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Abstract

This paper studies the problem of multibody motion segmen-
tation, which is an important, but challenging problem due
to its well-known chicken-and-egg-type recursive character.

We propose a new Mixture-of-Fundamental-matrices
model to describe the multibody motions from two views.
Based on the maximum likelihood estimation, in conjunc-
tion with a random sampling scheme, we show that the
problem can be naturally formulated as a Linear Program-
ming (LP) problem. Consequently, the motion segmentation
problem can be solved efficiently by linear program relax-
ation. Experiments demonstrate that: without assuming the
actual number of motions our method produces accurate
segmentation result. This LP formulation has also other
advantages, such as easy to handle outliers and easy to en-
force prior knowledge etc.

1. Introduction

Dynamic multibody scenes are very common in reality:
e.g., traffic surveillance camera monitoring a busy intersec-
tion, sport camera tracking a group of soccer players, or a
hand-held camera following a flying bird, etc. In the last
case, the camera and the bird each contributes to an inde-
pendent motion.

To enable a computer understanding a multibody dy-
namic scene, an efficient multibody motion segmentation
algorithm is desirable. This problem, also known as the
multibody structure-and-motion problem ([21][14][9][11]),
consists of the following tasks: segmenting image points
according to their motions, estimating individual motion’s
parameters, and recovering 3D structure of the points.

We propose a new algorithm in this paper, based on a
principled framework of Linear Programming Relaxation.
We assume that the camera model is fully projective (as op-
pose to linear affine camera models) so as to address close
range applications where large perspective distortions ap-
pear in the images.

1.1. A brief review: existing approaches

Multibody motion segmentation is a challenging prob-
lem. This is mainly due to its well known chicken-and-
egg-type character: in order to estimate multiple motions’
parameters, one has better segment these motions first (i.e.,
find each point’s membership); Reversely, to segment the
multiple motions the information of each individual motion
is much helpful.
EM algorithm is commonly adopted for solving such a re-
cursive problem. It performs by alternating between param-
eter estimation and membership segmentation. Based on
the EM algorithm, moderately successful applications have
been reported [5][20]. However, the EM is only guaranteed
to converge to a local minimum. Practices often show that
an EM algorithm gets trapped into a local minimum thus
produces erroneous segmentation.
Subspace separation has been suggested for motion seg-
mentation. The most known algorithm is the multibody fac-
torization due to Costeria and Kanade [9]. There are much
other incremental work, some of them have substantially
improved this technique (c.f., [3] [26][25] [5][16]). Un-
fortunately, without nontrivial modification these methods
have to confine themselves only to linear camera model.
Model selection is another adopted method for the problem
[19][10]. Torr [19] proposes an algorithm based on remov-
ing single motion (inliers) sequentially according to a resid-
ual analysis. Schindler et al’s work [15] represents some re-
cent development along this direction. A drawback of this
method is that many parameters (e.g., threshold) need to be
turned simultaneously.
GPCA is an interesting algebraic method, proposed by
Vidal et al [22][8]. It is elegant and has broad applications.
However, when used to segment multiple of general mo-
tions (say, m motions, m > 5) it requires a large number
of feature points, say, in the order of O(m4), which is
impractical in many circumstances. Furthermore, being
algebraic in nature, the method is vulnerable to outliers.

In the present paper, we propose a novel algorithm for
two-view multibody motion estimation. The algorithm is
based on the Linear Programming framework, thus has a
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guaranteed global optimality. It needs not an initial esti-
mate of the the number of independent motions, and can
handle a large number of motions. Moreover, it deals with
outliers naturally and under the same framework with little
(computational) overhead.

2. Optimal Motion Segmentation

2.1. Optimal criterion

In this paper we formulate the multi-body motion seg-
mentation problem as a global optimization. To achieve a
truly globally-optimal motion segmentation two issues must
be addressed. For one thing, the recovered motion models
must fit well with the feature points; for the other, the esti-
mated number of motions must reflect the physical fact. To
this end, we need to design a proper optimal criterion (i.e.,
an objective function). Akaike Information Criterion (AIC)
and the Maximum Likelihood principle are adopted in this
paper. The choice of the AIC is only for its simplicity but
not essential. The user may replace it with any other crite-
rion, such as the BIC [19][10], when necessary.

Specifically, we are seeking a global optimum which
minimizes the following AIC criterion:

J = −2 log L + 2C (1)

where L is a likelihood term (i.e. data term) measuring
how well the motion models explain the data, and C is a
complexity term measuring how complex the models are.

