CVPR
#1988

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

CVPR 2013 Submission #1988. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Sparse Quantization for Patch Description
Supplementary Material

Anonymous CVPR submission

Paper ID 1988

In the paper we left several derivations for the supple-
mentary material. We detail here these derivations, fol-
lowing the same order of appearance as in the paper. We
provide the derivations of the proof of Proposition 1, and
Proposition 2. We also provide an extension of the relation
of SQ with other encodings.

1. Sparse Quantization

Proposition 1. Let V* be the quantization into T} of v €
RY, which is v* = argminges ||V — v||2. For ||v]s <
Isll2/Vk, wheres € T, ¥* can be computed by

i { sign(v;) ifi € k-Highest(|v]) ’ 0

i 0 otherwise

where |v| is the element-wise absolute value of v, and
k-Highest(|v]) is the set of dimension indices that indicate
which are the k elements of the vector |v| with the highest
values.

Proof. We first rewrite ||V — v||? as Y, (9; —
v € T has k elements set to 1 or —1 and (¢ —
we can write the above summation as

v;)2. Since
k) setto 0,

Z(@-%)ZZ
DYoo) —wP+ D (1) —w) +Z v;)?

i:0;=(+1) i:0;=(—1) 10, =
2

We sort in descending order the absolute value of the set
of values at each dimension of v, i.e. we sort {|v;|}, and
we use a new indexing in this ordered set. We indicate so
by using v/, and we index it with s instead of 4, such that
[V(s—1)| > [vi]- To see when (2) is minimum, note that

(V)2 >...> (vzs_l))2 >W)E> . 3)

= e D? < (=D <o
@)

1—|vh)<...<(1

where (4) is due to the assumption ||v|s < ||s||2/vk, and
it is equivalent to

Sign(vzs—l)”’uzs—l) |)2 <
D) <. )

< (sign(v(,_1)) —
< (sign(vl) — sign(v

We rewrite Eq. (2):

Z (sign(v;) — sign(v; |vZ + Z v;)%  (6)

3:0; #0 10, =

Therefore, to make the two terms in (6) minimum, we set
the k elements in v to sign(v;) such that (sign(v)) —
sign(v.)|v.])? in (5) are minimum, and we set (¢ — k) zeros
in v such that (v/)? in (3) are minimum. Thus, we set the k
highest values of |v| to sign(v;), and 0 to the other (g — k)
values. O

2. SQ for Encoding in Patch Description

Definition 1. Let a* € ]RkQ be the encoding of f € RY such
that

¥ =arg mln Ha U(f, U ’]I‘q )2 @)

0<p<gq

Proposition 2. Let g < 4 and k < 2. Then, Algorithm 1 ob-
tains the global minimum for o in Definition 1 with com-
putational complexity O(q?).

Algorithm 1: Sparse Quantization in Proposition 2
Input: f € RY
Output: a* € ]RkQ
forall 0 < p < gdo
B; = argmingr |18 — £l
end
“ = argming o llo — B(E, {2

CVPR
#1988

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107



CVPR
#1988

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

CVPR 2013 Submission #1988. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Proof. The Proposition is saying that if we constraint &k < 2
and g < 4, we can assure that the minimum of

U T ®

k 0<p<q

a* = arg rnm loe — W(f
QeRr?

can be achieved by splitting the optimization into the opti-
mization of each of the sets of the codebook Tg indepen-
dently, and then picking the elements that has higher simi-
larity measure between f and the selected Tg. We use ﬁ;
to denote the candidate selected for the set Tg, which is the
solution of argming g, [|8 — fl[2. We define the second

best solution of such SQ as 3°%, which are the discarded
candidates that are closer to [)';.

Let f’ be the vector f such that the higher elements are at
the beginning of the vector, i.e. f{ > --- > f,. In Proposi-
tion 1, we showed that ,81*, can be constructed selecting the
first p components of f/. We can also see from the proof
of Proposition 1, that ﬂ;z, consists on selecting the p — 1
first components of f’ and also the p + 1 component. In
this way, we maintain the p — 1 components with lower re-
construction error, and we only change the p-th term for the
(p + 1)-th, which keeps p non-zero components and the re-
construction error is the closest to the one of the optimal SQ.
When p = g, the second best solution is built by changing
the sign of the p-th term, since it does not exist the (p + 1)-
th term, since p < ¢q. Observe that the distance between B;
and £’ is

P q
. 1
dBy. ) => (—= =1+ > ()*  ©
= VP j=p+1
The distance between the ﬁ;‘f and f/, in case p < g, is
By, f') =
p—1 1 1 q
(—= = 1D+ (= = [faD? + ()2 + D ()%
; \/ﬁ J \/15 p+1 P j;ﬂ J

(10)

and forp = q is

q—
Z —|fi)? (jflf;l)? (11)

The proof of the Proposition consists on verifying that
the k£ components of the set | J, <p<q Lp, that have higher
similarity measure with f, are always in {3} } and never in
{B}?}. Note that showing that the closest elements to f are
never in {@;2}, means that they necessarily are in {3 }.
This is equivalent to show that

d(B;. ') < d(B;?. ), (12)

for all a,b < ¢q. This condition is to verify that in general
Algorithm 1 obtains the global maximum for k¥ < ¢. In
the following, we are only able to show that for £ < 2 and
qg < 4.

