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Abstract

Markov Random Field (MRF) models are a popular tool

for vision and image processing. Gaussian MRF models

are particularly convenient to work with because they can

be implemented using matrix and linear algebra routines.

However, recent research has focused on on discrete-valued

and non-convex MRF models because Gaussian models

tend to over-smooth images and blur edges. In this paper,

we show how to train a Gaussian Conditional Random Field

(GCRF) model that overcomes this weakness and can out-

perform the non-convex Field of Experts model on the task

of denoising images. A key advantage of the GCRF model is

that the parameters of the model can be optimized efficiently

on relatively large images. The competitive performance of

the GCRF model and the ease of optimizing its parameters

make the GCRF model an attractive option for vision and

image processing applications.

1. Introduction

Markov Random Field (MRF) models are a popular tool
for solving low-level vision problems. In the MRF model,
the relationships between neighboring nodes, which often
correspond to pixels, are modeled by local potential func-
tions. The parameters of these functions can be effectively
learned from training samples. The power of learning and
inference in an MRFmakes it a popular choice for low-level
vision problems including image denoising [12], stereo re-
construction [3], and super-resolution [18].
However, learning and inference in MRFs are, in gen-

eral, nontrivial problems. Because of the nonlinear and non-
convex potential functions used in many MRFs, sophisti-
cated sampling-based algorithms are often used for param-
eter learning [21, 12]. Unfortunately, sampling algorithms
can be slow to converge. For certain types of discrete-
valued graphs, there are efficient algorithms such as graph
cuts [3] and loopy belief propagation [5], but learning still
remains a hard problem.
Gaussian Markov random fields, which are MRFs where

the variables are jointly Gaussian, have a long history in
computer vision research [14]. Gaussian models are par-
ticularly convenient to work with because the inference

in Gaussian models can be easily accomplished using lin-
ear algebra. Algorithms for numerical linear algebra are
well understood, and efficient implementations are avail-
able. Nevertheless, Gaussian Markov random fields can re-
sult in over-smoothed images when the potential functions
for neighboring nodes are homogeneous or isotropic, i.e.
identical everywhere.

Typically, the key to success with Gaussian Markov ran-
dom fields is to have the neighboring potential function de-
pendent on the input signal, as in [10, 17]. These inho-
mogeneous or anisotropic Gaussian MRFs can overcome
the weakness of the homogeneous ones by reconstructing
piecewise smooth image with desirable properties. Be-
cause the potential functions now depend on the signal these
MRFs are no longer generative models, but are instead con-
ditional models. Therefore, these Gaussian MRFs can also
be called Gaussian conditional random field (GCRF). In
GCRFs, the parameters that describe how each potential
function depends on the input signal is typically designed
empirically and hand-tuned to generate the desired results.
Although this might be feasible when there are few param-
eters, this approach does not scale-up when automatically
designing and optimizing larger, more general models.

In this paper, we show how the parameters of GCRF can
be efficiently for low-level vision tasks. We derive the learn-
ing algorithm by minimizing the error in the MAP solution
of the model for the training samples. This tractable method
of training, described in Section 3, enables the GCRF
model to improve on the results produced by the more com-
plex, non-convex Field of Experts model. The fact that
GCRF models are relatively easy to train and can perform
as well as more complicated models makes them poten-
tially useful for a number of low-level vision and image-
processing tasks. To demonstrate the convenience and
power of the model, example implementations are available
at http://www.eecs.ucf.edu/˜mtappen.

Section 2 describes the GCRF model. The training algo-
rithm is described in Section 3. Related work and models
are discussed in Section 4. The GCRF model is compared
to the Field of Experts model in Section 5.

2. Motivating the GCRF Model

The Gaussian Conditional Random Field (GCRF) model
can be motivated in two ways: probabilistically as a Condi-
tional Random Field [6], or as an estimator based on min-
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imizing a cost function. Section 2.1 shows how the GCRF
estimator can be motivated as a probabilistic model, while
Section 2.3 shows how it can be motivated as the minimum
of a quadratic cost function.

