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Abstract

This paper presents a new structure-based interest re-
gion detector called Principal Curvature-Based Regions
(PCBR) which we use for object class recognition. The
PCBR interest operator detects stable watershed regions
within the multi-scale principal curvature image. To detect
robust watershed regions, we “clean” a principal curvature
image by combining a grayscale morphological close with
our new “eigenvector flow” hysteresis threshold. Robust-
ness across scales is achieved by selecting the maximally
stable regions across consecutive scales. PCBR typically
detects distinctive patterns distributed evenly on the objects
and it shows significant robustness to local intensity pertur-
bations and intra-class variations. We evaluate PCBR both
qualitatively (through visual inspection) and quantitatively
(by measuring repeatability and classification accuracy in
real-world object-class recognition problems). Experiments
on different benchmark datasets show that PCBR is com-
parable or superior to state-of-art detectors for both fea-
ture matching and object recognition. Moreover, we demon-
strate the application of PCBR to symmetry detection.

1. Introduction
In many object recognition tasks, within-class changes

in pose, lighting, color, and texture can cause consider-
able variation in local intensities. Consequently, local in-
tensity no longer provides a stable detection cue. As such,
intensity-based interest operators (e.g., Harris, Kadir)–and
the object recognition systems based on them–often fail to
identify discriminative features. An alternative to local in-
tensity cues is to capture semi-local structural cues such as
edges and curvilinear shapes [25]. These structural cues
tend to be more robust to intensity, color, and pose vari-
ations. As such, they provide the basis for a more stable
interest operator, which in turn improves object recognition
accuracy. This paper introduces a new detector that exploits
curvilinear structures to reliably detect interesting regions.
The detector, called the Principal Curvature-Based Region
(PCBR) detector, identifies stable watershed regions within
the multi-scale principal curvature image.

(a) (b)

Figure 1. Comparison of the gradient magnitude and principal cur-
vature responses of the image in Figure 2(a). (a) Gradient magni-
tude response. (b) Principal curvature response.

Curvilinear structures are lines (either curved or straight)
such as roads in aerial or satellite images or blood vessels
in medical scans. These curvilinear structures can be de-
tected over a range of viewpoints, scales, and illumination
changes. The PCBR detector employs the first steps of Ste-
ger’s curvilinear detector algorithm [25]. It forms an image
of the maximum or minimum eigenvalue of the Hessian ma-
trix at each pixel. We call this the principal curvature image,
as it measures the principal curvature of the image intensity
surface. This process generates a single response for both
lines and edges, producing a clearer structural sketch of an
image than is usually provided by the gradient magnitude
image (see Fig. 1).
We develop a process that detects structural regions ef-

ficiently and robustly using the watershed transform of the
principal curvature image across scale space. The water-
shed algorithm provides a more efficient mechanism for
defining structural regions than previous methods that fit
circles, ellipses, and parallelograms [8, 27]. To improve
the watershed’s robustness to noise and other small im-
age perturbations, we first “clean” the principal curvature
image with a grayscale morphological close operation fol-
lowed by a new hysteresis thresholding method based on
local eigenvector flow. The watershed transform is then ap-
plied to the cleaned principal curvature image and the re-
sulting watershed regions (i.e., the catchment basins) de-
fine the PCBR regions. To achieve robust detections across
multiple scales, the watershed is applied to the maxima of
three consecutive images in the principal curvature scale
space–similar to local scale-space extrema used by Lowe
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[13], Mikolajczyk and Schmidt [17], and others–and we
further search for stable PCBR regions across consecutive
scales–an idea adapted from the stable regions detected
across multiple threshold levels used by the MSER detec-
tor [15]. While PCBR shares similar ideas with previous
detectors, it represents a very different approach to detect-
ing interest regions. Many prior intensity-based detectors
search for points with distinctive local differential geom-
etry, such as corners, while ignoring image features such
as lines and edges. Conversely, PCBR utilizes line and
edge features to construct structural interest regions. Com-
pared to MSER, PCBR differs two important aspects. First,
MSER does not analyze regions in scale space, so it does
not provide different levels of region abstraction. Second,
MSER’s intensity-based threshold process cannot overcome
local intensity variations within regions. PCBR, however,
overcomes this difficulty by focusing on region boundaries
rather than the appearance of region interiors.
This work makes two contributions. First, we develop

a new interest operator that utilizes principal curvature
to extract robust and invariant region structures based on
both edge and curvilinear features. Second, we introduce
an enhanced principle-curvature-based watershed segmen-
tation and robust region selection process that is robust to
intra-class variations and is more efficient than previous
structure-based detectors. We demonstrate the value of our
PCBR detector by applying it to object-class recognition
problems and symmetry detection.