When k& = 1 it is trivial to proof the Proposition, since
one of the elements in {3} is necessarily the closest ele-
ment to f. For & = 2, this might not be the case, because
for a certain p, [)’; and [)';2 can be the closest elements to f,
rather than two different 3} with different p’s. We use 3
to denote the closest element to f in Jy_, <, Tg, which is
the solution for £ = 1, and we denote 632 as the discarded
candidate which is closest to 3} in T4. Thus, the proof for
k = 2, consists on validating that the second closest ele-
ment to f is not 8, and that it is in {8}}. We develop
Eq. (12) using the distances previously calculated in Eq. (9)
and (10):

d(,@;,f/) < d( *2 f/ — [ E f/ + fo+1

] 1f/
(13)

Thus, if it always exist a B; that verifies Eq. (13), we prove
that for £ < 2, Algorithm 1 finds the optimal SQ. We show
that either 3, and 3,_, always fulfill such condition, for
g < 4. For notation simplicity, we define K = Z;};i fi+
for1. Thus, for 35_, Eq. (13) becomes:

!
1

d(B* . Y <d(B2f) = 1241 > /1=

(ﬂoflv )— (ﬂo’ ) K - 07
(14)

and for 3}, (for o < ¢):

Z\/1+-. 15

From Eq. (14) and (15), and taking into account that f] >
s > fé, we can verify algebraically, that for o < 3, ei-
ther Eq. (14) or (15) are fulfilled, or both. For o = 4,
and if ¢ = 4, it can be verified in the same way that
d(B;, 1) < d(B32,1'), where d(3,2,f’) takes the form in
Eq. (11), since for this case p = q.

d(/33+17f/) <d(Bf) =1 +

O

3. Relation with Other Encodings
Sparse Coding. The formulation for the kernelized sparse
coding [1] is

Zazaﬁ %, a6

a* =arg mln = ||p(x
azeR

CVPR
#1988

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215



CVPR
#1988

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

CVPR 2013 Submission #1988. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

where ¢(x) is a non-linear mapping of x. Eq. (16) can be
decomposed in the following terms:

K(X, X) - 2ZaiK(x, bl) + Z ZaiajK(bi,bj),
i % J
a7

in which K (x,b;) = ¢(x)7¢(b;). K(x,x) can be treated
as a constant because it does not influence on the optimiza-
tion problem. Thus, the optimization becomes

arg min 722041 (x,b;) +ZZO¢ZO¢]

aGR

(bi, bj).
(18)

Recall that the encoding with SQ can be formulated as
(Eq. (3) in the paper)

a* = arg min |la— ¥(f, {bi})||2, (19)
o eR?

k

which decomposes into
ala—2a"U(f, {b;}) + U(f, {b;})TU(f, {b;}), (20)

in which T« is constant because of the constraint & €
]RkQ, and U(f, {b; )T U (f, {b;}) can also be dropped be-
cause it does not depend on «, and hence, it does not influ-
ence in the minimization. Thus, the optimization becomes

£,{b:}). 2y

arg mln —aTy(
aeRr?

Noting that each entry of W corresponds to the similarity
measure K (f, b;), we can rewrite Eq. (20) as:

arg min — a; K (22)
B i, — 2

We can see that the main difference between SQ and
the kernelized version of Sparse Coding lies in the term
> 2.; @ia; K (b, bj), which is a regularization term.

Convolutional Networks. Let W € R7*"™ be the matrix
containing the filters we use in our formulation to extract
the features, and let x € R’ be the raw image where W is
applied. Thus, f = Wx € R?. Here we show that

W(E, (b)) o Wik, (Wb} €RS, (23)
where

U(f, {b;}) = (

f=WxecRIWecR>*andx € R, w is a normaliza-
tion factor, and we assume that f and b; are ¢5-normalized.

(f,b1)... K(f,bg)) € RC. (24)

First we decompose the left hand side of Eq. (23) for by,
assuming that we use the Gaussian kernel similarity, which
is the one we use in the paper. Thus,

_h.l2
K(f,b;) = exp (—W) = )

o
1|2 + ||bs||? —2fTb;

p (FEE I o (L2
T

Kiexp <2f b: >, 27

wher K is a constant since f and b; are normalized.
Now we develop the right hand side of Eq. (23) with the
same assumptions. This is

1 1
\II(Xa 7WTb1) = K(Xv 7Wsz) =
w w

(28)
o (= S WP
p 0_2 -
(29)

<||x||2 + [+ Wb, ||2> < —2x"WTh;
5 expl| ————0p—— | =

g wo

(30)

2fTbi
Ky exp< 5 >,

wo
31)

in which we use the normalization factor w and the equiva-
lence f = Wx to go from Eq. (30) to (31). Then, since K3
and K are two constants, we can recover the proportion of
Eq. (23), i.e.

2fTb; 2fTb;
Kiexp ( -2 ) x Ky exp (w02 ) ) (32)

which can be extended to all the set {b;}.

References

[1] M. T. Harandi, C. Sanderson, R. Hartley, and B. C. Lovell. Sparse
coding and dictionary learning for symmetric positive definite matri-
ces: A kernel approach. In ECCV, 2012.

CVPR
#1988

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323



