
Hierarchical Structuring of Data on Manifolds

Jun Li
Department of Computer Science

Queen Mary, University of London
London E1 4NS

junjy@dcs.qmul.ac.uk

Pengwei Hao
Department of Computer Science

Queen Mary, University of London
London E1 4NS

phao@dcs.qmul.ac.uk

Abstract

Manifold learning methods are promising data analysis
tools. However, if we locate a new test sample on the man-
ifold, we have to find its embedding by making use of the
learned embedded representation of the training samples.
This process often involves accessing considerable volume
of data for large sample set. In this paper, an approach of
selecting “landmark points” from the given samples is pro-
posed for hierarchical structuring of data on manifolds. The
selection is made such that if one use the Voronoi diagram
generated by the landmark points in the ambient space to
partition the embeded manifold, the topology of the man-
ifold is preserved. The landmark points then are used to
recursively construct a hierarchical structure of the data.
Thus it can speed up queries in a manifold data set. It is a
general framework that can fit any manifold learning algo-
rithm as long as its result of an input can be predicted by
the results of the neighbor inputs. Compared to the existing
techniques of organizing data based on spatial partitioning,
our method preserves the topology of the latent space of the
data. Different from manifold learning algorithms that use
landmark points to reduce complexity, our approach is de-
signed for fast retrieval of samples. It may find its way in
high dimensional data analysis such as indexing, clustering,
and progressive compression. More importantly, it extends
the manifold learning methods to applications in which they
were previously considered to be not fast enough. Our al-
gorithm is stable and fast, and its validity is proved mathe-
matically.

1. Introduction

Recently, many manifold learning algorithms have been
designed for analyzing high dimensional data, which are
samples of an intrinsically low dimensional manifold. How-
ever, most of the state-of-the-art manifold learning methods
discover the embedding of the manifold rather than the ex-
plicit mapping. Thus although they demonstrate amazing

ability to find good low-dimensional parametrization for a
set of manifold samples that are embedded in the high di-
mensional representation space, they are not able to give
the parametrization for a new input sample. Generally, one
needs to put the new sample and the training samples to-
gether and rerun the algorithm, which is often computation-
ally expensive. Researchers have developed algorithms that
can calculate the low dimensional parametrization for new
samples with the help of the obtained parametrizations of
its neighbors (2) (17). However, it is still cumbersome to
find the nearest neighbors for every new sample, especially
when there is a large number of samples, which is common
in practice, because manifold learning needs dense sam-
pling.

In this paper, the proposed approach is for hierarchically
organizing data sampled from a manifold embedded in a
high-dimensional space, so that they can be retrieved fast
in response to a content-based query. This is particularly
useful in the occasion that one needs to extend the resulting
embedding from manifold learning algorithms.

Hierarchically organized data are helpful for the above
data retrieval task, which is also of high interest in many
research areas, such as data indexing, clustering, multi-
media database management, and so on. The proposed
method is natural, easy to implement and fast to run. Our
method chooses a small subset of the samples as land-
mark point(LMP)s. Each sample is assigned to a nearby
LMP. This can be done recursively to establish a hierarchi-
cal structure for the data.

Let x denote a sample on manifold M, and LE(x) the
closest LMP to x. The LMP set is chosen such that the
following condition is met:

Condition 1. ∀x ∈ M, connection between x and LE(x)
is NOT a short circuit on M.

This is to ensure that for an input test sample, it may find
its neighborhood on manifold by finding its nearest LMP in
Euclidean space. We formulate this condition in a section
below.

Given a set of LMPs, their corresponding Voronoi dia-

1

1-4244-1180-7/07/$25.00 ©2007 IEEE

gram partitions the ambient space. Intersecting with mani-
fold M, the Voronoi diagram also splits M. We choose LMP
such that each cell in the Voronoi diagram intersects M in a
local patch, i.e. it does not short-cut M.

After reviewing related work in Section 2, we detail the
method of finding LMPs and present the proof of its valid-
ity in Section 3. In Section 4, the problem of using LMPs to
construct hierarchical data struture is discussed. In Section
5, we report some experimental results on widely used man-
ifold learning data sets, a synthetic face data set (11) and a
practical face database (8). Finally, we conclude the paper
in Section 6.

