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1. The Detailed Optimization Procedure for Multi-Task DPM

In section 3.2, we omit some derivations for the space limitation. More details are provided here. The coordinate descent
procedure is motivated by [4].

1.1. Optimize W, and w,

When Py and P, are fixed, we use the following derivations to transform the multi-task problem to be a standard latent
SVM problem for optimizing W, and w,. To combine fr,, and f7, , we denote Pg PE + Py, Pg as A, and A? W, as VIN/a Here
A is a symmetric nonnegative definite matrix, and its square root is denoted as Az . We use resolution aware transformations,
for high resolution samples, ®,(I,,, L7, stands for A~% Py ®,(I,,, L), and for low resolution samples, ®,(I,,, L7,) stands
for A2 Py, (I, L). With these notions, the optimization problem becomes to be:
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Eq. 1 equals to:
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where Vec(+) is used to reshape a matrix to a column vector. Denoting [vec(VIAf;); ws] as w, and [Vec(i([n, LY)); ¢s(L2)]
as ¢(1,,, L}), the Eq. 2 is:
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which is a standard Latent SVM problem discussed in [2]. It takes the part locations as latent variable. In solving the problem
with latent variable, we use the solver in [2], which follows the EM-like procedure, that infers the latent part location and
optimizes the detection model iteratively.

1.2. Optimize Py and Py,

When W, and w, are fixed, We transform the optimization problem to a standard SVM problem. Since fr,, fr, are
independent with the fixed {W,, w;} and they are of the same form, here we only show how to optimize f7,,. Denoting

W.WT as A, Az Py as Py, and A~ 2W,®, (I, L*)T as ®o (15, , LY ), the optimization problem becomes to be:
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which equals to:
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In this step, we don’t take L}, as latent variable any more, and infer them by the detection model parameterized by
Pk_l,Pk_l,Wk,wk . Then w, and ¢4(L*) are fixed, so that ws¢,(L*) can be taken as a real value. We denote
H >~ L a s n n

[Vec(Py); 1] as w, and [Vec(®, (I, , LE)); wl ®4(L:)] as ¢ (I, L). It equals to the standard SVM problem:

arg min %wTw +C Z max[0,1 — yn(wT¢(Ina L))l (©6)
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1.3. Coordinate Descent Procedure

Data: The annotated high resolution samples (taller than 80 pixels in our paper) Iz, and annotated low resolution
samples (30-80 pixels high) I .
1 . Result: The DPM detector parameterized by W, and w, in the mapped common subspace, the resolution aware
transformations Py, Pr,.

2 Calculate PCA on the HOG features of high and low resolution data, and take the first ng eigenvectors as the initial
values for P9 and P?, repestively;

3 fork < 1to K do

4 | Fix PE!and P! to optimize W} and w* with Eq. 1;

5 Infer the L}, for every training samples with the parameters {P}ffl7 Pf 1 Wk, wk} by the resolution aware

detection model;
6 Fix W¥ and w* to update PF and PF by Eq. 4, repestively;
7 end

Algorithm 1: The coordinate descent procedure for Multi-Task DPM

1.4. More Resolution Partitions

Two resolution partitions are used in the paper, but extending the proposed model to more resolution partitions is straight-
forward. For R partitions, the objective function of MT-DPM can be written as:
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where P = {Py, P, -+, Pg} and the f; (W,, ws, P,) is:
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2. Quantitative Results on Caltech Pedestrian Testing Data

The curves are generated under the standard experimental settings advised in [1]. Results of other methods except for the
proposed methods can be found at the website of the Caltech Pedestrian Benchmark:
http://www.vision.caltech.edu/Image _Datasets/CaltechPedestrians/files/US A-test-plots.pdf. Although the proposed method
are mainly for multi-resolution handling, we find the dramatic performance improvements on all the 9 sub-experiments. The
improvements on “Medium scale”,“Typical aspects ratios”, No-occlusion”, “Partial-occlusion” and ‘“Heavy-occlusion” are
more than 9%, and more than 6% on “Overall”, “Atypical aspect ratios”. Some methods achieved good performance on
“Near scale”, but our method (MT-DPM+Context) improves 3% further. For the pedestrians shorter than 30 pixels, all the
methods performed poorly for the limit useful information and our methods improve 2% in this condition.
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Figure 1. Miss rates versus false positive per-image curves of different conditions on the Caltech Pedestrian testing data. Lower curves
mean better performance. (a) Overall performance. (b-c) Performance w.r.t. aspect ratio (computed for un-occluded pedestrians taller than
50 pixels). (d-f): Performance w.r.t. scale (computed for un-occluded pedestrians). (g-i): Performance under varying levels of occlusion
(computed for pedestrians taller than 50 pixels).

3. Qualitative Results

The qualitative results are demonstrated in the video attached. In “QualitativeComparisons-set07-view(000.avi”, we show
the ground truth and the detections of our proposed “MT-DPM+ Context” on set07-view000. The detections are evaluated at
every 30th frame, following the protocol advised in [1]. For comparison, we show the results of two state-of-the-art methods:
“Multi-ResC” [3] and “MultiFtr+Motion” [5]. We also run a continuous video and show it in “QualitativeDetetionResult-
s.avi”.
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