

5

6
7

89101112

13

1415

16
171819202122

23
24

170
220

1
3

4

5
6

7

89101112

13

1415

16
17
1819

20

21

22

23 24

220

(d) Detection result in fieldgoal4 sequence

 0 78 156 234

Sit [hld]
GetBall [snp]

ThrowBall [snp]
GetBall [hld]

Kick [kck]
GetBall [kck]

holder: 22, snapper: 5, kicker: 23

205

12 3 4 5 6 7 8
9

101112
13 14

15
1617 18 1920

21

22

23205
240

1
2 3 4

5 6
7 8

9
10

11
12

13

14

15

161718
1920

21

22
23

240
270

1
2 34

5
6

7
8

9
10

11
12

13

14

15

1617 18
19

20
21

22 23
270

(e) Detection result in fieldgoal5 sequence

Figure 2. Results in the five fieldgoal sequences; only (a) and (e) are given in the main paper. Holder, snapper, and kicker are denoted by
purple, cyan, and orange, respectively while outsiders are denoted by white boxes.

4