2. Related Work

In the past few years, many manifold learning ap-
proaches emerged such as Isomap (18), local linear embed-
ding (LLE) (16), Laplacian (1) and Hessian (6) eigenmaps,
local tangent space alignment (LTSA) (23) and Riemannian
manifold learning (14). Because of their potential to extract
information from high dimensional raw data (7) (10), they
have found their way to many applications (21), (3), (9).
However, there are still many problems to be addressed be-
fore these approaches become practical tools for data analy-
sis (20). One of the biggest barriers against manifold learn-
ing methods to be applied on practical tasks is that they do
not yield explicit mapping between the latent space and the
data space. Obviously, recomputing the embedding of a rich
data set for a few test samples is computationally demand-
ing. Some efforts have been made on this topic. The embed-
ding generated by LLE can be used to embed new test points
(22). Bengio et al. proposed a more general approach to
extending the embedding found by Isomap, LLE and other
eigenmaps for new samples (2), and they also provided the
theoretical analysis. However, these extensions still rely on
learned embedding of the training data.

There is rich literature in the field of data clustering and
indexing. Those methods closely related to ours are a fam-
ily of tree-based data structuring schemes, referred to as
spatial accessing methods (SAM) (12) (19) (and references
therein). Nevertheless, their objective is to organize the data
in a balanced tree for fast retrieval. While we preserve the
topology of the manifold, from which the observed data are
sampled, our method is more suitable for dealing with data
used by manifold learning algorithms. A figure below (Fig-
ure 2) shows a case where the query of neighbors for a
newly incoming sample (the red triangle) does not return
reasonable results using a traditional SAM.

The term “landmark point” in our paper is borrowed
from techniques of manifold learning. However, they use
LMPs to speed up or make it applicable on a large volume
of data (4) (5) (13) (15), while we are concerned for neigh-
borhood retrieval, our focuses are different.

3. Selection of Landmark Points

In this and the next section, we address the problem
of structuring the data: Given observed samples, how to
choose an appropriate set of landmark points from them.
The proposed solution is able to be applied recursively in
order to construct a hierarchical structure of the data. In the
next section, we describe how to use the constructed struc-
ture to find neighbors on manifold for an incoming sample.

In the training (manifold learning) stage, the observed
samples are the only information available about the un-
known manifold. Therefore, LMPs are chosen from the
sample set and we test our framework with those samples
as well. In the following, we formulate Condition 1 given
in Section 1, and give a method to choose LMPs to meet the
condition.

First, we assume that we have had an initial set of LMPs.
Then Condition 1 is examined by testing every sample on
the manifold. If it is not met, a new LMP is added, and the
procedure repeats.

3.1. Empirical Risk Detection

The symbols used in the following discussion are given
as follows. X := {xi}, i = 1, . . . , N , is the set of the ob-
served samples from a d-dimensional manifold M, which
is embedded in R

D . SL ⊂ X represents the current set of
LMPs. dE(·, ·) stands for the Euclidean distance function
in R

D. dM (·, ·) measures the geodesic distance between
two points on manifold. Given x ∈ M, denote the n-th
nearest LMP to x in the sense of Euclidean distance dE as
Ln

E(x;SL) (“E” for “Euclidean”), and the one in the sense
of geodesic distance on M as Ln

M (x;SL) (“M” for “Man-
ifold”). In the following, we write L1

E as LE and L1
M as

LM , and without writing SL explicitly if there is no ambi-
guity in context. We denote the set {x ∈ X|LE(x) = s} as
Cs, or CLE(y), where y is an arbitrary element in the set.

To be clear, we discuss using notions from the theory of
Voronoi diagrams. SL partitions R

D with its Voronoi dia-
gram. Intersecting with the diagram, M is also split, which
is embedded in R

D. We denote this Euclidean partition of
the manifold as PE .

A geodesic Voronoi diagram partitions a manifold in a
way analogous to a normal Voronoi diagram partitions an
Euclidean space. The difference is that the distance between
two points is defined as the length of the geodesic along the
manifold, because all the sites (LMPs) are on the manifold,
and the manifold is connected. They have a corresponding
geodesic Voronoi diagram on the manifold. We denote the
partition of the manifold with its geodesic Voronoi diagram
as PM .

Generally speaking, one can test Condition 1 by verify-
ing if PE is identical to PM , for ∀xt ∈ M. However, it is
not feasible in practice, because:

• The ambient space is of very high dimensions. Con-

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

Euclidean distance from left end

C
ur

ve
 le

ng
th

 fr
om

 le
ft

en
d

Euclidean distance and curve length

(b)

−3 −2 −1 0 1 2 3 4 5 6

0

0.5

1

Samples from a 1D Manifold

(a)

(c)

Figure 1. Border Error
(a) samples from a 1D manifold; (b) distance metric fluctuation;
(c) partition PE (dotted line), PM (red and blue colours) and

border error (blue crosses)

A

EA

(a) with TEPs (red crosses) (b) TEPs eliminated
Figure 2. Partition of Manifold with LMPs (big dots)

structing its Voronoi diagram is prohibitively expen-
sive.