2.1. Basic Gaussian Conditional Random Field
Model

Before presenting the actual Gaussian Conditional Ran-
dom Field (GCRF) model used to denoise images, this sec-
tion will first describe a GCRFmodel for images that suffers
from the problem of oversmoothing. Section 2.2 will then
show how this model can be improved to handle sharp edges
and give much better results.
This GCRF model is defined by a set of linear fea-

tures that are convolution kernels. For a set of features,
f1 . . . fNf

, the probability density of an image, X , condi-
tioned on the observed image, O, is defined to be

p(X )=
1

Z
exp

0

@−

Nf
X

i=1

X

x,y

“

(

X ∗ fi)(x, y) − ri(x, y;O
)

”

2

1

A,

(1)

where (X ∗ fi)(x, y) denotes the value at location (x, y) in
the image produced by convolving X with fi. We assume
that this image only contains those pixels where the entire
filter fits in X . This corresponds to “valid” convolution in
MATLAB. The function ri(x, y;O) contains the estimated
value of (X ∗ fi)(x, y). For each feature fi, the function ri

uses the observed imageO to estimate the value of the filter
response at each pixel. In the rest of this paper, ri(x, y;O)
will be shortened to ri for conciseness.
The exponent:

Nf
∑

i=1

∑

x,y

(

(X ∗ fi)(x, y) − r2
i

)

(2)

can be written in matrix form by creating a set of matrices
F1 . . . FNf

. Each matrix Fi performs the same set of linear
operations as convolving an image with a filter fi. In other

words, if X̂ is a vector created by unwrapping the image X ,

then FiX̂ is identical to X ∗ fi. These matrices can then be
stacked and Equation 2 can be rewritten as

(F X̂ − r)T (F X̂ − r), (3)

where

F =









F1

F2

...
FNf









and r =









r1

r2

...
rNf









.

Equation 3 can be rewritten in the standard form of the
exponent of a multivariate normal distribution by setting
the precision matrix, Λ−1, to be FT F and the mean, µ, to
(FT F )−1FT r.

Note that the difference between (X̂ − µ)T Λ−1(X̂ − µ)
and Equation 3 is the constant rT r − µT µ. However, this
value is constant for all X , so it only affects the normaliza-
tion constant, Z, and the distributions defined using Equa-
tion 1 or Λ and µ are identical.

2.2. Utilizing Weights

One of the weaknesses of the GCRF model in Equation
1 is that it does not properly capture the statistics of nat-
ural images. Natural images tend to have smooth regions
interrupted by sharp discontinuities. The Gaussian model
imposes smoothness, but penalizes sharp edges. In appli-
cations like image denoising, optic flow, and range estima-
tion, this violates the actual image statistics and leads to
oversmoothing.

One way to avoid this oversmoothing is to use non-
convex, robust potential functions, such as those used in
[18] and [12]. Unfortunately, the convenience of the
quadratic model is lost when using these models.

Alternatively, the quadratic model can be modified by
assigning weights to the various terms in the sum. For ex-
ample, if the filters, f1 . . . fNf

, include derivative filters, the
basic GCRF model penalizes the strong derivatives around
sharp edges. This causes the images estimated from basic
GCRF models to have blurry edges. Using the observed
image to lower the weight for those derivatives that cross
edges will preserve the sharpness of the estimated image.
It should be noted that this example is illustrative. Section
3 will show how use training data to learn the relationship
between the observed image and the weights.

Adding weights to the exponent of Equation 1 can be
expressed formally by modifying Equation 2:

Nf
∑

i=1

∑

x,y

wi(x, y;O, θ) ((X ∗ fi)(x, y) − ri)
2
, (4)

where wi(x, y;O, θ) is a positive weighting function that
uses the observed image, O, to assign a positive weight to
each quadratic term in Equation 4.

In the denoising example that is described in Section
5, the weight function associated with each filter is based
on the absolute response of the observed image to a set of
multi-scale oriented edge and bar filters. These filters will
be shown later in Figure 2. These filters are designed to
be sensitive to edges. The underlying idea is that these fil-
ter responses will enable the system to guess where edges
occur in the image and reduce the smoothness constraints
appropriately.

