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Abstract

The success of tensor-based subspace learning depends
heavily on reducing correlations along the column vectors
of the mode-k flattened matrix. In this work, we study the
problem of rearranging elements within a tensor in order
to maximize these correlations, so that information redun-
dancy in tensor data can be more extensively removed by
existing tensor-based dimensionality reduction algorithms.
An efficient iterative algorithm is proposed to tackle this es-
sentially integer optimization problem. In each step, the ten-
sor structure is refined with a spatially-constrained Earth
Mover’s Distance procedure that incrementally rearranges
tensors to become more similar to their low rank approxi-
mations, which have high correlation among features along
certain tensor dimensions. Monotonic convergence of the
algorithm is proven using an auxiliary function analogous
to that used for proving convergence of the Expectation-
Maximization algorithm. In addition, we present an exten-
sion of the algorithm for conducting supervised subspace
learning with tensor data. Experiments in both unsuper-
vised and supervised subspace learning demonstrate the ef-
fectiveness of our proposed algorithms in improving data
compression performance and classification accuracy.

1. Introduction

Image data naturally contains a significant amount of in-
formation redundancy, as evidenced by spatial coherence
and structural commonalities found within images and im-
age sets. For processing and analysis of images, it is often
advantageous to pare away these redundancies so that the
intrinsic features of the data are revealed. This is the goal
of dimensionality reduction techniques, which aim to de-
crease the size of a feature space by removing correlations
among the features. Dimensionality reduction has proven to
be useful for unsupervised learning tasks such as data com-
pression, and facilitates supervised learning by identifying
fewer but more effective features.

Frequently-used dimensionality reduction techniques

such as Principal Components Analysis (PCA) [12], Lin-
ear Discriminant Analysis (LDA) [1] and Tensorfaces [13]
commonly unfold each image into a single column vector.
While correlations among different pixels can be reduced in
these vector-based techniques, lengthy column vectors typi-
cally result in the curse of dimensionality, and classification
performance may be degraded because of the small-sample-
size problem.

Recently, a large number of works (e.g., [2] [14] [15]
[17] [18]) have sought to process image data in their orig-
inal form, i.e., images as matrices instead of as vectors.
By aiming to reduce correlations only within image rows
and columns, rather than among all pixels in an image, the
curse of dimensionality is avoided and the small-sample-
size problem becomes greatly diminished. For image data
represented in matrix form [17] [18], appreciably higher
recognition performance has been experimentally reported,
especially in cases with small training sets. Similar im-
provements have also been found for the more general case
of tensor data, where correlations are removed along col-
umn vectors of mode-k flattened matrices [14] [15]. We will
henceforth consider matrix data as a special case of tensors.

Correlations within tensor image data, however, are not
limited to the elements along certain tensor dimensions.
Work on natural image statistics indicate that such corre-
lations are frequently present among different regions both
spatially within an image and temporally through an im-
age sequence [11]. For enhancement of subspace learning,
a natural question that arises is whether these non-column
correlations can be reduced while preserving the perfor-
mance benefits of processing image data in its original ten-
sor form.

In this paper, we propose to address this problem by re-
arranging the elements within tensors to increase the cor-
relations among features along certain tensor dimensions,
which we will refer to as intra-tensor correlations. An
illustration of element rearrangement is shown in Fig. 1.
By aligning elements in a way that increases correlations
along the three dimensions of a 3rd order tensor, greater
reductions in dimensionality can be achieved with existing
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Figure 1. An illustration of element rearrangement for a 3rd order
tensor.

tensor-based methods.

We show in Section 2 that rearranging tensor elements
to maximize intra-tensor correlations is essentially an in-
teger optimization problem with a nonlinear objective func-
tion. Since this problem is NP-hard, we present in this work
an approximate iterative solution. As described in Section
3, we first employ the Concurrent Subspace Analysis [14]
technique to compute projection matrices from the train-
ing data tensors, then the elements in these tensors are re-
arranged to become more similar to the reconstructions of
the training tensors by the projection matrices. This proce-
dure is then iterated using the rearranged tensors. Recon-
structed tensors are used to guide the rearrangement pro-
cess because they are similar to the training data tensors
and have high correlation among features along certain ten-
sor dimensions. For greater computational feasibility, the
displacement of elements within a tensor is constrained in
each iteration to a limited distance. Element rearrangement
is formulated as a spatially-constrained Earth Mover’s Dis-
tance [9] problem, where the flows from the elements of the
original tensor to those of the target tensor naturally con-
stitute a pure network flow model [5]. An integer solution
can then be reached by general linear programming. In Sec-
tion 4, we prove that this iterative algorithm monotonically
converges via an auxiliary function analogous to that used
for proving convergence of the Expectation-Maximization
algorithm [4].

