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1. Recovering Jointly Sparse Atoms
In this section we provide a brief summary of algorith-

mic details from [1] for the three joint sparse models (JSM-
1 to 3) that we used to recover atoms Ci and Ii constituting
the intermediate representation J(Vi) of the video Vi.

1.1. JSM-1

In this case both the common component and innova-
tive components are sparse. So we perform `1 minimization
(since `0 optimization is NP-hard) to the signal ensemble to
recover Ci and Ii under sparsity constraints. More details
are available from Section 5.1 in [1].

1.2. JSM-2

In this case there is no common component but the inno-
vations have shared supports. We perform recovery using
the DCS-SOMP (Distributed Compressive Sensing - Simul-
taneous Orthogonal Matching Pursuit) algorithm from Sec-
tion 5.2 in [1]. It is a greedy iterative variant of the Orthog-
onal Matching Pursuit (OMP) that estimates one innovative
element at each step.

1.3. JSM-3

We used Alternating Common and Innovation Estima-
tion (ACIE) from Section 5.3 of [1] for the case where com-
mon component is not sparse while innovations are sparse.
One central aspect of this algorithm is to decouple the effect
of estimated basis for innovations from the task of estimat-
ing the common component.

2. Karcher Mean and Related Computations
on the Grassmannian

In Algo 1, 2 and 3 we present algorithmic computations
on the Grassmann manifold Gn,d that were utilized in Sec
2.3.2 (Event clustering) and Sec 2.3.1 (Event classification,
intrinsic) in the main paper. The extrinsic method for per-
forming event classification using Grassmann kernel dis-
criminant analysis (Sec 2.3.1) is given in Algorithm 4.

1. Given a set of N points {Si} on the manifold.

2. Let µ̄0 be an initial estimate of the Karcher mean,
usually obtained by picking one element of {Si} at
random. Set j = 0.

3. For each i = 1, .., k, compute the inverse exponential
map (Algorithm 2) νi of Si about the current
estimate of the mean, i.e. νi = exp−1

µ̄j
(Si).

4. Compute the average tangent vector ν̄ = 1
k

k∑
i=1

νi.

5. If ‖ν̄‖ is small, then stop. Else, move µ̄j in the average
tangent direction using µ̄j+1 = expµ̄j

(εν̄), where ε > 0
is small step size, typically 0.5, and expµ̄j

is the
exponential map (Algorithm 3) at µ̄j .

6. Set j = j + 1 and return to Step 3. Continue till µ̄j

does not change anymore or till maximum iterations
are exceeded.

Algorithm 1: Algorithm to compute the sample Karcher
mean [2].

Given two points S1 and S2 on the Grassmannian Gn,d.

• Compute the n× n orthogonal completion Q of S1.

• Compute the thin CS decomposition of QT S2 given

by QT S2=

(
XC

YC

)
=

(
V1 0

0 Ṽ2

) (
Γ(1)
−Σ(1)

)
V T

• Compute {θi} which are given by the arccos and
arcsine of the diagonal elements of Γ and Σ
respectively, i.e. γi = cos(θi), σi = sin(θi). Form the
diagonal matrix Θ with θ’s as diagonal elements.

• Compute A = Ṽ2ΘV T
1 .

Algorithm 2: Numerical computation of the velocity
matrix: The inverse exponential map [3].
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• Given a point on the Grassmann manifold S1 and a

tangent vector B =

(
0 AT

−A 0

)
.

• Compute the n× n orthogonal completion Q of S1.

• Compute the compact SVD of the direction matrix
A = Ṽ2ΘV1.

• Compute the diagonal matrices Γ(t′) and Σ(t′) such that
γi(t

′) = cos(t′θi) and σi(t
′) = sin(t′θi), where

θ’s are the diagonal elements of Θ.

• Compute Ψ(t′) = Q

(
V1Γ(t′)
−Ṽ2Σ(t′)

)
, for various values

of t′ ∈ [0, 1].

Algorithm 3: Algorithm for computing the exponential
map, and sampling along the geodesic [3].

Given intermediate representations J(Vi)’s corresponding to
training videos with one of m activity labels, orthonormalize
their columns to obtain J̄(Vi)’s. Similarly obtain J̄(Ṽi)’s
from unlabeled test videos Ṽi’s.
Training:

• Compute the matrix [Ktrain]ij = kP (J̄(Vi), J̄(Vj))
for all J̄(Vi), J̄(Vj) in the training set, where kP is the
projection kernel defined earlier.

• Solve maxγ L(γ) by eigen-decomposition (1), with
K? = Ktrain.

• Compute the (m-1)-dimensional coefficients,
Ftrain = γT Ktrain

Testing:

• Compute the matrix [Ktest]ij = kP (J̄(Vi), J̄(Ṽj))
for all J̄(Vi) in training, and J̄(Ṽj) in testing.

• Compute (m-1)-dimensional coefficients,
Ftest = γT Ktest by solving for (1) with K? = Ktest.

• Perform 1-nearest neighbor classification (f2) from the
Euclidean distance between Ftrain and Ftest.

The Rayleigh quotient L(γ) is given by,

L(γ) = max
γ

γT K?(Ȳ − 1B1T
B/B)K?γ

γT (K?(IB − Ȳ )K? + σ2IB)γ
(1)

where K? is the Gram matrix (Ktrain or Ktest), 1B is a
uniform vector [1...1]T of length B corresponding to the
number of training videos, Ȳ is the block-diagonal matrix
whose yth block (y = 1 to m) is the uniform matrix
1By 1T

By
/By , By is the number of training videos in yth

activity class, and σ2IB is a regularizer to make
computations stable.

Algorithm 4: Grassmann Kernel Discriminant Analy-
sis [4].
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