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In the paper we left several derivations for the supple-
mentary material. We detail here these derivations, fol-
lowing the same order of appearance as in the paper. We
provide the derivations of the proof of Proposition 1, and
Proposition 2. We also provide an extension of the relation
of SQ with other encodings.

1. Sparse Quantization
Proposition 1. Let v̂? be the quantization into Tqk of v ∈
Rq , which is v̂? = arg minv̂∈Tq

k
‖v̂ − v‖2. For ‖v‖2 ≤

‖s‖2/
√
k, where s ∈ Tqk, v̂? can be computed by

v̂?i =

{
sign(vi) if i ∈ k-Highest(|v|)
0 otherwise , (1)

where |v| is the element-wise absolute value of v, and
k-Highest(|v|) is the set of dimension indices that indicate
which are the k elements of the vector |v| with the highest
values.

Proof. We first rewrite ||v̂ − v||2 as
∑
i(v̂i − vi)2. Since

v̂ ∈ Tqk has k elements set to 1 or −1 and (q − k) set to 0,
we can write the above summation as ∑

i

(v̂i − vi)2 =∑
i:v̂i=(+1)

((+1)− vi)2 +
∑

i:v̂i=(−1)

((−1)− vi)2 +
∑
i:v̂i=0

(vi)
2

(2)

We sort in descending order the absolute value of the set
of values at each dimension of v, i.e. we sort {|vi|}, and
we use a new indexing in this ordered set. We indicate so
by using v′, and we index it with s instead of i, such that
|v′(s−1)| > |v

′
s|. To see when (2) is minimum, note that

(v′1)2 > . . . > (v′(s−1))
2 > (v′s)

2 > . . . ; (3)

(1− |v′1|)2 < . . . < (1− |v′(s−1)|)
2 < (1− |v′s|)2 < . . . ;

(4)

where (4) is due to the assumption ‖v‖2 ≤ ‖s‖2/
√
k, and

it is equivalent to

. . . < (sign(v′(s−1))− sign(v′(s−1))|v
′
(s−1)|)

2 <

< (sign(v′s)− sign(v′s)|v′s|)2 < . . . . (5)

We rewrite Eq. (2): ∑
i

(v̂i − vi)2 =∑
i:v̂i 6=0

(sign(vi)− sign(vi)|vi|)2 +
∑
i:v̂i=0

(vi)
2 (6)

Therefore, to make the two terms in (6) minimum, we set
the k elements in v̂ to sign(vi) such that (sign(v′s) −
sign(v′s)|v′s|)2 in (5) are minimum, and we set (q−k) zeros
in v̂ such that (v′s)

2 in (3) are minimum. Thus, we set the k
highest values of |v| to sign(vi), and 0 to the other (q − k)
values.

2. SQ for Encoding in Patch Description

Definition 1. Let α? ∈ RQk be the encoding of f ∈ Rq such
that

α? = arg min
α∈RQ

k

‖α−Ψ(f ,
⋃

0<p≤q

T̄qp)‖2. (7)

Proposition 2. Let q ≤ 4 and k ≤ 2. Then, Algorithm 1 ob-
tains the global minimum for α? in Definition 1 with com-
putational complexity O(q2).

Algorithm 1: Sparse Quantization in Proposition 2
Input: f ∈ Rq
Output: α? ∈ RQk
forall 0 < p ≤ q do

β?p = arg minβ∈T̄q
p
‖β − f‖2

end
α? = arg minα∈RQ

k
‖α− Ψ̃(f , {β?p})‖2

1
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Proof. The Proposition is saying that if we constraint k ≤ 2
and q ≤ 4, we can assure that the minimum of

α? = arg min
α∈RQ

k

‖α−Ψ(f ,
⋃

0<p≤q

T̄qp)‖2 (8)

can be achieved by splitting the optimization into the opti-
mization of each of the sets of the codebook T̄qp indepen-
dently, and then picking the elements that has higher simi-
larity measure between f and the selected T̄qp. We use β?p
to denote the candidate selected for the set T̄qp, which is the
solution of arg minβ∈T̄q

p
‖β − f‖2. We define the second

best solution of such SQ as β?2p , which are the discarded
candidates that are closer to β?p.