We demonstrate in Section 5 the utility of tensor element
rearrangement for data compression and supervised sub-
space learning. Since rearrangement is employed in both
applications as a preprocessing step to increase intra-tensor
correlations, it can be used in conjunction with any tensor-
based dimensionality reduction technique. For supervised
subspace learning, we extend the proposed algorithm using
LDA as an example. In this extension, the weighted and
centered class means are used as training samples in LDA,
and the element rearrangement algorithm is then performed
on these new tensors. With this approach, the most discrim-
inant information becomes encoded in the first few dimen-
sions of the derived subspace.

2. Problem Formulation

In this section, we first briefly review Concurrent Sub-
space Analysis (CSA) and then introduce our formulation
of the tensor element rearrangement problem for maximiz-
ing intra-tensor correlation. We express the training sam-
ple set in tensor form as {Xi ∈ R

m1×m2×...×mn , i =
1, 2, . . . , N}, where n is the order of the tensor, mk is the
tensor size along dimension k and N is the number of sam-
ples. Before describing the criteria for guiding the element
rearrangement of a tensor, we review two tensor operators.
The norm of a tensor X is defined as

‖X‖ =

√√√√
m1∑

i1=1

m2∑
i2=1

· · ·
mn∑

in=1

X2
i1,i2,··· ,in

. (1)

The mode-k product of a tensor A and a matrix
U ∈ R

m′
k×mk is defined as B = A ×k U , where

Bi1,...,ik−1,i,ik+1,...,in
=

∑mk

j=1 Ai1,...,ik−1,j,ik+1,...,in
×

Uij , i = 1, . . . ,m′
k.

Concurrent Subspace Analysis targets an optimal recon-
struction for objects represented as high order tensors. We
express its projection matrices as Uk ∈ R

mk×m′
k , k =

1, . . . , n, and denote the reconstructed tensor as XREC
i ∈

R
m1×m2×...×mn , which can be computed as XREC

i =
Xi×kUkUkT |nk=1, where ×kUkUkT |nk=1 = ×1U

1U1T×2

U2U2T · · ·×n UnUnT . The projection matrices Uk|nk=1 =
U1, U2, · · · , Un can be solved using the following objec-
tive function:

N∑
i=1

‖Xi−Xi ×k UkUkT |nk=1‖2. (2)

There is no closed form solution for Uk|nk=1, so in CSA a
variant of High-Order SVD (HOSVD) [6] is proposed to it-
eratively optimize Uk while fixing the other projection ma-
trices U1, . . . , Uk−1, Uk+1, . . . , Un. Further details can be
found in [14].

In this work, we utilize CSA in formulating the
problem of element rearrangement. For ease of un-
derstanding, we denote the position of a tensor ele-
ment as (ip1, i

p
2, · · · , ipn) and its global index as p, where

p = 1+
∑n

l=1(i
p
l −1)

∏n
o=l+1 mo. Similarly, the po-

sition (iq1, i
q
2, · · · , iqn) corresponds to the global index

q. We define the rearrangement operator as R ∈
{0, 1}(m1×m2×···×mn)×(m1×m2×···×mn), and (Xi(R))q =
(Xi)p if Rpq = 1. For operator R, we have the properties∑

p Rpq = 1 and
∑

q Rpq = 1, meaning that the elements
in tensors Xi and Xi(R) have a one-to-one correspondence.
In element rearrangement, we wish to minimize the objec-
tive function F (Uk|nk=1, R) expressed as

N∑
i=1

‖Xi(R)−Xi(R) ×k UkUkT |nk=1‖2. (3)



Algorithm 1 : Sub-procedure for tensor matching.

arg min
Rpq

∑
p

∑
q∈Nγ

p
cpqRpq, s.t.