In the present work, C is proportional to the number of
motions, i.e., C ∝ m. It remains to derive the likelihood
term. Under a perspective camera model, a pair of matching
points from two images, xi and x′

i, are related by the epipo-
lar equation [6]: x

′T
i Fxi = 0, where F is the fundamental

matrix (FM). For any FM, we have det(F) = 0,F ∈ R
3×3.

As noise is unavoidable, the right-hand-side is nonzero,
and can be used as a metric of the estimation—so-called al-
gebraic distance. It is well known that the algebraic dis-
tance is problematic in practice. Another more popular,
better metric, is the (squared) Sampson’s distance [19][6],
given by

ds(xi,x′
i,Fk) =

(x
′T
i Fkxi)2

(Fkxi)21 + (Fkxi)22 + (FT
k x′

i)
2
1 + (FT

k x′
i)

2
2

.

(2)
In this formula, we explicitly denote the FM by Fk to in-
dicate that {xi,x′

i} belong to motion-k. In reality, be-
fore the motions are segmented we have no knowledge of
which point belongs to which motion and how many mo-
tions are involved. To circumvent this, Vidal et al’s GPCA
(see also Wolf and Shashua [24]) proposes a concept of
multibody-fundamental-matrix (mFM) by constructing the
product of all possible motion membership assignments:

∏m
k=1 (x

′T
i Fkxi)=0. This mFM equation always holds re-

gardless of from which motion the image points actually
arise. But the number of terms of the product grows dra-
matically as the number of matches (n) or the number of
motions (m) increases.

2.2. Mixture of fundamental matrices (MoF)

In reality, we do not know how to actually write eq.(2)
of ds(xi,x′

i,Fk), because whether a matched pair (xi,x′
i)

does arise from the motion Fk is not known a-priori.

To circumvent the obstacle, we propose a new model—
called mixture-of-fundamental-matrix model (MoF). This
model is inspired by the EM algorithm.

Define binary membership variables zik with zik = 1 if
the image point-i is from motion-k, and zik=0 otherwise.

Under the condition of
∑m

k=1 zik = 1, we can replace
the conventional FM equation x′Fx = 0 with the following
mixture-of-fundamental-matrices (MoF) form,

x
′T
i (

m∑

k=1

zikFk)xi = 0. (3)

This equation is equivalent to
∑m

k=1 (x
′T
i zikFkxi)2 = 0,

and it always holds regardless of the actual image point
memberships.

Analogously, we can replace the algebraic distance with the
Sampson’s distance, and obtain the following mixture-of-
Sampson’s-distance (MoS) formula,

dmos(xi,x′
i) =

m∑

k=1

zikds(xi,x′
i,Fk). (4)

Using finite mixture model is not a new concept in com-
puter vision, even in the context of motion segmentation.
Torr [19] and Weiss [5] had exploited this idea before. Nev-
ertheless, the idea of mixing a set of independent funda-
mental matrices (each of which corresponds to a distinct
motion) has not been reported previously. More remark-
ably, we will show later that such an MoF (or MoS) model,
when incorporated into the maximum likelihood estimation
framework, naturally leads to a simple Linear Program for-
mulation.

2.3. Maximum Likelihood Estimation

With the aid of the MoF model, now we are allowed to
formally write the two terms of the AIC criterion function,
as described below.

Under the Gaussian noise assumption, a matched image
pair (xi,x′

i), given motion models Fk and memberships zik,



will contribute to a likelihood term p as:

p(xi,x′
i|Fk, zik, k = 1, · · · ,m)

=
1√
2πσ

exp(−dmos(xi,x′
i)

σ2
)

=
1√
2πσ

exp(−
∑m

k=1 zikds(xi,x′
i,Fk)

σ2
) (5)

At this stage we temporarily assume that the number of mo-
tions m is known.

Consider all n image point matches. The complete like-
lihood function L is thus (assuming statistical indepen-
dency):

L(xi,x′
i, i = 1..n|Fk, zik, i = 1..n, k = 1..m)

=
n∏

i=1

p(xi,x′
i|Fk, zik, k = 1..m). (6)

Substituting this into eq.(1) and after some algebraic simpli-
fications, we reach the following minimization problem:

min
z,F,m

J(zik,Fk,m|i = 1..n, k = 1..m)

= min
z,F,m

n∑

i=1

m∑

k=1

zikds(xi,x′
i,Fk) + βm, (7)

such that,

m ≥ 1, (8)

zik ∈ {0, 1},
m∑

k=1

zik = 1, for i = 1..n, k = 1..m, (9)

det(Fk) = 0, for k = 1..m. (10)

Recall that the last term of the AIC criterion C represents
the model’s complexity. Here we simply let log(C) = βm,
where m is the (unknown) number of motions and β a trade-
off factor. This amounts to say that: more motions are con-
sidered more complex.