Let f ′ be the vector f such that the higher elements are at
the beginning of the vector, i.e. f ′1 > · · · > f ′q . In Proposi-
tion 1, we showed that β?p can be constructed selecting the
first p components of f ′. We can also see from the proof
of Proposition 1, that β?2p , consists on selecting the p − 1
first components of f ′ and also the p + 1 component. In
this way, we maintain the p− 1 components with lower re-
construction error, and we only change the p-th term for the
(p+ 1)-th, which keeps p non-zero components and the re-
construction error is the closest to the one of the optimal SQ.
When p = q, the second best solution is built by changing
the sign of the p-th term, since it does not exist the (p+ 1)-
th term, since p ≤ q. Observe that the distance between β?p
and f ′ is

d(β?p, f
′) =

p∑
j=1

(
1
√
p
− |f ′j |)2 +

q∑
j=p+1

(f ′j)
2. (9)

The distance between the β?2p and f ′, in case p < q, is

d(β?2p , f
′) =

p−1∑
j=1

(
1
√
p
− |f ′j |)2 + (

1
√
p
− |f ′p+1|)2 + (f ′p)

2 +

q∑
j=p+2

(f ′j)
2,

(10)

and for p = q is

d(β?2q , f
′) =

q−1∑
j=1

(
1
√
q
− |f ′j |)2 + (

1
√
q

+ |f ′q|)2. (11)

The proof of the Proposition consists on verifying that
the k components of the set

⋃
0<p≤q T̄qp, that have higher

similarity measure with f , are always in {β?p} and never in
{β?2p }. Note that showing that the closest elements to f are
never in {β?2p }, means that they necessarily are in {β?p}.
This is equivalent to show that

d(β?a, f
′) ≤ d(β?2b , f

′), (12)

for all a, b ≤ q. This condition is to verify that in general
Algorithm 1 obtains the global maximum for k ≤ q. In
the following, we are only able to show that for k ≤ 2 and
q ≤ 4.

When k = 1 it is trivial to proof the Proposition, since
one of the elements in {β?p} is necessarily the closest ele-
ment to f . For k = 2, this might not be the case, because
for a certain p, β?p and β?2p can be the closest elements to f ,
rather than two different β?p with different p’s. We use β?o
to denote the closest element to f in

⋃
0<p≤q T̄qp, which is

the solution for k = 1, and we denote β?2o as the discarded
candidate which is closest to β?o in T̄qo. Thus, the proof for
k = 2, consists on validating that the second closest ele-
ment to f is not β?2o , and that it is in {β?p}. We develop
Eq. (12) using the distances previously calculated in Eq. (9)
and (10):

d(β?a, f
′) ≤ d(β?2o , f

′) ⇐⇒
√
o

a
≥
∑o−1
j=1 f

′
j + fo+1∑a
j=1 f

′
j

.

(13)

Thus, if it always exist a β?a that verifies Eq. (13), we prove
that for k ≤ 2, Algorithm 1 finds the optimal SQ. We show
that either β?o+1 and β?o−1 always fulfill such condition, for
q ≤ 4. For notation simplicity, we define K =

∑o−1
j=1 f

′
j +

fo+1. Thus, for β?o−1, Eq. (13) becomes:

d(β?o−1, f
′) ≤ d(β?2o , f

′) ⇐⇒ 1−
f ′o+1

K
≥
√

1− 1

o
,

(14)

and for β?o+1 (for o < q):

d(β?o+1, f
′) ≤ d(β?2o , f

′) ⇐⇒ 1 +
f ′o
K
≥
√

1 +
1

o
. (15)

From Eq. (14) and (15), and taking into account that f ′1 >
· · · > f ′q , we can verify algebraically, that for o ≤ 3, ei-
ther Eq. (14) or (15) are fulfilled, or both. For o = 4,
and if q = 4, it can be verified in the same way that
d(β?3, f

′) ≤ d(β?24 , f
′), where d(β?24 , f

′) takes the form in
Eq. (11), since for this case p = q.

