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1. Recovering Jointly Sparse Atoms

In this section we provide a brief summary of algorith-
mic details from [1] for the three joint sparse models (JSM-
1 to 3) that we used to recover atoms C; and I; constituting
the intermediate representation J(V;) of the video V;.

1.1. JSM-1

In this case both the common component and innova-
tive components are sparse. So we perform ¢; minimization
(since ¢y optimization is NP-hard) to the signal ensemble to
recover C; and I; under sparsity constraints. More details
are available from Section 5.1 in [1].

1.2. JSM-2

In this case there is no common component but the inno-
vations have shared supports. We perform recovery using
the DCS-SOMP (Distributed Compressive Sensing - Simul-
taneous Orthogonal Matching Pursuit) algorithm from Sec-
tion 5.2 in [1]. It is a greedy iterative variant of the Orthog-
onal Matching Pursuit (OMP) that estimates one innovative
element at each step.

1.3. JSM-3

We used Alternating Common and Innovation Estima-
tion (ACIE) from Section 5.3 of [ 1] for the case where com-
mon component is not sparse while innovations are sparse.
One central aspect of this algorithm is to decouple the effect
of estimated basis for innovations from the task of estimat-
ing the common component.

2. Karcher Mean and Related Computations
on the Grassmannian

In Algo 1, 2 and 3 we present algorithmic computations
on the Grassmann manifold G,, 4 that were utilized in Sec
2.3.2 (Event clustering) and Sec 2.3.1 (Event classification,
intrinsic) in the main paper. The extrinsic method for per-
forming event classification using Grassmann kernel dis-
criminant analysis (Sec 2.3.1) is given in Algorithm 4.

1. Given a set of N points {S;} on the manifold.

2. Let 1o be an initial estimate of the Karcher mean,
usually obtained by picking one element of {S;} at
random. Set j = 0.

3. Foreachi = 1, .., k, compute the inverse exponential
map (Algorithm 2) v; of \S; about the current
estimate of the mean, i.e. v; = exp;jl (S5).

4. Compute the average tangent vector o = % Z Vj.

k
i=1

5. If ||| is small, then stop. Else, move fi; in the average
tangent direction using fij+1 = exp_ (ew), where € > 0
is small step size, typically 0.5, and exXpy; is the
exponential map (Algorithm 3) at fi;.

6. Set 7 = j + 1 and return to Step 3. Continue till fi;

does not change anymore or till maximum iterations
are exceeded.

Algorithm 1: Algorithm to compute the sample Karcher
mean [2].

Given two points S7 and Sz on the Grassmannian G, 4.
e Compute the n x n orthogonal completion @ of S;.
e Compute the thin CS decomposition of @ Sy given
byQ SQ—( YC = 0 V2 72(1) 1%

e Compute {6;} which are given by the arccos and
arcsine of the diagonal elements of I" and X
respectively, i.e. v; = cos(6;), o; = sin(0;). Form the
diagonal matrix © with 6’s as diagonal elements.

e Compute A = Vo0V,

Algorithm 2: Numerical computation of the velocity
matrix: The inverse exponential map [3].
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e Given a point on the Grassmann manifold S and a

tangent vector B = 0 AT
& “\ -4 o )

e Compute the n x n orthogonal completion () of .S;.
e Compute the compact SVD of the direction matrix
A =120V,
e Compute the diagonal matrices T'(¢') and (') such that
~i(t') = cos(t'0;) and o; (") = sin(t'0;), where
0’s are the diagonal elements of ©.
N ViT(t')
e Compute U(t') = Q ( —R(t)

of t' € [0,1].

) , for various values

Algorithm 3: Algorithm for computing the exponential
map, and sampling along the geodesic [3].

Given intermediate representations J(V;)’s corresponding to
training videos with one of m activity labels, orthonormalize
their columns to obtain .J(V;)’s. Similarly obtain J(V;)’s
from unlabeled test videos V;’s.

Training:

e Compute the matrix [Krain]ij = kp(J(Vi), J(V;))
for all J(V;), J(V;) in the training set, where kp is the
projection kernel defined earlier.

e Solve max~ L(+y) by eigen-decomposition (1), with
K* = Kt'r'a,in-

e Compute the (m-1)-dimensional coefficients,

Firain = ’YTKtruin
Testing:

e Compute the matrix [Krest]ij = kp(J(V3), J(V;)
for all J(V;) in training, and J(V}) in testing.

e Compute (m-1)-dimensional coefficients,

Ftest = "}/TKtest by solving for (]) with [(’c = Ktest~

e Perform 1-nearest neighbor classification (f2) from the
Euclidean distance between Fi,qin and Fiest.

The Rayleigh quotient L(+y) is given by,

T yprx (v _ T *
L(7) = max 1 SO IBL/BIKD
v AT(K*(Ip = Y)K* +02Ip)y

where K* is the Gram matrix (K¢pqin OF Kiest), 15 is a
uniform vector [1...1]7 of length B corresponding to the
number of training videos, Y is the block-diagonal matrix
whose 4" block (y = 1 to m) is the uniform matrix

1, 1§y /B,, B, is the number of training videos in '™
activity class, and o215 is a regularizer to make
computations stable.

Algorithm 4: Grassmann Kernel Discriminant Analy-
sis [4].
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