2. Related Work
Interest operators can typically be classified into two cat-

egories: intensity-based detectors and structure-based de-
tectors [19]. Intensity-based detectors depend on analyz-
ing local differential geometry or intensity patterns to find
points or regions that satisfy some uniqueness and stabil-
ity criteria. The Harris corner detector [7] finds points or
pixels where both eigenvalues of the second moment ma-
trix are large by evaluating the “Harris measure”. The
Harris-affine and Hessian-affine detectors [17, 18] com-
pute maximum determinants of the second moment ma-
trix and the Hessian matrix respectively across scale space
and then apply Laplacian-based characteristic scale selec-
tion [11] and second-moment-matrix-based shape adapta-
tion [12, 2]. MSER [15] uses a threshold selection process
to detect stable regions that are either brighter or darker
than the surrounding region. SIFT (i.e., the DoG extrema
detector used by Lowe in [13]) finds local extrema across
three consecutive difference-of-Gaussian scales and then re-
moves spurious detections via a DoG-response threshold
followed by a Harris-like metric to eliminate edge detec-
tions. Kadir’s salient region detector [9] calculates the en-
tropy of the probability density function (PDF) of inten-
sity values over various scales to find regions with entropy

extrema. Other intensity-based detectors include SUSAN
[24], intensity extrema-based regions (IBR) [26], and the
work of Moravec [21] and Beaudet [3].
Structure-based detectors depend on structural image

features such as lines, edges, curves, etc. to define interest
points or regions. These detectors tend to be very compu-
tationally expensive and typically depend on reliable prior
detection of structural features. Early structure-based detec-
tors analyze various 2D curves such as the curvature primal
sketch or B-splines extracted from edges, ridges, troughs,
etc. and then selected high curvature points, line or curve
intersections, corners, ends, bumps, and dents as interest
points [1, 16, 5, 23, 20]. Tuytelaar’s edge-based region
(EBR) detector [27] fits a parallelogram defined by Harris
corner point and points on two adjacent edge contours (ex-
tracted by the Canny detector [4]). Scale-invariant shape
features (SISF) [8] detects circles at different locations and
scales by evaluating salient convex arrangements of Canny
edges based on a measure that maximizes how well a circle
is supported by surrounding edges.

3. Principal curvature-based Region Detector
3.1. Principal Curvature Image
Two types of structures have high curvature in one di-

rection and low curvature in the orthogonal direction: lines
(i.e., straight or nearly straight curvilinear features) and
edges. Viewing an image as an intensity surface, the curvi-
linear structures correspond to ridges and valleys of this sur-
face. The local shape characteristics of the surface at a par-
ticular point can be described by the Hessian matrix,

H(x, σD) =

·
Ixx(x, σD) Ixy(x, σD)
Ixy(x, σD) Iyy(x, σD)

¸
, (1)

where Ixx, Ixy and Iyy are the second-order partial deriva-
tives of the image evaluated at the point x and σD is the
Gaussian scale of the partial derivatives.
We note that both the Hessian matrix and the related sec-

ond moment matrix have been applied in several other in-
terest operators (e.g., the Harris [7], Harris-affine [19], and
Hessian-affine [18] detectors) to find image positions where
the local image geometry is changing in more than one di-
rection. Likewise, Lowe’s maximal difference-of-Gaussian
(DoG) detector [13] also uses components of the Hessian
matrix (or at least approximates the sum of the diagonal ele-
ments) to find points of interest. However, our PCBR detec-
tor is quite different from these other methods and is com-
plementary to them. Rather than finding extremal “points”,
our detector applies the watershed algorithm to ridges, val-
leys, and cliffs of the image principal-curvature surface to
find “regions”. As with extremal points, the ridges, valleys,
and cliffs can be detected over a range of viewpoints, scales,
and appearance changes.
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Figure 2. Interest Regions detected by the PCBR detector. (a) Original butterfly image. (b) Principal curvature and (c) cleaned binary
images. (d) Watershed regions. (e) Detected regions represented by ellipses.