Assigning a weight to each quadratic term improves the
model’s ability to handle strong edges. For a term based on
a derivative filter, the weight could be increased in flat re-
gions of the image and decreased along edges. This would
enable the model to smooth out noise, while preserving
sharp edges. Section 3 will discuss how to learn the pa-
rameters, θ, of this weighting function.

The potential difficulty in using this model is the fact that
the weights must be computed from the observed image.
This will be problematic if the observed image is too noisy
or the necessary information is not easy to compute. Fortu-
nately, as Section 5 will show, the system is able to perform
well with high-noise levels when denoising images. This
indicates that good weights can still be computed in high-
noise problems.



2.3. CostFunction Perspective

The GCRF model can also be motivated from a cost-
function point of view. Let h(O; θ) be an estimator that uses
the observed image, O, to estimate an image. The estimate
is the image X that minimizes the quadratic function:

Nf
∑

i=1

∑

x,y

wi(x, y;O, θ) ((X ∗ fi)(x, y) − ri)
2
. (5)

Again, ri(x, y;O) has been shortened to ri for conciseness.
Because Equation 5 contains a quadratic cost function,

the minimum can be computed using the pseudo-inverse.
Using the matrix notation from Section 2.1, this pseudo-
inverse can be expressed as:

h(O; θ) =
(

FT W (O; θ)F
)−1

FT W (O; θ)r. (6)
In this equation, we have introduced a diagonal ma-

trix W (O; θ) that is a function of the observed image
and parameters θ. This diagonal matrix is a block-
diagonal matrix constructed from the diagonal sub-matrices
W1(O; θ) . . . WNf

(O; θ). Each entry along the diagonal in
the Wi(O; θ) matrices is equal to the weight of a term at a
particular pixel, wi(x, y;O, θ).

3. Learning the Parameters of a GCRF

Before the model described in the previous section
can be used, the parameters of the weighting functions,
wi(x, y;O, θ), must be chosen. Traditionally, the parame-
ters of Conditional Random Fields are found by maximizing
the likelihood of the training data. Using the GCRF model
from 2.2, the conditional log-likelihood of a training sample
T , conditioned on an associated observation OT , is

−
∑Nf

i=1

∑

x,y wi(x, y;OT , θ) ((T ∗ fi)(x, y) − ri)
2

− log
∫

X
exp

(

−
∑Nf

i=1

∑

x,y wi(x, y;OT , θ)×

((X ∗ fi)(x, y) − ri)
2
)

dX

(7)
and its partial derivative with respect to a parameter θi is:

−
∑Nf

i=1

∑

x,y
∂wi(x,y;OT ,θ)

∂θi
((T ∗ fi)(x, y) − ri)

2

+
1

Z

∫

X

∂wi(x,y;OT ,θ)
∂θi

×

exp (−
∑Nf

i=1

∑

x,y wi(x, y;OT , θ)×

((X ∗ fi)(x, y) − ri)
2
)

dX .

(8)

Notice that the integration on the righthand of Equation
8 can be rewritten as an expectation. This implies that
computing the gradient of the log-likelihood with respect
to the parameters requires computing the expected values
of the clique potentials or feature functions. For a Gaus-
sian model, the first step in computing these expectations is
inverting the inverse covariance matrix (precision matrix).
The key difficulty with using the log-likelihood to fit the
GCRF parameters lies in this matrix inversion. While the

matrix
(

FT W (O; θ)F
)

is sparse,
(

FT W (O; θ)F
)−1
will

be dense. For a 256 × 256 image, storing this dense matrix
in memory with single-precision values will require 16GB
of memory. In addition, inverting a matrix is an O(N3)
operation, making it infeasible for large images.

3.1. Discriminative Learning for GCRFs

The matrix inversion can be avoided by instead penal-
izing the difference between the mode of the conditional
distribution and the ground truth. The penalty is expressed
using a loss function L(Y, T ) that assigns a loss for an im-
age Y based on its difference from the ground-truth image
T . In the GCRF model, the mode of the conditional dis-
tribution is the conditional mean, so the cost, C(θ,O, T ),
associated with a particular set of parameters θ is

C(θ,O, T )=L
(

(

FT W (O; θ)F
)−1

FT W (O; θ)r, T
)

.