• The manifold is unknown. Thus it is impossible to test
every point on it.

• It is also impossible to compute the geodesic between
two points on the unknown manifold.

Therefore, we do not examine PE and PM everywhere
on the manifold. Instead, we evaluate the empirical risk
caused by SL. We take PE and PM on X as labelling
each x ∈ X with the “nearest” LMP. Moreover, in the case
of PM , the geodesic length is replaced with the length of
the shortest path in the neighborhood graph as in (18). In
the following discussion, we do not distinguish the geodesic
distance on the manifold and that defined by the shortest
path. We keep using the notation LM as well, where M
denotes “manifold”.

3.2. Inconsistent points

“Inconsistent points” for SL refer to a set of points
{x ∈ X|LE(x;SL) �= LM (x;SL)}. If there are no in-
consistent points, Condition 1 is met. Thus an inconsis-
tent point indicates a possible failure to meet the condition.
Careful study indicates that there are different kinds of in-
consistent points, because the causes that make them incon-
sistent are different.

Border error points Consider a case that PE and PM

are similar but not identical. Let Cx = {x,x1, . . .xN1}

and Cy = {y,y1, . . .yN2} be two adjacent cells in PE ,
with x and y their respective LMPs.

For x0 ∈ Cx, we have dE(x0,y) > dE(x0,x). How-
ever, because M is nonlinear, dM fluctuates from dE , if x0

is close to the border between Cx and Cy , it is possible
that dM (x0,y) < dM (x0,x). In this case, x = LE(x0) �=
LM (x0) = y. It is the fluctuation of the distance metrics
that makes x0 an inconsistent point.

Figure 1 shows an example of this phenomenon. Figure
1(a) is a segment of a 1D manifold embedded in R

2. Figure
1(b) shows the fluctuation between the two distance metrics
by plotting curve length (vertical) against Euclidean dis-
tance, both being measured between samples on the curve
and the left LMP (red dot in (c)). Figure 1(c) shows the in-
consistent points in this case. Such inconsistent points do
not affect greatly the structuring of the data. In our frame-
work, they do not need special treatment.

Topological error points Another kind of inconsistent
points are the topological error points (TEP). A TEP x is
faraway from LE(x) on M, which indicates topological in-
consistence between PE and PM . For a structuring of M

with TEPs, there are some s ∈ SL, where Cs contains sam-
ples from distant areas of M. If an input test sample arise
from one of those areas, its neighbors may be erroneously
found.

Figure 2 shows the topological error. When the Voronoi
diagram of the LMPs are drawn, it splits the sample set.
Topological error points and the mis-partitioning can be
seen in the figure (A and EA).

To test whether x is a TEP, it needs to be judged whether
connection between x and LE(x) makes a short circuit on
M. However, it is often difficult to judge in practice, we
should err on the safe side, if this happens.

Given a test sample x, compare its nearest LMPs in the
Euclidean space and those on the manifold. We find n such
that L1

E(x) = Ln
M (x). Suppose that M has the intrinsic

dimension d. For a “border error” inconsistent point x, it
is possible that x lies in the vicinity of the point, which is
equidistant from L1

M (x), . . . , Ld+1
M (x) as measured along

the manifold. In this case, n ≤ d + 1. Thus if n > d + 1, x
is labelled as a TEP.

Figure 3 is plotted to demonstrate the validity of this de-
tection. This figure shows TEP detection on 2000 samples
of a swiss roll (18) . There are 50 LMPs {si}, i = 1, . . . , 50
randomly selected from those samples.

Each subplot shows samples in a sample subset Csi , i =
1, . . . , 50. The curve in a subplot indicates the distances
from the points in Csi to si, dM (·, si), in ascending order.
A red curve indicates that one or more points in its Csi is
reported as TEP(s). Note that, our TEP-detection does not
take geometric distance information. The sudden and sig-
nificant increase of the value of dM (·, si) coincides with the
positive result of the TEP-detection, which shows that our
criterion is effective to detect the empirical risk of breaking

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100
Geodesic Distance To the Site 1863

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

100
Geodesic Distance To the Site 906

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

90

100
Geodesic Distance To the Site 1481

0 10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

100
Geodesic Distance To the Site 966

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

90

100
Geodesic Distance To the Site 494

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

80

90

100
Geodesic Distance To the Site 1475

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100
Geodesic Distance To the Site 392

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100
Geodesic Distance To the Site 799