Now that the multibody motion segmentation problem is
converted to a typical ML optimization problem:

• Find the best Fk, zik and m, so that the above cost
function is minimized.

2.4. Convert to Linear Programming Problem

However, solving the above optimization problem is very
hard. This is because: the cost function (7) itself is highly
nonlinear and non-convex in the unknowns Fk; the det con-
straint of (10) is cubic and non-convex; the variables zik are
binary integers. Besides, even the number of motions m is
unknown.

The readers who are familiar with the EM algorithm
might recognize that the form of (7) is similar to the
complete-data log-likelihood in EM, hence may wonder

whether a marginalization (as the EM does) over the un-
known zik would be of any help. We think this is a promis-
ing direction for future work.

In this work we explore a different direction based
on Linear Programming Relaxation idea, which is non-
conventional and very effective.

Examine eq.(7) again. Suppose that somehow we al-
ready have a list of M candidate motion models, denoted
by Φ = {F1,F2, ...,FM}, |Φ| = M . We assume that the
candidate list does contain the m true motions.

Define auxiliary binary indicating variables yk with
yk=1 if the motion-k ∈ [1, · · · ,M ] is indeed one of the
m true motions and yk=0 otherwise. Clearly we have
maxn

i=1{zik} = yk and
∑M

k=1 yk = m. Using these no-
tations we re-write eq.(7) as

min
z,F,y

J(zik,Fk, yk|i = 1..n, k = 1..M)

= min
z,y

n∑

i=1

M∑

k=1

zikds(xi,x′
i,Fk) + β

M∑

k=1

yk

= min
z,y

n∑

i=1

M∑

k=1

zikdsik + β

M∑

k=1

yk. (11)

In this formulation, if we assume that the M candidate
motions have already been found somehow, and they do
contain the m true motions, then the terms of ds(xi,x′

i,Fk)
can be pre-computed and considered as known coefficients
(of zik). Now the problem becomes linear in the unknown
binary variables zik and yk, k = 1, · · · ,M . In fact, it is a
standard 0-1 Integer-Linear-Programming problem.

3. Facility Location Problem and Relaxation

So far we have successfully reduced the problem to an
integer linear programming (under the assumption that all
the candidate motions Fk are known beforehand). Now a
question arises: how to solve the problem?

To exactly solve an integer linear programming is ex-
tremely hard (it is NP-hard in general). By exactly, we mean
that all the unknowns (to be solved) are well constrained to
be integers.

Before proceeding to explain how we actually solve the
NP-hard problem, we make a detour and introduce the fa-
cility location problem (FLP)—more precisely the uncapac-
itated FLP—a well-known subject of Operations Research
([1][17]). The reason for such a detour will become clear
shortly.

Imagine a big retailer company plans to open some local
shops (i.e. facilities) to serve n customers. The locations
of all customers are known beforehand. The locations of
shops are not known but to be chosen from a set of candidate
sites, denoted by F . The number of shops to be opened
(denoted by m) is initially unknown. Suppose there is a



fixed cost β associated with the opening of a new shop, and
a transportation cost dik if customer i is served by shop k.

The problem of FLP is then to decide which shop to
open, and which shop serves each customer so as to min-
imize the sum of the opening and transportation costs.

We introduce opening indicating variables yk =1 if shop
k is chosen to open and yk =0 otherwise, also introduce
membership variables zik=1 if customer i is served by shop
k. Then, the FLP problem is formally written as:

min
z,y

∑

i∈C

∑

k∈F
zikdik + β

∑

k∈F
yk, (12)

such that,

∀ik, zik ≤ yk, (13)

∀i,
∑

k∈F
zik = 1, (14)

∀ik, zik ∈ {0, 1}, yk ∈ {0, 1}. (15)

The inequality (13) ensures that a customer can only be
served by an opened shop.

Comparing this FLP problem with eq.(11) we find that
they are essentially identical. Both are challenging (NP-
hard) integer linear programming problems.

In practice, in order to tackle NP-hard problems various
strategies have been proposed (e.g. [7]). Among them, the
relaxation is one of the most promising approaches, which
has been applied successfully, particularly to the FLP prob-
lem.