(9)
The parameters θ can be found by minimizing

C(θ,O, T ) using gradient descent techniques. For conve-
nience when computing the gradient, we define µ such that

µ =
(

FT W (O; θ)F
)−1

FT W (O; θ)r. (10)

Using the chain rule, the partial derivative of C(·) with
respect to a parameter θi is

∂C(θ,O, T )

∂θi

=
∂C(θ,O, T )

∂µ

∂µ

∂θi

. (11)

Note that
∂C(θ,O,T )

∂µ
is a 1 × Np vector, where Np is the

number of pixels in the image, equal to
[

∂C(θ,O, T )

∂µ1
. . .

∂C(θ,O, T )

∂µNp

]

. (12)

The derivative vector ∂µ
∂θi
is an Np × 1 vector with each

element equal to
∂µj

∂θi
(j = 1, · · · , Np).

If the loss function is the squared-difference between µ
and the ground-truth image, T , then

C(θ,O, T ) = (µ − T )
T

(µ − T ) , (13)

and
∂C(θ,O, T )

∂µ
= 2(µ − T ).

3.2. Differentiating µ

The vector µ, defined in Equation 10, can be differenti-
ated with respect to a parameter θi using the matrix deriva-
tive identity:

∂A−1

∂x
= −A−1 ∂A

∂x
A−1. (14)

Using this identity,

∂µ
∂θi

= −
(

FT W (O; θ)F
)−1

FT ∂W (θ,O)
∂θi

×
(

FT W (O; θ)F
)−1

FT W (O; θ)r

+
(

FT W (O; θ)F
)−1

FT ∂W (θ,O)
∂θi

r.

(15)

Equation 15 can be expressed much more succinctly by

replacing
(

FT W (O; θ)F
)−1

FT W (O; θ)r with µ and fac-
toring:

∂µ
∂θi

=
(

FT W (O; θ)F
)−1

FT ∂W (θ,O)
∂θi

(−Fµ + r) .

(16)



Figure 1. The filters used in the GCRF model for denoising im-
ages. These filters are a set of derivatives.

3.3. Computational Implications

Combining Equation 11 with Equation 16, the derivative
of the C(·) with respect to a parameter θi is

∂C(θ,O,T )
∂θi

=
∂C(θ,O,T )

∂µ

(

FT W (O; θ)F
)−1

FT ∂W (θ,O)
∂θi

(−Fµ + r) .

(17)
The most expensive step in Equation 17 is computing

µ and
∂C(θ,O,T )

∂µ

(

FT W (O; θ)F
)−1
. Both of these terms

involve calculating the product of an inverse matrix and a
vector. This can be computed efficiently in O(N2

p ) time
using numerical linear algebra techniques. In our imple-
mentation, we use the “backslash” operator in MATLAB to
compute these vectors.
Also notice that if the matrix multiplications are ordered

correctly, each of these vectors must only be computed once
to calculate the gradient with respect to all θi. This makes
the complexity of computing the gradient O(N2

p ). Com-

pared to maximizing the likelihood, which requires O(N3
p )

matrix inversions to compute the covariance matrix of the
distribution, this is a significant reduction in computation.
Even for a relatively small 128 × 128 image, there will be
an immense savings in computation.

4. Related Work

This GCRF model is similar to that used by Tappen,
Adelson, and Freeman to learn parameters for decomposing
an image into shading and albedo components [16]. That
system was also used to denoise images, though with an
error slightly higher than the Field of Experts model. The
primary differences between that system and the system de-
scribed here is that many more filters are used and the filter
responses are all set to zero. In [16], a semi-parametric re-
gression system was used to estimate the filter responses for
horizontal and vertical first-order derivatives. The GCRF
model described here uses higher-order derivatives and con-
strains them to be zero. This better captures the piecewise
continuity in images.
A distinguishing characteristic of this method for train-

ing is that model parameters are optimized using a loss
function that measures the difference between the most
likely image and the ground-truth image. This type of train-
ing has also been used for discrete-valued graphical models
by Collins [4], Taskar et al. [20, 19], and Altun et al. [1]. In
[4], Collins shows how a variant of the perceptron algorithm

