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1. The Detailed Optimization Procedure for Multi-Task DPM
In section 3.2, we omit some derivations for the space limitation. More details are provided here. The coordinate descent

procedure is motivated by [4].

1.1. Optimize Wa and ws

When PH and PL are fixed, we use the following derivations to transform the multi-task problem to be a standard latent
SVM problem for optimizingWa andws. To combine fIH and fIL , we denote PHP

T
H +PLP

T
L asA, andA

1
2Wa as W̃a. Here

A is a symmetric nonnegative definite matrix, and its square root is denoted as A
1
2 . We use resolution aware transformations,

for high resolution samples, Φ̃a(In, L
∗
n) stands for A−

1
2PHΦa(In, L

∗
n), and for low resolution samples, Φ̃a(In, L

∗
n) stands

for A−
1
2PLΦa(In, L

∗
n). With these notions, the optimization problem becomes to be:

arg min
W̃a,ws

1

2
‖W̃a‖2F +

1

2
wT

s ws + C
∑

NH+NL

max
L∗

n

[0, 1− yn(Tr(W̃a

T
Φ̃a(In, L

∗
n)) + wT

s φs(L
∗
n))] (1)

Eq. 1 equals to:

arg min
W̃a,ws

1

2
V ec(W̃a)TV ec(W̃a) +

1

2
wT

s ws + C
∑

NH+NL

max
L∗

n

[0, 1− yn(V ec(W̃a)TV ec(Φ̃a(In, L
∗
n)) + wT

s φs(L
∗
n))] (2)

where V ec(·) is used to reshape a matrix to a column vector. Denoting [vec(W̃a);ws] as w, and [V ec(Φ̃a(In, L
∗
n));φs(L

∗
n)]

as φ(In, L
∗
n), the Eq. 2 is:

arg min
w

1

2
wTw + C

∑
NH+NL

max
L∗

n

[0, 1− yn(wTφ(In, L
∗
n))] (3)

which is a standard Latent SVM problem discussed in [2]. It takes the part locations as latent variable. In solving the problem
with latent variable, we use the solver in [2], which follows the EM-like procedure, that infers the latent part location and
optimizes the detection model iteratively.

1.2. Optimize PH and PL

When Wa and ws are fixed, We transform the optimization problem to a standard SVM problem. Since fIH , fIL are
independent with the fixed {Wa, ws} and they are of the same form, here we only show how to optimize fIH . Denoting
WaW

T
a as A, A

1
2PH as P̃H , and A−

1
2WaΦa(IHn , L

∗
n)T as Φ̃a(IHn , L

∗
n), the optimization problem becomes to be:

arg min
P̃H

1

2
‖P̃H‖2F + C

∑
NH

max[0, 1− yn(Tr(P̃H

T
Φ̃a(IHn

, L∗n)) + wT
s φs(L

∗
n))] (4)

1



which equals to:

arg min
P̃H

1

2
V ec(P̃H)TV ec(P̃H) + C

∑
NH

max[0, 1− yn(V ec(P̃H)TV ec(Φ̃a(IHn , L
∗
n)) + wT

s φs(L
∗
n))] (5)

In this step, we don’t take L∗n as latent variable any more, and infer them by the detection model parameterized by
{P k−1

H , P k−1
L ,W k

a , w
k
s}. Then ws and φs(L

∗
n) are fixed, so that wsφs(L

∗
n) can be taken as a real value. We denote

[V ec(P̃H); 1] as w, and [V ec(Φ̃a(IHn , L
∗
n));wT

s Φs(L
∗
n)] as φ(I, L∗n). It equals to the standard SVM problem:

arg min
w

1

2
wTw + C

∑
NH

max[0, 1− yn(wTφ(In, L
∗
n))] (6)

1.3. Coordinate Descent Procedure

Data: The annotated high resolution samples (taller than 80 pixels in our paper) IH , and annotated low resolution
samples (30-80 pixels high) IL.

1 . Result: The DPM detector parameterized by Wa and ws in the mapped common subspace, the resolution aware
transformations PH , PL.