0 5 10 15 20 25 30 35 40 45
0

10

20

30

40

50

60

70

80

90

100
Geodesic Distance To the Site 4

0 2 4 6 8 10 12 14 16 18
0

10

20

30

40

50

60

70

80

90

100
Geodesic Distance To the Site 207

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100
Geodesic Distance To the Site 290

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100
Geodesic Distance To the Site 1996

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100
Geodesic Distance To the Site 1627

0 5 10 15 20 25 30 35 40 45
0

10

20

30

40

50

60

70

80

90

100
Geodesic Distance To the Site 1528

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

100
Geodesic Distance To the Site 2067

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

100
Geodesic Distance To the Site 1902

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

80

90

100
Geodesic Distance To the Site 496

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

90

100
Geodesic Distance To the Site 1228

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

100
Geodesic Distance To the Site 340

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

80

90

100
Geodesic Distance To the Site 1641

0 10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

100
Geodesic Distance To the Site 2052

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100
Geodesic Distance To the Site 770

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

90

100
Geodesic Distance To the Site 54

0 10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

100
Geodesic Distance To the Site 1782

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100
Geodesic Distance To the Site 1477

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100
Geodesic Distance To the Site 1507

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100
Geodesic Distance To the Site 1403

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

90

100
Geodesic Distance To the Site 1006

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

80

90

100
Geodesic Distance To the Site 1388

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

90

100
Geodesic Distance To the Site 234

0 2 4 6 8 10 12 14
0

10

20

30

40

50

60

70

80

90

100
Geodesic Distance To the Site 1843

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100
Geodesic Distance To the Site 1736

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

80

90

100
Geodesic Distance To the Site 181

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100
Geodesic Distance To the Site 452

0 2 4 6 8 10 12
0

10

20

30

40

50

60

70

80

90

100
Geodesic Distance To the Site 1428

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100
Geodesic Distance To the Site 1335

0 5 10 15 20 25 30 35 40 45
0

10

20

30

40

50

60

70

80

90

100
Geodesic Distance To the Site 1557

0 10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

100
Geodesic Distance To the Site 1447

0 10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

100
Geodesic Distance To the Site 121

0 5 10 15 20 25 30 35 40 45
0

10

20

30

40

50

60

70

80

90

100
Geodesic Distance To the Site 557

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100
Geodesic Distance To the Site 1781

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100
Geodesic Distance To the Site 795

0 5 10 15 20 25 30 35 40 45
0

10

20

30

40

50

60

70

80

90

100
Geodesic Distance To the Site 57

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

100
Geodesic Distance To the Site 993

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100
Geodesic Distance To the Site 979

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100
Geodesic Distance To the Site 1746

0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100
Geodesic Distance To the Site 1086

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

90

100
Geodesic Distance To the Site 1759

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

100
Geodesic Distance To the Site 813

1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

70

80

90

100
Geodesic Distance To the Site 1630

Figure 3. Geodesic distance from points in each cell to the site for a partition

manifold topology for a chosen set of LMPs.

3.3. Elimination of Topological Error Points

To eliminate the TEPs, we add new LMPs, because more
LMPs give a finer partition. A simple solution is to choose
a new LMP among those TEPs. Our solution is done in two
steps. In the first step, we cluster TEPs according to their
LE . The second step is to choose a point in the biggest
cluster as the new LMP by picking up the one that is closest
to the Euclidean center of the cluster.

If y1,y2, . . . ,yKi are detected to be TEPs, they have
the same nearest LMP, sY = LE(y1) = · · · = LE(yKi).
Therefore, we choose one point from y1, . . . ,yKi as the
new LMP. This splits the current CsY , and thus makes the
partition finer. The computation is as follows.

Firstly, the center of those points is found

ȳ =
1

Ki

Ki∑
j=1

yj (1)

Then the point yc that is nearest to ȳ is found as the new
LMP, such that,

dE(yc, ȳ) = min
j=1,...,Ki

dE(yj , ȳ) (2)

At last, the LMP set is updated,

Sk
L = {yc} ∪ Sk−1

L , k = 1, 2, . . . (3)

3.4. Proof of Convergence

The algorithm converges definitely. Because an LMP
can not be a TEP itself, there must be a trivial solution that

every point is an LMP. However, a more helpful LMP set
is generated when the algorithm terminated before this triv-
ial end. It is cumbersome to consider all possibilities of the
training set of the manifold M and the starting LMP set S0

L

for the algorithm. We present a loose proof below explain-
ing why the algorithm works in practice.