can be used to maximize a margin, similar to the margin in
the Support Vector Machine literature, between the correct
output from a graphical model and all other possible out-
puts. In [20], Taskar et al. show how a loss function can
be upper-bounded with a hinge function and the parameters
can be found using convex optimization. In [1], Altun et al.
present a similar formulation.
Unlike [20] and [1], this work does not rely on machin-

ery from convex optimization. Instead, the gradient is cal-
culated analytically and standard gradient-based optimiza-
tion techniques can be used to optimize the loss function.
Relying on convex optimization limits the types of weight-
functions and loss-functions that can be used. The only re-
striction on the weight functions in the GCRF formulation
presented in this paper is that they be differentiable.
It should be noted that in our formulation, the learning

algorithm takes into account the loops in the graph repre-
sentation of the CRF, unlike systems trained using pseudo-
likelihoods, such as [8].
The GCRF model can also be viewed as a type of

Energy-Based Model [7]. The advantage of Energy-Based
Models is that the partition function does not need to be
computed when training.
In recent work, Lyu and Simoncelli have also proposed

a denoising model which uses Gaussian Random Fields to
model Fields of Gaussian Scale Mixtures [9]. A key dif-
ference between this work and the GCRF model proposed
here is that the GCRF model is not used as a part of a non-
Gaussian model. Instead, we focus on optimizing the pa-
rameters of the Gaussian model to achieve the best possible
performance. This enables us to take advantage of the com-
putational benefits of a purely Gaussian model, which are
described in Section 1.

5. Comparing GCRFs to Field of ExpertsMod-
els for Denoising

To demonstrate the power of GCRFs on a real-world
problem, we constructed a GCRF model for denoising im-
ages. As stated earlier, a model has three major com-
ponents: the linear features f1 . . . fNf

, the estimated re-

sponses of the features r1(·) . . . rNf
(·), and the weighting

functions w1(·) . . . wNf
(·).

To keep the linear system invertible, the first filter,
f1 is the identity filter with r1(x, y;O) = O(x, y) and
w1(x, y;O) = 1. In other words, the first feature constrains
the mean to be somewhat close to the observation.
The remaining filters are a set of eleven 3 × 3 deriva-

tive filters. The filters are shown in Figure 1. For each of
these filters, the estimated response, ri(·), equals zero. Es-
sentially, these filters are imposing smoothness constraints.
The weight function associated with each filter is based

on the absolute response of the observed image O to a set
of multi-scale oriented edge and bar filters. These filters are
shown in Figure 2. These filters operate at multiple scales
in the image. The size of the filters in each of the three
rows is 11 pixels, 21 pixels, and 31 pixels. The filters were
designed to be elongated in order to be sensitive to extended
edges. Due to the large size of the filters, reflected border



Figure 2. The filters used for generating the features that are used
to estimate the weight wi(x, y;O) of each term in the GCRF
model.

handling was used when computing the filter responses. A
third set of responses was created by squaring the responses
of the corresponding edge and bar filters, then adding these
values.
Altogether, there are 72 filter responses at each pixel in

the image. Denoting the absolute response to each filter at

location (x, y) as a
(x,y)
1 . . . a

(x,y)
72 , where a

(x,y)
72 is a feature

containing all ones, the weighting function is

wi(x, y;O) = exp





72
∑

j=1

θi
ja

(x,y)
j



 , (18)

where θi
j represents the weight associated with response

j for filter i. The complete set of parameters, θ, is the
concatenation of the response weights for each filter, θ =
[θ1θ2 . . . θ12]. The exponential ensures that the weight is
always positive.
The intuition behind this weight function is that the ob-

served image, O, is being used to guess where edges occur
in the image. The weight of the smoothing constraints can
then be reduced in those areas.

5.1. Training the GCRF Model

We trained the GCRF model by optimizing the response
weights, θ, to minimize the absolute value of the difference
between between the predicted image and the true noise-
less image, T . To make the loss function differentiable, we

used
√

(x2 + 0.1) to approximate |x|. Using the deriva-
tions from Section 2.2, the derivative with respect to a par-
ticular θi

j is

∂C
∂θi

j

= (µ−T )

((µ−T )2+0.1)
1

2

×
(

FT WF
)−1

FT ∂W (θ,O)
∂θi

j

(−Fµ + r) .
(19)

For conciseness, we have dropped the arguments from C
and W . Note that µ and T are vectors, so the division and

square-root operations in
(µ−T )

((µ−T )2+0.1)
1

2

are element-wise

operations.