The key idea of linear program relaxation (LPR) is to
relax the 0-1 integer constraints (15) into some linear in-
equalities of continuous variables:

∀ ik, 0 ≤ ẑik ≤ 1 and 0 ≤ ŷk ≤ 1. (16)

Rounding: de-relaxation. Now that the integer program-
ming problem becomes a Linear Programming problem,
one can solve it easily by any standard LP solver. It is fur-
ther hoped that the solved real variables of ẑ and ŷ are very
close to 0 or 1. Therefore, a rounding procedure needs to be
applied. A natural rounding scheme is: let z = 1 if ẑ > 0.5
and z = 0 otherwise. More delicate (and better) rounding
schemes can be found in [7] [17].

4. The Proposed Segmentation Algorithm

The high-level outline of our new motion-segmentation
algorithm is given as follows.

4.1. Algorithmic description

1. Generate a set of candidate motions by certain method.
Store them in a list Φ. The size of Φ is chosen so that
M � m where m̂ is a rough estimate of the number
of motions. During this step, one must ensure that the

correct m motion models are indeed contained in the
list.

2. Compute the Sampson’s distances dik between each
image point pair i and each candidate motion k. Es-
tablish a relaxed FLP problem, and solve it with any
LP solver (e.g, CPLEX or Matlab’s linprog).

3. Round the LP solutions so that the resulting variables
are binary. Decode and output the results.

4. Using the estimated memberships zik to re-compute
refined fundamental matrices. Output segmentation re-
sults and fundamental matrices.

4.2. Remarks

• The number of motions can be estimated from m =∑M
k=1 yk. The trade-off factor β will affect the esti-

mated m. However, in experiments we found β can be
chosen from a wide range (see experiment section).

• As long as the true motions are indeed included in the
list Φ, the algorithm will converge to the global op-
timum. Modern LP solvers are generally considered
high efficient (e.g, having only polynomial-time com-
plexity). However, to solve a large-scale LP problem
is still computationally expensive. To reduce the size
of Φ as much as possible is desired.

• If two candidate motions containing in the list Φ are
very resemble to each other, then after convergence the
LP solver will automatically pick the one that gives
rise to the smallest residual error. This is assured by
the global optimality of LP.

5. Guided Random Sampling

In previous section, we make a crucial assumption that
a set of candidate motions is known beforehand. This sec-
tion gives an effective method to generate such a candidate
set. Our method is based on random sampling, which is in
essence similar to the RANSAC.

Note that the two-view motion (i.e. the FM) can be cal-
culated quickly from minimal 7 or 8 points. Furthermore, if
the camera is calibrated then 5 points (or 6 points for semi-
calibrated case) are sufficient [13] [12]. All these suggests
that the random sampling scheme can be performed effi-
ciently.

How many samples? Similar to the probabilistic anal-
ysis of the RANSAC, there is also a theoretical guarantee
that, with a confidence level of p (e.g., p=0.9) it is assured
that one can obtain at least one motion from each of the
motion groups after a sufficient number of N samplings.



Specifically, assume the smallest motion group takes up
a ratio of ε, then this number of least required samplings to
ensure, with a probability p, that at least one sample from
each of the motion groups has been captured, is given by,

N = log(1 − p)/ log(1 − εs), (17)

where s is the size of the minimal-set required for comput-
ing a camera motion (e.g., s = 7 if the 7-point algorithm is
adopted).

Guided Sampling. Being theoretically correct, the above
result however, appears to be over-optimistic ([18][4]). In
practice, due to image noise etc., the actually required sam-
ples are often much more than predicted. In particular, for
the multi-body case the required number of samples often
grows too large to be computationally tractable. In addi-
tion, for LP’s sake we also expect a short list of the candi-
date motions. To accelerate the process of sampling, while
still guarantee the quality of the candidates, we suggest the
following mechanisms:

• Spatial coherence. Unless in rare cases (e.g., trans-
parency), motion vectors belonging to a single ob-
ject often spread contingently. This spatial coherency
is very useful for sampling. Paper [15] introduces
an image-partition technique which significantly in-
creases the chance of obtaining good samples.

• Prior distribution. Conventional RANSAC samples
image points uniformly with a equal probability. How-
ever, in reality, some data are born to be better than
the other. Before computing the residual error, there is
plenty of prior information that can be used to guide
the sampling. Paper [18] has exploited such idea and
has achieved significant improvements (e.g, 1 − 2 or-
ders of magnitude faster).