Let Sk
L be the current LMP set. Denote the maximum

radius of the cells in the corresponding Voronoi diagram as

D(Sk
L; M) = max

x∈M

dE(x, LE(x;Sk
L)) (4)

Because the manifold M is constant, we denote the equation
as D(Sk

L). Suppose there is a function that judges whether
connecting two points on a manifold is topologically safe,
i.e. connection between them does not cause short circuit
on M,

f(x1,x2; M) =
{

0 if (x1,x2) causes short circuit
1 if (x1,x2) is topologically safe

(5)

Let

dTS(M; f) = max
(x1,x2)∈ET S

dE(x1,x2) (6)

where dTS is the “topological safe” connection set,

ETS := {(x1,x2)|x1,x2 ∈ M, f(x1,x2; M) = 1} (7)

For a manifold M and an appropriately defined f , dTS is
a positive constant, which means the “longest topologically
safe” connection between an arbitrary pair of points on M.
In the k-th iteration, one adds a new LMP into Sk−1

L to form
Sk

L, thus S0
L ⊂ S1

L ⊂ According to the definition in
Eq(4), for Sk1

L ⊂ Sk2
L , we have D(Sk1

L) ≥ D(Sk2
L). There-

fore D(S0
L) ≥ D(S1

L) ≥ . . . , and when Sk
L approaches

−15

−10

−5

0

5

10

15 −15
−10

−5
0

5
10

15

0

20

40

60

TEPs and New LMP after Iteration 1

−15

−10

−5

0

5

10

15 −15
−10

−5
0

5
10

15

0

20

40

60

TEPs and New LMP after Iteration 2

−15

−10

−5

0

5

10

15 −15
−10

−5
0

5
10

15

0

20

40

60

TEPs and New LMP after Iteration 5

−10

−5

0

5

10

15 −15
−10

−5
0

5
10

15

0

20

40

60

TEPs and New LMP after Iteration 10

(a) (b) (c) (d)

−10

−5

0

5

10

15 −15
−10

−5
0

5
10

15

0

20

40

60

TEPs and New LMP after Iteration 15

−10

−5

0

5

10

15 −15
−10

−5
0

5
10

15

0

20

40

60

TEPs and New LMP after Iteration 20

−10

−5

0

5

10

15 −15
−10

−5
0

5
10

15

0

20

40

60

TEPs and New LMP after Iteration 22

0 5 10 15 20 25
0

20

40

60

80

100

120

140

Iteration Number

T
E

P
 N

um
be

r

TEPs v.s. Iterations

(e) (f) (g) (h)
Figure 4. Adding Landmark Points

TEPs are green dots; new LMP is a bigger orange dot. (a) - (g) TEPs and the new LMPs after each iteration. (h) number of
TEPs versus the iterations.

X, D(Sk
L) reaches 0. Thus when D(Sk

L) < dTS(M), the
algorithm exits with success. If we substitute a finite collec-
tion of samples of the manifold for M itself, the statements
above also hold. So our method works fine in practice.

3.5. Implementation and Complexity

In implementation, when a new LMP sNew is ac-
quired in the k-th iteration, the new set of LMP is Sk

L =
{sNew} ∪ Sk−1

L . It is needed to compute LE(x;Sk
L) and

Lj
M (x;Sk

L), j = 1, . . . , d + 1 for x ∈ X. They can be
updated from LE(x;Sk−1

L) and Lj
M (x;Sk−1

L) respectively.
To compute LE(x;Sk

L),
1: for x ∈ X do
2: if dE(x, sNew) < dE(x, LE(x,Sk−1

L)) then
3: LE(x,Sk

L)← sNew

4: else
5: LE(x,Sk

L)← LE(x,Sk−1
L)

6: end if
7: end for

This process has computational complexity of O(N), where
N is the number of the samples in X.

To compute Lj
M (x;Sk

L), j = 1, . . . , d + 1, let ∆k−1 =
maxj,x Lj

M (x;Sk−1
L)

1: Run Dijkstra algorithm to Compute dM (x, sNew)
2: for x ∈ X, visited by Dijkstra algorithm do
3: Update Lj

M (x)
4: if dM (x, sNew) > ∆k−1 then
5: Terminate Dijkstra algorithm
6: end if
7: end for
8: Update ∆k during the process

Computing dM (x, sNew) involves calculating the shortest
path to sNew. By Dijkstra algorithm with Fibonacci heap,

this takes O(nN log N) for X , where n is the neighbors
of a point on the neighborhood graph G. This is in prac-
tice O(nN− log N−), where N− is the number of samples
whose shortest path to sNew is calculated before the algo-
rithm terminates. For uniformly sampled data and random
Sk−1

L , N− is proportional to N/Nk−1
L , where Nk−1

L is the
number of LMPs in Sk−1

L .
The initialization of LE(x;S0

L) takes O(N0
LN), and that

of Lj
M (x;S0

L), j = 1, . . . , d + 1 takes O(nN0
LN log N).