Average Average
RMS Error PSNR

Model (Lower is Better) (Higher is Better)

Field of Experts 11.04 27.59
GCRF 10.47 28.04

Table 1. This table compares the average error in denoised esti-
mates produced by the GCRF model described in this paper and
the Field of Experts model from [12]. The results are averaged
over the same 68 test images used in [12] The standard deviation
of the noise, σ, in the observations was 25.

We found that optimizing the parameters of the model
with this smoothed absolute error criterion led to an estima-
tor that generalized better than the estimator trained using
a squared-error criterion. Optimizing under a squared-error
criterion causes the algorithm to focus on the images with
larger errors. These images are treated equally under the
absolute error criterion. This helps generalization perfor-
mance because outlier images do not receive undue weight
during training.
The θ vector was optimized using a gradient-descent al-

gorithm with the “bold-driver” heuristic [2]. Under this
heuristic, the step size was decreased each time the error
in the denoised estimates increased.
The system was trained on forty 129×129 patches taken

from the same training images used by Roth and Black.
White Gaussian noise, with a standard deviation of 25, was
added to each observed image. Computing the gradient for
two images required approximately two minutes on a 2.4
GHz Intel Xeon processor. Using a computing cluster, we
were able to train the model in a few hours. The training
images used in training the GCRF model were much larger
than the 15 × 15 patches used to train the Field of Experts
model, which was also trained using a cluster. It is useful to
be able to train on large images because they better match
the test images.

5.2. Results

For comparison, we ran the Field of Experts (FoE) im-
plementation provided by Roth and Black on the same 68
test images from the Berkeley Segmentation Database that
Roth and Black identified as test images. The observations
were created by adding white Gaussian noise with a stan-
dard deviation of 25 to each image. The FoE model de-
noises images by using gradient-descent to minimize a ro-
bust cost function. The results vary depending on the step-
size parameter used. We found that we obtained images
with the highest log-posteriors by optimizing for 5000 iter-
ations with a step-size of 0.6. This enabled us to compare
the two models fairly because the results from the GCRF
model are optimal under that model.
As Table 1 shows, the GCRF model produces denoised

images with a lower error than the Field of Experts Model.
In addition, as Table 2 shows, the GCRF model requires
nearly half the time to produce a denoised 481×321 image.
Note that in this table, we have shown the time required for
2500 iterations of the steepest-descent algorithm, which is
the number of iterations suggested by Roth and Black.



Time to Produce
Model Estimates (sec)

Field of Experts (2500 iterations) 376.9
GCRF (MATLAB linear solver) 180.7
GCRF (300 conjugate gradient iterations) 97.82

Table 2. A comparison of the amount of time needed to denoise
an image using either the Field of Experts model, which uses
steepest-descent, or the GCRF model, which uses the MATLAB
linear solver. The Conjugate Gradients method is described in Sec-
tion 5.3. Times were computed on a 3.2Ghz Intel Xeon Processor.
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Figure 3. This scatterplot shows the RMS error in each of the 68
test images when denoised with either the Field of Experts (FoE)
model or the GCRF model. The GCRF model outperforms the
FoE model for all images where the point is above the red line.

To compare the performance of the two models across
the test set, Figure 3 shows of a scatterplot of the RMS er-
rors of the images estimated with the two models. Those
images where the GCRF model produces a better estimate
appear above the red line. As Figure 3 shows, the GCRF
model produces the better estimate for the majority of the
images. It is important to note that the RMS error is just
one type of error metric. Fortunately, if good performance
is desired under a specific error metric, the GCRF model
can be easily adapted to different error metrics. It should be
noted that the GSM denoising algorithm [11] still outper-
forms both of these models in terms of PSNR.

Figures 4, 5, and 6 show three examples of images from
the test set where the GCRFmodel produces better denoised
images in terms of PSNR. Figure 7 shows an example where
the Field of Experts model outperforms the GCRF model in
terms of PSNR.