Many previous interest point detectors [7, 19, 18] apply
the Harris measure (or a similar metric [13]) to determine a
point’s saliency. The Harris measure is given by det(A)−
k · tr2(A) > threshold where det is the determinant, tr
is the trace, and the matrix A is either the Hessian matrix
or the second moment matrix. One advantage of the Harris
metric is that it does not require explicit computation of the
eigenvalues. However, computing the eigenvalues for a 2×2
matrix requires only a single Jacobi rotation to eliminate the
off-diagonal term, Ixy, as noted by Steger [25].
The Harris measure produces low values for “long”

structures that have a small first or second derivative in one
particular direction. Our PCBR detector compliments pre-
vious interest point detectors in that we abandon the Harris
measure and exploit those very long structures as detection
cues. The principal curvature image is given by either

P (x) = max(λ1(x), 0) (2)

or
P (x) = min(λ2(x), 0) (3)

where λ1(x) and λ2(x) are the maximum and minimum
eigenvalues, respectively, of H at x. Eq. 2 provides a high
response only for dark lines on a light background (or on
the dark side of edges) while Eq. 3 is used to detect light
lines against a darker background.
Like SIFT [13] and other detectors, principal curvature

images are calculated in scale space. We first double the
size of the original image to produce our initial image, I11,
and then produce increasingly Gaussian smoothed images,
I1j , with scales of σ = kj−1 where k = 21/3 and j = 2..6.
This set of images spans the first octave consisting of six
images, I11 to I16. Image I14 is down sampled to half its
size to produce image I21, which becomes the first image
in the second octave. We apply the same smoothing pro-
cess to build the second octave, and continue to create a
total of n = log2(min(w, h)) − 3 octaves, where w and
h are the width and height of the doubled image, respec-
tively. Finally, we calculate a principal curvature image,
Pij , for each smoothed image by computing the maximum
eigenvalue (Eq. 2) of the Hessian matrix at each pixel. For

computational efficiency, each smoothed image and its cor-
responding Hessian image is computed from the previous
smoothed image using an incremental Gaussian scale.
Given the principal curvature scale space images, we cal-

culate themaximum curvature over each set of three consec-
utive principal curvature images to form the following set of
four images in each of the n octaves:

MP12 MP13 MP14 MP15
MP22 MP23 MP24 MP25
...

MPn2 MPn3 MPn4 MPn5

(4)

whereMPij = max(Pij−1, Pij , Pij+1).
Figure 2(b) shows one of the maximum curvature im-

ages, MP , created by maximizing the principal curvature
at each pixel over three consecutive principal curvature im-
ages. From these maximum principal curvature images we
find the stable regions via our watershed algorithm.

3.2. Enhanced Watershed Regions Detections
The watershed transform is an efficient technique that is

widely employed for image segmentation. It is normally
applied either to an intensity image directly or to the gradi-
ent magnitude of an image. We instead apply the watershed
transform to the principal curvature image. However, the
watershed transform is sensitive to noise (and other small
perturbations) in the intensity image. A consequence of this
is that the small image variations form local minima that
result in many, small watershed regions. Figure 3(a) shows
the over-segmentation results when the watershed algorithm
is applied directly to the principal curvature image in Figure
2(b)). To achieve a more stable watershed segmentation, we
first apply a grayscale morphological closing followed by
hysteresis thresholding. The grayscale morphological clos-
ing operation is defined as f • b = (f ⊕ b) ª b where f is
the imageMP from Eq. 4, b is a 5 × 5 disk-shaped struc-
turing element, and ⊕ and ª are the grayscale dilation and
erosion, respectively. The closing operation removes small
“potholes” in the principal curvature terrain, thus eliminat-
ing many local minima that result from noise and that would
otherwise produce watershed catchment basins.



(a) (b)

Figure 3. (a) Watershed segmentation of original principal curva-
ture image (Fig. 2b). (b) Watershed segmentation of the “clean”
principal curvature image (Fig. 2c).

Beyond the small (in terms of area of influence) local
minima, there are other variations that have larger zones of
influence and that are not reclaimed by the morphological
closing. To further eliminate spurious or unstable water-
shed regions, we threshold the principal curvature image to
create a clean, binarized principal curvature image. How-
ever, rather than apply a straight threshold or even hystere-
sis thresholding–both of which can still miss weak image
structures–we apply a more robust eigenvector-guided hys-
teresis thresholding to help link structural cues and remove
perturbations. Since the eigenvalues of the Hessian matrix
are directly related to the signal strength (i.e., the line or
edge contrast), the principal curvature image may, at times,
become weak due to low contrast portions of an edge or
curvilinear structure. These low contrast segments may po-
tentially cause gaps in the thresholded principal curvature
image, which in turn cause watershed regions to merge that
should otherwise be separate. However, the directions of
the eigenvectors provide a strong indication of where curvi-
linear structures appear and they are more robust to these
intensity perturbations than is the eigenvalue magnitude.
In eigenvector-flow hysteresis thresholding, there are

