A. Proof for Algorithm 1

Proposition 1. In Algorithm 1 when the triangulated graph G' is constructed, if $|P_0P_2| < |P_1P_1'|$, $|P_0P_2| < \sqrt{t_r^2 + b^2}$. $(t_r \text{ is the threshold of neighborhood energy } E_r \text{ in Equation 7; b is the width of the user scribble.)$

Proof of Proposition 1. In Algorithm 1, when $v_{i-2}, v_{i-1}, v_i, v_{i+1}$ are considered, $v_i \prec v_{i-2} \Rightarrow P_0 \prec P_2$; $v_{i-1} \prec v_{i+1} \Rightarrow P_1 \prec P_1'$. At the same time, we have $|P_0P_1| < t_r, \ |P_0P_1'| < t_r, \ |P_1P_2| < t_r$ and $|P_0P_2| < |P_1P_1'|$. Projecting the four points P_0, P_1, P_1', P_2 onto the central line of user scribble, it's easy to identify that the distance of the projections of P_0 and P_2 are $< t_r$. Since the width of the user scribble is $b, |P_0P_2| < \sqrt{t_r^2 + b^2}$.

With Proposition 1, in the output graph G' of Algorithm 1, the distances of all node pairs are within $\sqrt{t_r^2 + b^2}$.

Proposition 2. In Algorithm 1 when a vertex v_k is eliminated, all the neighbors of v_k are connected in G'.

Proof of Proposition 2. If that the proposition is not valid, $\exists v_k$ picked for elimination, there is no edge between its neighbors v_i and v_j . We will prove that this contradicts with the assumption based on which v_k is selected.

Since there is no edge between v_i and v_j , then $v_i \prec v_j$ or $v_i \prec v_j$. Assume that $v_i \prec v_j$. Based on the assumption on which v_k is chosen, v_k has no more neighbors than v_i . Meanwhile, v_j is a neighbor of v_k but not of v_i , so $\exists v_t$, which is a neighbor of v_i but not of v_k . Again, based on the assumption on which v_k is chosen, $v_k \prec v_t$.

Now consider the four vertices v_k v_i v_j v_t : if v_t and v_j are connected, the four vertices form a circle in G', in contradict with the fact that G' is triangulated. If v_t and v_j are not connected, $v_t \prec v_j$ or $v_j \prec v_t$. Consider the first case, we have $v_k \prec v_t, v_t \prec v_j \Rightarrow v_k \prec v_j$, in contradict with that v_j is v_k 's neighbor. Likewise consider the latter case $v_j \prec v_t$, we have $v_i \prec v_j, v_j \prec v_t \Rightarrow v_i \prec v_t$, in contradict with that v_i and v_t are connected.

Similarly, the assumption that Proposition 2 is not valid would fail assuming $v_i \prec v_i$.

Proposition 2 guarantees that computational cost of variable elimination is bounded by largest clique size of the triangulated graph G'.

B. More Edge Selection Results (Fig 13)

C. More Application Results

- C.1. Edge Snapping (Fig 10)
- C.2. Saliency Sharpening (Fig 11)
- C.3. Image Stylization (Fig 12)

Figure 10. More edge snapping results. (a) input image; (b) user scribble overlayed; (c) our edge snapping results (red is the initial curve, and green is the output); (d) edge snapping results using active contour.

Figure 11. More saliency sharpening results. First line: (a) input image with user scribble overlayed; (b) gradients selected by our approach; (c) results of locally filtering of the selected gradients (our approach); (d) global filtering result. Second line: we show two sets of user scribbles and their corresponding results.

Figure 12. More stylization results. From left to right: input image; user scribbles; our result using gradient selection.

Figure 13. More edge selection results compared with gPb thresholded by different values. (a) is the original image with an overlay of user scribble; (b) is the edge probability map extracted by gPb; (c) and (d) are the results of directly using the output of gPb within the mask region, using different thresholds; (e) is the output of our method; (f) is the groundtruth.