3. Relation with Other Encodings

Sparse Coding. The formulation for the kernelized sparse
coding [1] is

α? = arg min
αi∈RQ

k

= ‖φ(x)−
∑
i

αiφ(bi)‖2, (16)

2
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where φ(x) is a non-linear mapping of x. Eq. (16) can be
decomposed in the following terms:

K(x,x)− 2
∑
i

αiK(x,bi) +
∑
i

∑
j

αiαjK(bi,bj),

(17)

in which K(x,bi) = φ(x)Tφ(bi). K(x,x) can be treated
as a constant because it does not influence on the optimiza-
tion problem. Thus, the optimization becomes

arg min
αi∈RQ

k

−2
∑
i

αiK(x,bi) +
∑
i

∑
j

αiαjK(bi,bj).

(18)

Recall that the encoding with SQ can be formulated as
(Eq. (3) in the paper)

α? = arg min
α∈RQ

k

‖α−Ψ(f , {bi})‖2, (19)

which decomposes into

αTα− 2αTΨ(f , {bi}) + Ψ(f , {bi})TΨ(f , {bi}), (20)

in which αTα is constant because of the constraint α ∈
RQk , and Ψ(f , {bi})TΨ(f , {bi}) can also be dropped be-
cause it does not depend on α, and hence, it does not influ-
ence in the minimization. Thus, the optimization becomes

arg min
α∈RQ

k

−αTΨ(f , {bi}). (21)

Noting that each entry of Ψ corresponds to the similarity
measure K(f ,bi), we can rewrite Eq. (20) as:

arg min
α∈RQ

k

−
∑
i

αiK(f ,bi). (22)

We can see that the main difference between SQ and
the kernelized version of Sparse Coding lies in the term∑
i

∑
j αiαjK(bi,bj), which is a regularization term.

Convolutional Networks. Let W ∈ Rq×m be the matrix
containing the filters we use in our formulation to extract
the features, and let x ∈ Rm+ be the raw image where W is
applied. Thus, f = Wx ∈ Rq . Here we show that

Ψ(f , {bi}) ∝ Ψ(x, { 1

w
WTbi}) ∈ RQ, (23)

where

Ψ(f , {bi}) =
1

Z
(K(f ,b1) . . .K(f ,bQ)) ∈ RQ. (24)

f = Wx ∈ Rq , W ∈ Rq×m and x ∈ Rm+ ,w is a normaliza-
tion factor, and we assume that f and bi are `2-normalized.

First we decompose the left hand side of Eq. (23) for bi,
assuming that we use the Gaussian kernel similarity, which
is the one we use in the paper. Thus,

K(f ,bi) = exp

(
−‖f − bi‖2

σ2

)
= (25)

exp

(
−‖f‖

2 + ‖bi‖2

σ2

)
exp

(
−−2fTbi

σ2

)
= (26)

K1 exp

(
2fTbi
σ2

)
, (27)

wher K1 is a constant since f and bi are normalized.
Now we develop the right hand side of Eq. (23) with the

same assumptions. This is

Ψ(x,
1

w
WTbi) = K(x,

1

w
WTbi) =

(28)

exp

(
−
‖x− 1

wW
Tbi‖2

σ2

)
=

(29)

exp

(‖x‖2 + ‖ 1
wW

Tbi‖2

σ2

)
exp

(
−−2xTWTbi

wσ2

)
=

(30)

K2 exp

(
2fTbi
wσ2

)
,

(31)

in which we use the normalization factor w and the equiva-
lence f = Wx to go from Eq. (30) to (31). Then, since K1

and K2 are two constants, we can recover the proportion of
Eq. (23), i.e.

K1 exp

(
2fTbi
σ2

)
∝ K2 exp

(
2fTbi
wσ2

)
, (32)

which can be extended to all the set {bi}.
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