two thresholds (high and low) just as in traditional hystere-
sis thresholding. The high threshold (set at 0.04) indicates a
strong principal curvature response. Pixels with a strong re-
sponse act as seeds that expand to include connected pixels
that are above the low threshold. Unlike traditional hys-
teresis thresholding, our low threshold is a function of the
support that each pixel’s major eigenvector receives from
neighboring pixels. Each pixel’s low threshold is set by
comparing the direction of the major (or minor) eigenvector
to the direction of the 8 adjacent pixels’ major (or minor)
eigenvectors. This can be done by taking the absolute value
of the inner product of a pixel’s normalized eigenvector with
that of each neighbor. If the average dot product over all
neighbors is high enough, we set the low-to-high threshold
ratio to 0.2 (for a low threshold of 0.04 · 0.2 = 0.008);
otherwise the low-to-high ratio is set to 0.7 (giving a low
threshold of 0.028). The threshold values are based on vi-
sual inspection of detection results on many images.

Figure 4 illustrates how the eigenvector flow supports an
otherwise weak region. The red arrows are the major eigen-
vectors, and the yellow arrows are the minor eigenvectors.
To improve visibility, we draw them at every fourth pixel.
At the point indicated by the large white arrow, we see that
the eigenvalue magnitudes are small and the ridge there is
almost invisible. Nonetheless, the directions of the eigen-
vectors are quite uniform. This eigenvector-based active
thresholding process yields better performance in building
continuous ridges and in handling perturbations, which re-
sults in more stable regions (Fig. 3(b)).
The final step is to perform the watershed transform

on the clean binary image (Fig. 2(c)). Since the image
is binary, all black (or 0-valued) pixels become catchment
basins and the midlines of the thresholdedwhite ridge pixels
become watershed lines if they separate two distinct catch-
ment basins. To define the interest regions of the PCBR
detector in one scale, the resulting segmented regions are fit
with ellipses, via PCA, that have the same second-moment
as the watershed regions (Fig. 2(e)).

3.3. Stable Regions Across Scale
Computing the maximum principal curvature image (as

in Eq. 4) is only one way to achieve stable region detections.
To further improve robustness, we adopt a key idea from
MSER and keep only those regions that can be detected in
at least three consecutive scales. Similar to the process of
selecting stable regions via thresholding in MSER, we se-
lect regions that are stable across local scale changes. To
achieve this, we compute the overlap error of the detected
regions across each triplet of consecutive scales in every oc-
tave. The overlap error is calculated the same as in [19].
Overlapping regions that are detected at different scales

normally exhibit some variation. This variation is valuable
for object recognition because it provides multiple descrip-
tions of the same pattern. An object category normally ex-
hibits large within-class variation in the same area. Since
detectors have difficulty locating the interest area accu-
rately, rather than attempt to detect the “correct” region and
extract a single descriptor vector, it is better to extract mul-
tiple descriptors for several overlapping regions, provided
that these descriptors are handled properly by the classifier.

Figure 4. Illustration of how the eigenvector flow helps overcome
weak principal curvature responses.



Figure 5. Sensitivity analysis of SIFT descriptor.

To determine a threshold value for the permitted amount
of overlap, we analyze the sensitivity of the SIFT descrip-
tor. We apply three transformations—translations from 1 to
10 pixels, rotations from 2 to 20 degrees and minor axis en-
largements from 1 to 10 pixels—on all detected regions in
the Inria dataset [19] and we compute the overlap errors and
descriptor similarities between the original and transformed
regions. As shown in Figure 5, descriptor similarity falls be-
low 70% when the overlap error is greater than 30%. Thus,
a region is “stable” to changes in scale if its overlap error is
less than 30% when compared to another region in an adja-
cent scale. We keep all of these stable regions to maintain
more descriptions for similar regions. Further, when the
overlap error is less than 10% (producing a descriptor sim-
ilarity above 90%), we only keep the region at the smaller
scale and discard the other, almost identical, region.

4. Evaluation and Discussion

We evaluate PCBR in three ways: 1) qualitative visual
inspection, 2) quantitative repeatability using a published
framework [19], and 3) quantitative and qualitative eval-
uation using real world applications. Our Matlab imple-
mentation requires an average of 187.3 sec. to process a
2560×1920 image. We are porting our implementation to
C/C++ where we expect a running time of less than 3 sec.