4. Hierarchical Data Structuring and Retrieval

With LMPs chosen for a data set, the next problem con-
cerned is how to structure the data with them and to use the
structuring for applications such as retrieval.

4.1. Retrieval

The solution to retrieval sets the objective for the struc-
turing, and is straightforward. Given a test sample xt, firstly
we find the nearest landmark by searching for the least Eu-
clidean distance from the sample to the LMPs, LE(xt).
Then we search the subset of data with LE(xt). Note that
the geodesic distance measurement is not accessible in this
case, thus LM (xt) is not obtainable.

4.2. Structuring

The intuitive way to arrange the data with the LMPs is to
establish association between individual sample xi with its
nearest LMP LE(xi). The problem with this simple struc-
turing is that: If a test sample xt is near the “border area” as
described in Sec 3.2, it is possible that its neighborhood is
only partially in the subset of data associated and LE(xt).
In Figure 5(a), a cell illustrates the data subset with each
LMP. The two test samples xA and xB are labelled as “A”

(a) (b) (c)
Figure 5. Association between Manifold Samples and LMPs
(a) with only LE(x); (b) ideal association; (c) association used

Figure 6. Manifold Samples, Partitions (colour), and LMPs (big
dot)

and “B” in the figure. xA lies in the interior area of a sub-
set, and thus its neighborhood is fully retrievable. But for
the other sample xB , only some of its neighbor points can
be found.

A solution to this problem is to “expand” the subset as-
sociated with each LMP, such that, for a sample that is near
the border of the cell, it can find its neighbors as well. The
expansion is done according to the size of the neighbor-
hood that is possibly required. Figure 5(b) shows this so-
lution. With the extra associated data, the neighborhood of
xB can be found at the cost of slightly increased computa-
tional complexity. However, in the construction stage, it is
not easy to decide whether a sample should be associated to
an LMP such that the set of associated samples of the LMP
is properly expanded.

We use a simpler solution in our implementation. Each
sample x ∈ X is associated with its nearest LMPs on M,
L1

M (x), . . . , Lk
M (x), k = d + 1, where d is the dimen-

sion of M. Figure 5(c) displays the association of samples
and LMPs for this approach. With association expanded,
the searching overhead is higher, but the implementation is
straightforward.

5. Experiments

Data Set Average Iterations Max. Iterations
Swiss Roll 23.6 33
Swiss Hole 6.5 18

Helix 4.8 8
Faces 34.9 52

Table 1. Iteration Times on Data Sets

This section includes several experimental results to ver-
ify the proposed structuring algorithm. Three data sets of

Figure 7. Face Model Images
The first image in each group is the LMP.

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

Initial LMP Number

Ite
ra

tio
n

T
im

es
/F

in
al

 L
M

P
 N

um
be

r

Iteration Times
Total LMP Number

Figure 8. Iteration Times versus Initial Number of LMPs

3D point clouds and a set of synthetic face images are used
for our experiments. The point clouds are samples from
different manifolds embedded in the 3D Euclidean space.
Each of them contains 2000 samples. They are displayed in
Figure 6. The face images are from (11). Figure 7 shows
some of the samples organized in the way that an LMP is
displayed with its associated samples. The organization is
generated by the proposed algorithm.

The first experiment is to test the effectiveness of the pro-
posed algorithm. It is run on each data set for 100 times. At
each time it is given a randomly selected set of initial LMPs;
and the number of iterations is recorded. The number of ini-
tial LMPs is set to 50 for the manifolds of 3D space, and 20
for the face images. The maximum and the average num-
ber of iterations used during the 100 runnings for each data
set are listed in Table 1. It shows that the algorithm does
converge in practice with arbitrarily chosen initial LMPs.
The iteration number loosely reflects the complexity of the
manifold.