• Chirality constraints. Projective chirality basically
says that not every group of seven points produces a
valid fundamental matrix. Some may correspond to
the case when 3D scene points are behind the camera
which is not possible in reality (using a real camera).
Based on the chirality constraint Chum and Werner et
al obtained a two-fold speed-up [2].

• Motion Clustering. It is conceivable that, among some
spurious motion models there are also many duplica-
tions existing in the candidate motion list. Cluster-
ing on these candidate motions effectively removes re-
dundancy, and reduces the computational burden. We
adopt the inlier-outlier pattern method ([23]) which
works well and is easy to implement.

Finally, we want to emphasize that: although we suggest
the above guidelines, they are however, not essential. They

are meant to reduce the computational cost. In fact, out al-
gorithm would work well on purely randomly sampled data
set. An industrial-strength LP solver (e.g. CPLEX) is capa-
ble of solving an LP problem with millions of variables.

6. Dealing with outliers

Finding fully correct image matches is not a simple task,
especially when multiple motions are present. For this rea-
son, it is desirable that a motion-segmentation algorithm be
robust to outliers.

Our algorithm can handle outliers in a uniform fashion.
Little modification is needed to the original structure of
the algorithm. This is another featured advantage of our
method.

We simply add a virtual motion model (called the outlier
motion) to the candidate list. This ‘motion’ can match any
feature point at nil cost (alternatively one can introduce a
fixed cost to any such match). In order to better regularize
the problem, we add an upper bound γ to the total number
of outliers, and an upper bound α to the total number of
true motions. In practice, guessing such an upper bound is
not hard, for example, by prescribing a small portion that
accounts for the outliers.

Reload some notations: F = [1..M ], C = [1..n]. Define
wi = 1 if point i is an outlier image point and wi = 0 oth-
erwise. Now the LPR with outliers problem can be formu-
lated as the following form, where the virtual outlier motion
is explicitly expressed.

min
z,y,w

∑

i∈C

∑

k∈F
zijdik + β

∑

k∈F
yk, (18)

such that,

∀ik, zik ≤ yk,

∀i,
∑

k∈F
zik + wi = 1,

∑

i∈C
wi ≤ γ,

∑

k∈F
yk ≤ α,

∀ik, 0 ≤ zik ≤ 1, 0 ≤ yk ≤ 1, 0 ≤ wi ≤ 1.

Solving this LP simultaneously gives both the motion seg-
mentation and outlier detection results. Our experiments
have demonstrated the effectiveness of the method.

7. Experiments

7.1. Simulation

To validate our theory and the algorithm, we have con-
ducted experiments on both simulated and real images.

We generate perspective images matches. The image
size is about 512 by 512. Gaussian noise of std. of 0.2-1.0
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Figure 1. Motion Segmentation Experiment: 3 motions, 100
points. TL: input feature matches; TR: convergency of the linear
programming; BL: obtained membership variables ; BR: motion
segmentation result (up to permutations); Different groups are de-
noted by different symbols or colors.

pixels are added to the coordinates. Outliers are simulated
by an extra uniform noise within range [1..10] pixels. The
number of feature points is about 60-200. We use the 8-
point algorithm as the minimal solver in order to produce a
unique candidate motion (as opposed to 3 motions if the 7-
point algorithm is used). We use Matlab’s linprog as the
LP solver. The number of true motions is generally within
range [2-10], but this information is not known to the algo-
rithm.

In the first experiment we test a 3-motion case. For
an instance, fig-1 top-left gives the input feature matches.
Gaussian noise was added to the point coordinates. After
about 12 iterations the LP solver converges, as shown in
fig-1 top-right. Fig-1 bottom-left illustrates the estimated
membership variables zik, which clearly reveals exactly 3
motions, and the image points have been grouped into the
three motions correctly. Note that we purposely arranged
image feature points so that the memberships are in order.
This makes the visual evaluation task easy.

Fig-1 bottom-right shows the motion segmentation result
which is 100% correct according to the ground truth. In this
experiment, we use n=100 feature points, M=24 candidate
motions (after applying spatial partition and motion cluster-
ing). We also test cases with different levels of noise.

In the second experiment, we tested cases with many
motions. One purpose is to evaluate how the value of
β affects the estimate of m, i.e. number of motions.
We have consistently found that within a wide range (e.g.
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Figure 3. Motion segmentation with outliers. Left: Input feature
points with some unknown number of outliers; Right: Segmenta-
tion result. All outliers (denoted by �) have been detected correctly
according to ground-truth.