2 Calculate PCA on the HOG features of high and low resolution data, and take the first nd eigenvectors as the initial
values for P 0

H and P 0
L, repestively;

3 for k ← 1 to K do
4 Fix P k−1

H and P k−1
L to optimize W k

a and wk
s with Eq. 1;

5 Infer the L∗n for every training samples with the parameters {P k−1
H , P k−1

L ,W k
a , w

k
s} by the resolution aware

detection model;
6 Fix W k

a and wk
s to update P k

H and P k
L by Eq. 4, repestively;

7 end
Algorithm 1: The coordinate descent procedure for Multi-Task DPM

1.4. More Resolution Partitions

Two resolution partitions are used in the paper, but extending the proposed model to more resolution partitions is straight-
forward. For R partitions, the objective function of MT-DPM can be written as:

arg min
Wa,ws,P

1

2
wT

s ws +

R∑
r=1

fIr (Wa, ws, Pr) (7)

where P = {P1, P2, · · · , PR} and the fIr (Wa, ws, Pr) is:

fIr (Wa, ws, Pr) =
1

2
‖PT

r Wa‖2F + C
∑
Nr

max
L∗

n

[0, 1− yn(Tr(WT
a PrΦa(Irn , L

∗
n)) + wT

s φs(L
∗
n))] (8)

2. Quantitative Results on Caltech Pedestrian Testing Data
The curves are generated under the standard experimental settings advised in [1]. Results of other methods except for the

proposed methods can be found at the website of the Caltech Pedestrian Benchmark:
http://www.vision.caltech.edu/Image Datasets/CaltechPedestrians/files/USA-test-plots.pdf. Although the proposed method
are mainly for multi-resolution handling, we find the dramatic performance improvements on all the 9 sub-experiments. The
improvements on “Medium scale”,“Typical aspects ratios”,“No-occlusion”, “Partial-occlusion” and “Heavy-occlusion” are
more than 9%, and more than 6% on “Overall”, “Atypical aspect ratios”. Some methods achieved good performance on
“Near scale”, but our method (MT-DPM+Context) improves 3% further. For the pedestrians shorter than 30 pixels, all the
methods performed poorly for the limit useful information and our methods improve 2% in this condition.
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(a) Overall
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(b) Typical aspect ratios
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(c) Atypical aspect ratios
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(d) Near scale (> 80 pixels in height)
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(e) Medium scale (30-80 pixels in height)
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(f) Far scale (< 30 pixels in height)

10
−3

10
−2

10
−1

10
0

10
1

.05

.10

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s
 r

a
te

 

 

94% VJ

91% Shapelet

86% PoseInv

79% LatSvm−V1

73% FtrMine

72% HikSvm

66% HOG

66% HogLbp

66% MultiFtr

61% LatSvm−V2

60% Pls

58% MultiFtr+CSS

58% FeatSynth

55% FPDW

54% ChnFtrs

48% MultiFtr+Motion

45% MultiResC

37% MT−DPM

34% MT−DPM+Context

(g) No-occlusion
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(h) Partial occlusion
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(i) Heavy occlusion

Figure 1. Miss rates versus false positive per-image curves of different conditions on the Caltech Pedestrian testing data. Lower curves
mean better performance. (a) Overall performance. (b-c) Performance w.r.t. aspect ratio (computed for un-occluded pedestrians taller than
50 pixels). (d-f): Performance w.r.t. scale (computed for un-occluded pedestrians). (g-i): Performance under varying levels of occlusion
(computed for pedestrians taller than 50 pixels).

3. Qualitative Results
The qualitative results are demonstrated in the video attached. In “QualitativeComparisons-set07-view000.avi”, we show

the ground truth and the detections of our proposed “MT-DPM+ Context” on set07-view000. The detections are evaluated at
every 30th frame, following the protocol advised in [1]. For comparison, we show the results of two state-of-the-art methods:
“Multi-ResC” [3] and “MultiFtr+Motion” [5]. We also run a continuous video and show it in “QualitativeDetetionResult-
s.avi”.
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