Qualitatively, the GCRF model does a much better job at
preserving the fine-scale texture. This comes at the expense
eliminating low-frequency noise in smooth portions of the
image, which can be seen in Figure 7.

5.3. Iterative Estimation in GCRF models

For large images, the overhead of constructing the matri-
ces and solving the linear system may be prohibitive. In
these situations, the denoised image can be obtained by
minimizing Equation 5 iteratively. A significant advantage

of the GCRF model is that denoising is accomplished by
solving a linear system. This linear system can be solved it-
eratively using the conjugate gradient method. This method
converges more quickly than standard steepest-descent [13].
Much of the computation in the conjugate gradient

method involves matrix-vector products. When using this
method for the GCRF model, each of the matrix-vector
products correspond to computing a convolution. This
makes each iteration of the conjugate gradient slightly more
expensive than an iteration of steepest-descent.
One advantage of the conjugate-gradient method is that

there are no step-size parameters. We also found that it con-
verged quickly. After 300 iterations of the conjugate gradi-
ent method, the average absolute difference, per pixel, be-
tween the iterative estimate and the estimate found with the
direct matrix solver was 5.3851e-05. As Table 2 shows, us-
ing the iterative solver significantly reduces the amount of
time needed to produce an estimate. Further improvements
in speed may be possible by using a preconditioner suited
for images, such as the preconditioner described in [15].
While the conjugate gradients method could be used to

find estimates in the Field of Experts model, the non-linear
conjugate gradient algorithm requires line-searches, which
would affect its overall performance.

6. Conclusion – Advantages and Limitations of
the GCRF Model

We have shown how a Gaussian Conditional Random
Field (GCRF) model can outperform the non-convex Field
of Experts model on the task of denoising images. The
GCRF model produced more accurate estimates, in terms of
PSNR, and required less computation to produce estimates.
This is significant because of the advantages of the GCRF
model:

1. It is convenient to work with. The GCRF model can be
implemented using standard numerical linear algebra
routines.

2. As Sections 3 and 5 showed, the model can be trained
on relatively large images.

3. Any differentiable loss function on the estimated im-
ages can be used during training. This is important
because the behavior of a system can be significantly
influenced by the loss function used to train it. Allow-
ing for different loss functions during training enables
a system’s behavior to be controlled more precisely.

One potential limitation of this system is that that the sys-
tem is trained for a specific noise level. This would seem to
indicate that a generative model, such as the FoE model,
would be more useful for applications involving variable
amounts of noise. However, this potential limitation of the
GCRF model must be taken in context. First, as we have
demonstrated, training the GCRF model is relatively sim-
ple, thus making it feasible to train the model for differ-
ent noise levels. Variable noise could be accomodated by
choosing the appropriate weighting coefficients. Second, to



(a) Original (b) Noisy Observation (c) Results using FoE Model,
PSNR = 25.23

(d) Results using GCRF Model,
PSNR= 26.28

Figure 4. In this denoising task, the GCRF model produces a more accurate estimate of the true image than the Field of Experts (FoE)
model in terms of PSNR. The GCRF model also does a better job of preserving the texture in the image.

(a) Original (b) Noisy Observation (c) Results using FoEmodel, PSNR
= 25.77

(d) Results using GCRF model,
PSNR = 26.75

Figure 5. A second example where the GCRF model produces superior results in terms of PSNR. Again, the GCRF better preserves texture.

achieve optimizal performance in the FoE model, the cur-
rent state-of-the-art generative model, the parameters pre-
dicted by the generative model cannot be used. Instead, the
weight of the likelihood term in the log-posterior must be
set to a value that is determined conditionally by the noise
level in the observation. Thus, the FoE model can be viewed
as a conditional model, somewhat akin to the GCRF model.

Another potential limitation of the GCRF is its reliance
on the input for setting the weights. Data may be missing
or the observations may be of very poor quality. In difficult
cases, it may be useful to perform simple pre-processing,
such as bilinear interpolation to fill in missing data, before
estimating the weights.

Overall though, the GCRF’s convenience, combined
with its ability to perform as well as non-convex model,
make this model an attractive model for low-level vision
and image processing applications.
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