[0.00001,0.1]) of the β the estimates are almost always cor-
rect. There are a few failures which, in our opinion, are
mainly due to the random sampling stage of our algorithm.
We have found that, when β is over large (e.g., > 0.1) the
algorithm tends to obtaining less motions; on the contrary,
when β is over small (e.g, < 1e − 5) it tends to obtaining
more motions. This is not surprising, as the β is a trade-off
parameter and itself represents a fixed cost which penalizes
the inducing of a new motion (i.e., opening a new facility
in the FLP version). In practice, a rule-of-thumb is let β
equal to the median value of all Sampson’s distances, which
works well in most of our tests.

Fig-2 gives the results for a 5-motion case and 9-motion
case. Noise level was 1.0 pixels. Our algorithm auto-
matically recovers m and successfully segments motions.
For the 9-motion case, only two errors (out of 141 points)
are produced. A Remark: if the GPCA method were
used for segmenting m = 9 general motions, then at least
N=[(m+2)(m+1)/2]2−1=3024 outlier-free point matches
must be acquired, which is not so practical in reality.

In the third experiment, we add 10% outliers to the
data set by perturbing point coordinates by 5-pixel uni-
form noise. We test our LPR-with-outlier formulation (i.e.,
eq.(18)). In all simulations we use an upper bound γ =
(15%) × n, and an upper bound α ≈ (m + 10). Good re-
sults are obtained: the outliers have been exactly detected,
and the obtained segmentations are correct. One result is
shown in fig-3 for instance, where we added eight outliers to
the data. All the outliers (denoted by �) have been detected
correctly. This has validated our LP-based outlier-handling
method.

7.2. Test on real images

We test our algorithm on some real images used by vi-
sion researchers for the multi-body motion segmentation re-
search.

We have applied the outlier-free version LPR algorithm
to Vidal’s 3-cars sequence (fig-4), Kanatani’s Car-1 and
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Figure 2. Motion segmentation experiments (5 motion case and 9 motion case); Left: input features ; middle: recovered memberships ;
right: segmentation results (up to permutations).

Car-2 sequences (fig-5). Our results compare favorably
with the state-of-the-art technique.

One of the advantages of the proposed method is that:
it accomplishes both the tasks of motion number estima-
tion and motion segmentation simultaneously, and under
a unified linear programming framework. By contrast,
many conventional algorithms accomplish these two tasks
sequentially, i.e. first estimate the number of motion, then
do the segmentation. We believe that the former fashion
is advantageous over the latter, as it helps finding the truly
globally optimal solution. Moreover, by the linear program-
ming framework the user’s some prior knowledge about the
scene can be incorporated into the computation via a unified
manner.

8. Discussion and Conclusion

The roles of MoF and LP. Without the new MoF model,
we would have not reached the linear programming formu-
lation (7). Philosophically speaking, this mixture-model al-
lows each image point simultaneously belonging to mul-
tiple motion groups (by using fractional mixing weights).
The idea of pre-computing a set of candidate motions has
reduced the otherwise complicated log-likelihood function,
and effectively linearized the nonlinear and non-convex
problem. The role of LP is then to select from all the can-
didate motions the best combination that produces the least
residual error.
Incorporate prior knowledge. Under the LPR framework
the user can easily enforce other prior constraints to the
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Figure 4. Experiment on the 3-car sequences. TL: one of the
input images with segmentation ground truth; TR: input fea-
ture matches; BL: estimated memberships. Only 4 mis-classified
points; BR: Final segmentation result.

computation. For example, information such as two points
are from the same class can be easily expressed as a linear
constraint, and adds little to the computational complexity
of the resulting LP problem. With the aid of prior knowl-
edge, our algorithm is likely to perform better.
General segmentation problem. Conceivably, our algo-
rithm can be applied to estimating the multiple lines (i.e.,
linear subspaces) or multiple circles (i.e., nonlinear mani-
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Figure 5. Experiment on Kanatani’s two car sequences. Left: one
image with detected feature points; right: final segmentation re-
sult.

Figure 6. General multi-model segmentation problem.

folds) or even their mixture in figure-6. Formally speaking,
the algorithm is applicable to the general multiple-model
segmentation problem, given that each of the model’s ana-
lytic form is known and preferably has a small number of
parameters.
Further applications. We also envisage other possible ap-
plications of the algorithm. For example, in some circum-
stances applying the EM algorithm can be difficult, e.g, due
to lack of a close-form E-step or M-step. Our suggestion is:
whenever the user can build up a candidate list containing
the true solutions at reasonable cost, then our LPR approach
could be used as an alternative to the EM.
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