4.1. Visual Inspection

Figures 6 and 7 show PCBR detection results on a variety
of image types. Fig. 6 shows PCBR detections on two graf-
fiti images from the INRIA dataset [19] while Fig. 7 shows
detection results (with background detections removed to
improve visibility) for the face, motorbike, and car (rear)
images from the Caltech dataset. From these images we
note that PCBR detections appear to be evenly distributed,
highly consistent, and robust to intra-class variations.

Figure 6. PCBR detections on the first and second graffiti images
from the INRIA dataset [19].

Detectors Motorbikes Airplanes Faces Cars(Side)
PCBR 87.7 91.7 97.7 87
HL & HA 92.2 88.9 93.5 83

Table 1. Comparison of PCBR with the combination of Harris-
Laplace and Harris-affine detectors on the Caltech dataset using
Opelt’s object-class recognition method [22].

4.2. Repeatability
Although the PCBR detector was designed for object-

class recognition rather than repeatable wide-baseline fea-
ture matching, we still evaluate its repeatability and com-
pare it to other detectors using the INRIA dataset and eval-
uation code [19]. Table 2 provides the average repeatability
of the PCBR detector compared to various other detectors.
Average repeatability is determined from the repeatability
vs. transformation curves as output by the INRIA evalua-
tion code (with the overlap error parameter set to 20%). As
can be seen, PCBR is comparable to other detectors in terms
of repeatability.

4.3. Applications
To quantitatively evaluate the PCBR detector on object

recognition tasks, we have conducted two recognition tasks
using the Caltech dataset and a database of larval stonefly
images. To build a recognition system, we build SIFT de-
scriptors for each detected (and normalized) region and then
apply recent state-of-the-art object-class recognition algo-
rithms for final classification. We then measure classifica-
tion accuracy using the PCBR detector and compare it to
the accuracy using other interest operators.

4.3.1 Object Recognition on Caltech Dataset

The Caltech dataset contains images from many different
object classes. In this experiment, we measure recogni-
tion accuracy on four commonly-used object classes (mo-
torbikes, airplanes, faces, and cars) using Opelt’s object-
class recognition method [22]. We use Opelt’s Matlab code
(adapted to use the PCBR detector) with all the default set-
tings (see [22]) and with the only variation being that we
use PCBR instead of the Harris-Laplace and Harris-affine
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Figure 7. PCBR detections on faces, cars (rear), and motorbikes from the Caltech dataset.

Images PCBR Hessian-affine Harris-Affine MSER IBR EBR Salient
Bikes 30.2 48.2 32.8 33.6 26.5 37.5 15.3
Trees 10.7 20.4 9.8 11.5 9.6 3.9 2.1
Boats 16.2 29.7 22.3 27.5 12.8 19.8 0.3
Leuven (cars) 37.6 40.0 32.0 66.7 34.4 30.1 17.6
Graffiti 35.5 17.7 13.0 51.7 19.7 16.7 2.1
Walls 16.6 24.5 17.3 31.4 14.7 11.1 0

Table 2. Average repeatability of PCBR and various other detectors with the overlap error parameter set to 20% on the INRIA dataset.

detectors. The recognition performance is evaluated using
ROC equal error rates. Table 1 compares recognition ac-
curacy using PCBR with those reported by Opelt in [22]
(using Harris-Laplace and Harris-affine detectors). We see
from Table 1 that the PCBR detector produces higher recog-
nition accuracy than the combination of Harris detectors on
three of the four object-class datasets. However, due to the
already high recognition accuracy, none of the differences
are statistically significant [6] (at a 95% level).

4.3.2 Object Recognition on Stonefly Dataset

Population counts of larval stoneflies inhabiting stream sub-
strates are known to be a sensitive and robust indicator of
stream health and water quality. Consequently, automated
classification of stonefly larva can make great strides in
overcoming current bottlenecks–such as the considerable
time and technical expertise required–to large scale imple-
mentation of this important biomonitoring task. We thus
evaluate the effectiveness of our PCBR detector on a more
fine-grained object-class recognition problem, that of dis-
tinguishing between two related species of stonefly larva,
Calineuria californica and Doroneuria baumanni. These
two stonefly species are from the same taxonomic family
and, as such, are very similar in appearance. Indeed, this

problem is challenging even for humans and is akin to vi-
sually distinguishing between nearly identical car models.
As such, this problem is more difficult than differentiating
between faces and airplanes as per the Caltech dataset.
Figure 8 (a-b) shows four specimen images (and their