In the second experiment, the algorithm is tested under
different initial LMP sets with various sizes. It is con-
ducted on the Swiss Roll data set. The number of initial
LMPs n is from 4 to 100. For each size n, 10 different
initial sets of LMPs are chosen, denoted as Sn,i

L0
, where

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0

10

20

30

40

50

60

70

80

90

Neighbors Found in Cells

N
um

be
r

of
 S

am
pl

es

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
0

5

10

15

20

25

30

Neighbors Found in Cells

N
um

be
r

of
 S

am
pl

es

(a) swiss roll (b) swiss hole

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
0

5

10

15

20

25

30

35

40

Neighbors Found in Cells

N
um

be
r

of
 S

am
pl

es

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80
0

5

10

15

20

25

30

Neighbors Found in Cells

N
um

be
r

of
 S

am
pl

es

(c) helix (d) face images
Figure 9. Histograms of NR Array

n = 4, . . . , 100; i = 1, . . . , 10. The number of iterations
is recorded as NI(n, i). The average iteration number for
each n, N̄I(n) = 1/10

∑10
i=1 NI(n, i) is displayed in Fig-

ure 8, as well as the total number of the LMPs generated,
N̄I(n) + n (Note the total number of LMPs generated in
one individual running is NI(n, i) + n, for some i). It can
be observed that the more initial LMPs are provided, the
less iterations are needed. However, the total number of the
resulting LMPs increases, indicating finer partitions.

The following experiment consists of practical tests of
neighborhood retrieval by searching the nearest samples us-
ing the obtained structure on each data set. Let P(s) de-
note the training samples associated with LMP s (different
from Cs in structuring stage), and ηk(x;G) denote the k-th
nearest point to x in G ⊂ X (different from LE(·), which
refers to the nearest LMP), distance being measured in Eu-
clidean space. The test is to evaluate the empirical risk of
retrieval for a structuring of the data. At each time, x ∈ X
is taken as the test sample. ηk(x;X) and ηk(x;P(LE(x)))
are compared for k = 1, 2, . . . , until for some k they are
different. Then k is recorded as NR(x). Figure 9 shows
the histograms of {NR(x)|x ∈ X} for the data sets. The
configuration in this experiment is the same as our first one.

In fact, because the structure has topology-keeping na-
ture by construction, when η(x;X) �= η(x;P(LE(x))), the
neighbors retrieved with the structure are more reliable than
those directly from the original data set. An experiment is
done: For every x ∈ X, ηk(x;X) and ηk(x;P(LE(x)) are
found for some k. The geodesic distances are then com-
puted from x to both ηk(x, ·),

δX
k (x) = dM (x, ηk(x;X)) (8)

δ
P(LE(x))
k (x) = dM (x, ηk(x;P(LE(x)))) (9)

0 20 40 60 80 100
0

5

10

15

20

25

30

35
Retrival
Origin

12 14 16 18 20 22
3

4

5

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16
Retrival
Origin

12 14 16 18 20 22
1.5

2

2.5

3

(a) Swiss Roll (b) Swiss Hole

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5
Retrival
Origin

12 14 16 18 20 22
0.1

0.2

0.3

0.4

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

45
Retrival
Origin

10 15 20 25
10

15

20

25

(c) Helix (d) Face
Figure 10. Geodesic Distances to Retrieved Neighbors

Then the averages are computed,

δ̄X
k =

1
N

N∑
i=1

δX
k (xi) (10)

δ̄P
k =

1
N

N∑
i=1

δ
P(LE(xi))
k (xi) (11)

They are compared in Figure 10 for k = 1, . . . , 100 for each
data set. Note that, if η

P(LE(x))
k is not defined for some

x, (when P(LE(x)) contains less than k elements), it is
simply removed from the average in Eq(11).

The algorithm is also tested on practical data. We take
images from YaleB face database (8), collapse them into
image vectors, and construct a hierarchical structure using
our algorithm. The resulting figure is shown in Figure 11.
In that figure, (a) is drawn in a way that: the first image IS is
an LMP; the others are samples in CIS . (b) shows the same
LMP, with all samples associated to it. Note that some of
the associated samples are far from the LMP by Euclidean
distance, however, they share similar pose and illumination
configurations, which are the major variant factors in the
database. While (c) displays the parameter space of the data
set, with LMPs drawn in dark blue and samples in (b) drawn
in green.

An experiment of multilayer structuring is demonstrated
in Figure 12. The algorithm takes a large data set of 50000
points sampled from the Swiss Roll. Two layers of LMPs
are generated. First the algorithm yields 1102 LMPs for
the original data set, being given 1000 randomly selected
initial LMPs(Figure 12(a)). Taking the 1102 layer-1 LMPs
as input, the algorithm generates 55 layer-2 LMPs for 50
layer-1 LMPs randomly selected as initial layer-2 LMPs.
Figure 12(b) shows the LMPs, in which the bigger dots are
layer-2 LMPs.

