
Supplementary material of Submission 784

1. Dynamic programming:

In our main submission, we claim that the maximization for each structure could be done

efficiently with dynamic programming. More details are as follows:

Let child(i) be the set of children of i in 𝑉𝑘. The messages that part i passes to its parent

part j could be computed by the following:

 𝑠𝑐𝑜𝑟𝑒𝑖(𝑙𝑖) = 𝑤𝑖𝜑(𝐼, 𝑙𝑖) + ∑ 𝑚𝑘→𝑖(𝑙𝑖)𝑘∈𝑐ℎ𝑖𝑙𝑑(𝑖) (1)

𝑚𝑖→𝑗(𝑙𝑗) = max𝑙𝑖(𝑠𝑐𝑜𝑟𝑒𝑖(𝑙𝑖) + 𝑤𝑖,𝑗 ∙ ∅(𝑙𝑖 − 𝑙𝑗)) (2)

Eq. (1) computes the local score of part i, which equals to the appearance score of part i plus

the messages collected from the children of i. Eq. (2) computes the best scoring location of its

child part i, for every locations of part j. We could first compute the local appearance score of

the leaf parts, and then the score of their parent parts could be computed. Once messages are

passed to the root part (j = 1), 𝑠𝑐𝑜𝑟𝑒1(𝑙1) represents the best scoring configuration for each

root position. We can use these scores to generate multiple detections in character images I by

using suitable thresh and applying non-maximum suppression (NMS). By keeping track of the

argmax indices in (2), we can backtrack to find the locations of each part in each maximal

configuration.

2. Learning for part-based tree-structured model

In our main submission, we state that we design the tree-structure for each type of character

by our experience. Next we will give more details about how we design structures for

different types of characters and how we label the parts. After designing the tree-structure for

each type of character as shown in Fig. 1 (a), we manually label the center of each part and

extract features from the region centered by the node to represent the part as shown in Fig. 1

(b)-(c).

Figure 1: Illustration of how we design tree structure for different characters and how we label parts for

training samples. (a) Tree structure for ‘X’ and ‘T’, where red points are the nodes of the tree and ‘1’ refers to

the root node. (b)-(c) Examples of how we label the parts. We only label the centroid (red points) of each part

and extract features from the regions shown in dashed rectangles to represent the parts.

3. More character detection results on scene text images

We give more character detection results on scene text images as shown in Figure 2. The

results are acquired after applying NMS on the raw detection results. The red rectangle labels

the position of the root node of the tree while the blue ones label other parts of the character.

As we can see, as the tree-structured model makes use of both global structure information

and local appearance information, the detection results contain less false positives and are

more reliable.

Figure 2: Some character detection results on scene text images.