relative sizes) from each of the two taxa. To verify the dif-
ficulty of discriminating these two taxa, we conducted an
informal study to test the human classification accuracy of
Calineuria and Doroneuria. A total of 26 students and fac-
ulty were trained on 50 randomly-selected images of Ca-
lineuria andDoroneuria, and were subsequently tested with
another 50 images. Most of the subjects (21) had some prior
entomological experience. The mean human classification
accuracy is 78.6% correctly identified (std. dev. = 8.4).
We compare PCBRwith the Kadir salient region detector

and the Hessian-affine detector on the stonefly recognition
problem. All classification settings are identical except for
the detector. For this comparison, we use the Hessian-affine
and salient region detectors available on the web. Figure
9 shows the detections for the four Calinueria images in
Fig. 8(a). Notice again that the PCBR detections are well
distributed and consistent.
We apply two state-of-the-art object-class recognition al-

gorithms to the stonefly dataset: logistic model trees (LMT)
by Landwehr et al. [10] and Opelt’s method [22]. We use



(a) (b)

Figure 8. Visual comparison of Calinueria and Doroneuria and
their relative specimen sizes. (a) Four different Calinueria and (b)
Doroneuria specimens.

(a) (b) (c)

Figure 9. Comparison of three detectors on Calinueria images. (a)
Hessian-affine, (b) Kadir salient regions, and (c) PCBR

Taxon Specimens Images
Calineuria 85 400
Doroneuria 91 463

Table 3. Specimens and images employed in the study.

our own LMT implementation and Opelt’s Matlab code
(adapted to use other detectors). The number of specimens
and images used in this experiment is listed in Table 3 while
Table 4 summarizes the classification accuracy for this two-
class recognition problem. As can be seen, both classifiers
yield better recognition accuracy with the PCBR detector
than with the other two detectors. Further, the different
recognition rates are statistically significant.

4.3.3 Symmetry Detection

Symmetry is common in biological and artificial objects.
Since PCBR detects robust structure-based interest regions,
it is good at detecting symmetrical regions in images con-

Hessian Kadir Accuracy[%]
Affine Entropy PCBR Opelt [22] LMTs [10]√

60.59 70.10√
62.63 70.34√
67.86 79.03

Table 4. Calineuria and Doroneuria classification rates compari-
son of different detectors when applied with Opelt’s method and
LMTs. A

√
indicates that the corresponding detector is used.

taining objects with bilateral symmetry. To demonstrate
this, we combine the PCBR detector with (our implementa-
tion of) the SIFT-based symmetry detection method of Loy
and Eklundh [14] and test it on various images. Figure 10
shows the symmetrical detections is several images. We can
see that the detected symmetry regions are quite accurate
and distinctive, providing a valuable cue for the detection
and recognition of symmetrical objects.
We also apply symmetry detection to choose good dor-

sal (i.e., back side) views of stonefly larvae from among the
various poses. Dorsal views exhibit more bilateral symme-
try than do other poses are helpful for classification due to
the patterning on the specimens’ backs. Figure 11 shows
various poses of the stoneflies as contained in the database
while Figure 12 shows the four selected dorsal views and
their symmetrical PCBR detections. Based on visual in-
spection, the PCBR detector appears better suited for de-
tecting the symmetric regions in the stonefly images than
are other detectors.

Figure 11. Different object poses in the stonefly database.

Figure 12. Good dorsal views selected using bilateral symmetry
detection with PCBR.



Figure 10. Bilateral symmetry detection using PCBR.

5. Conclusion and Future Work
This paper has presented a new structure-based interest

region detector called Principal Curvature-Based Regions
(PCBR) and has demonstrated its successful application to
several tasks. The PCBR interest operator detects stable
watershed regions within the multi-scale principal curva-
ture image that describes both edge and curvilinear struc-
tures. Grayscale morphology and a new eigenvector-flow
hysteresis thresholding provide for robust watershed detec-
tions. Further, PCBR achieves robust detections across mul-
tiple scales by selecting stable regions across consecutive
scales. Finally, we have demonstrated the utility of our
PCBR detector to reliable wide-baseline feature detection,
object-class recognition, and symmetry detection.
Unlike detectors designed for wide-baseline matching of

rigid static scenes, detectors for object recognition should
be more intelligent in identifying object-class-relevant re-
gions. As such, a future direction for this work is to develop
discriminative interest operators and region descriptors that
learn to detect and describe characteristic regions on a per
object-class basis.
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