(a)

(b)

(c)
Figure 11. Structuring of YaleB Face Database

(a) LMP with samples in a Voronoi cell; (b) LMP with associated
samples; (c) parameter space

(a) (b) (c)
Figure 12. Hierarchical partition of 50000 points from swiss roll

(a) Data with 1102 layer-1 LMPs; (b) Layer-1 LMPs with 55

layer-2 LMPs; (c) Layer-2 LMPs

6. Conclusion

In this work, an algorithm to construct hierarchical rep-
resentation of samples on manifold is proposed. It focuses
on enabling searching for neighbors on manifold, which is
a critical and time-consuming step in the current out-of-
sample extensions of manifold learning algorithms. The
generated LMPs can help locate a new nearby test sample
on the manifold , so that its closest neighbors can be found.
We have also proved that our algorithm terminates by pro-
ducing a proper set of LMPs for a reasonably sampled data
set on manifold. However, although every known sample
is tested to guarantee that it can be located correctly with
the LMPs, there still may be small unknown portions of the

manifold, on which samples may be mis-located. In future
work, the test will be strengthened such that samples from
everywhere on manifold as well as the vicinity of the mani-
fold can be located correctly using the generated LMPs.

References
[1] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimen-

sionality reduction and data representation. Neural Compu-
tation, 2003.

[2] Y. Bengio, J.-F. Paiement, P. Vincent, O. Delalleau, N. L.
Roux, and M. Ouimet. Out-of-sample extensions for lle,
isomap, mds, eigenmaps, and spectral clustering. In NIPS,
2004.

[3] H. Chang, D.-Y. Yeung, and Y. Xiong. Super-resolution
through neighbor embedding. In CVPR, 2004.

[4] V. de Silva and J. B. Tenenbaum. Global versus local meth-
ods in nonlinear dimensionality reduction. In NIPS, 2002.

[5] V. de Silva and J. B. Tenenbaum. Sparse multidimensional
scaling using landmark points. Technical report, Stanford
Mathematics, 2004.

[6] D. L. Donoho and C. Grimes. Hessian eigenmaps: new lo-
cally linear embedding techniques for highdimensional data.
In PNAS, 2003.

[7] D. L. Donoho and C. Grimes. Image manifolds which are
isometric to euclidean space. J. Math. Imaging Vis., 2005.

[8] A. Georghiades, P. Belhumeur, and D. Kriegman. From few
to many: Illumination cone models for face recognition un-
der variable lighting and pose. IEEE Trans. Pattern Anal.
Mach. Intelligence, 23(6):643–660, 2001.

[9] X. He, S. Yan, Y. Hu, and P. Niyogi. Face recognition using
laplacianfaces. IEEE Trans. PAMI., 2005.

[10] X. Huo and A. K. Smith. Performance analysis of a manifold
learning. algorithm in dimension reduction. Technical report,
Statistics Group, Georgia Institute of Technology, 2006.

[11] Synthetic face database. http://isomap.stanford.edu/.
[12] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a

review. ACM Comput. Surv., 31(3):264–323, 1999.
[13] Ketpreechasawat. Hierarchical landmark charting. Master’s

thesis, Brown University, 2006.
[14] T. Lin, H. Zha, and S. U. Lee. Riemannian manifold learning

for nonlinear dimensionality reduction. In Proceedings of
ECCV, 2006.

[15] J. Platt. Fastmap, metricmap, and landmark MDS are all
nystrom algorithms. In Proceedings of 10th International
Workshop on Artificial Intelligence and Statistics, 2005.

[16] S. Roweis and L. Saul. Nonlinear dimensionality reduction
by locally linear embedding. Science, 2000.

[17] L. K. Saul and S. T. Roweis. Think globally, fit locally: un-
supervised learning of low dimensional manifolds. J. Mach.
Learn. Res., 2003.

[18] J. B. Tenebaum, V. de Silva, and J. C. Langford. A global ge-
ometric framework for nonlinear dimensionality reduction.
Science, 2000.

[19] P. van Oosterom. Spatial Access Methods, volume 1, chap-
ter 2, pages 385–400. Wiley, 1999.

[20] M.-C. Yeh, I.-H. Lee, G. Wu, Y. Wu, and E. Chang. Manifold
learning, a promised land or work in progress? In Proc. of
IEEE Conf. on Multimedia and Expo, 2005.

[21] C. Zhang, J. Wang, N. Zhao, and D. Zhang. Reconstruction
and analysis of multi-pose face images based on nonlinear
dimensionality reduction. Pattern Recognition, 2004.

[22] J. Zhang, H. Shen, and Z.-H. Zhou. Unified locally linear
embedding and linear discriminant analysis algorithm (ul-
lelda) for face recognition. In SINOBIOMETRICS, 2004.

[23] Z. Zhang and H. Zha. Principal manifolds and nonlinear di-
mension reduction via local tangent space alignment. SIAM
J. Scientific Computing, 2005.