1: 0 ≤ Rpq ≤ 1;
2:

∑
p;q∈Nγ

p
Rpq = 1, ∀q;

3:
∑

q;p∈Nγ
q

Rpq = 1, ∀p;

Essentially, this function seeks rearranged tensors that can
be best approximated by their reconstructed low rank ten-
sors, which have high correlation among features along cer-
tain tensor dimensions.

This objective function presents a complicated integer
optimization problem with nonlinear objective functions.
Since this problem is NP -hard, we present in the follow-
ing section an approximate solution to iteratively compute
the projection matrices Uk|nk=1 and the rearrangement oper-
ator R. Note that when R is fixed, Uk|nk=1 can be computed
with CSA. In the following sections, we therefore focus on
how to compute the rearrangement operator R.

3. Approximate Iterative Solution

Given the projection matrices Uk|nk=1, minimization of
F (Uk|nk=1, R) with respect to element rearrangement op-
erator R is an integer optimization problem. For the t-th
iteration step, let {Xt

i, i = 1, 2, · · · , N} be the tensor data
rearranged from Xt−1

i . CSA can be applied on Xt
i to com-

pute the projection matrices Uk,t, k = 1, 2, · · · , n, then the
reconstructed tensor at the t-th iteration can be computed as

Xt
i
REC = Xt

i ×1 U1,t(U1,t)T · · · ×n Un,t(Un,t)T . (4)

To facilitate optimization, we impose a constraint that at
each iteration each element p of a tensor can be moved only
within its neighboring area Nγ

p , bounded by a distance of
γ = 2

√
2 pixels in this work. Therefore, Rpq = 0 if q �∈

Nγ
p . In each step, we fix the term Xi(R) ×k UkUkT |nk=1

in Eq. (3) to be Xt
i
REC , the rationale of which will be ex-

plained in Section 4. Then, the objective function in Eq. (3)
can be rewritten as

F (R)=
N∑

i=1

‖Xt
i(R)−Xt

i
REC‖2. (5)

Let us define

cpq =
N∑

i=1

‖(Xt
i)ip

1 ,··· ,ip
n
−(Xt

i
REC)iq

1,··· ,iq
n
‖2. (6)

Since Rpq ∈ {0, 1}, the objective function can then be ex-
pressed as

F (R) =
∑

p

∑
q∈Nγ

p

cpqRpq. (7)

Algorithm 2 : Full algorithm for tensor rearrangement.

Given the sample tensors {X1,X2, · · · ,XN}, and the di-
mensions (m′

1,m
′
2, · · · ,m′

n).
1: Initialize X1

i = Xi;
2: For t = 1, 2, . . .

a: Compute Uk,t, k = 1, 2, · · · , n, using CSA [14]
based on the tensor data Xt

i, i = 1, 2, · · · , N . If
t > 1, Uk,t is initialized as Uk,t−1 in CSA.

b: Compute the rearrangement operator R by solving
the linear programming problem in Algorithm 1.

c: Update the tensor Xt
i to Xt+1

i according to R.
d: If Rpq = 0 for all p �= q, then exit.

3: Output the rearranged data {Xt
i, i = 1, · · · , N}.

The correspondence between the elements of the original
tensor and the rearranged tensor must be one-to-one, which
imposes the following constraints:

∑
p;q∈Nγ

p

Rpq = 1, ∀q,
∑

q;p∈Nγ
q

Rpq = 1, ∀p. (8)

The problem is then simplified into an integer optimiza-
tion problem with a linear objective function and linear
constraints. If we relax the integer constraints for the el-
ements Rpq, then the problem becomes a special spatially-
constrained Earth Mover’s Distance [9] problem as outlined
in Algorithm 1.

The linear programming problem described in Algo-
rithm 1 will have an integer solution, as guaranteed by the
following theorem.

Theorem-1 [5][7]: An integer programming problem

min
R

∑
p,q cpqRpq, s.t.∑

q Rpq = 1, ∀p, and
∑

p Rpq = 1, ∀q,
(9)

can be solved as a linear programming problem with the
constraints 0 ≤ Rpq ≤ 1, ∀p, q.

The equivalence of integer programming and linear pro-
gramming arises from the unimodular coefficient matrix of
the integer programming problem in Eq. (9), and is based on
the assumption that linear programming is solved with the
simplex method, which is computationally efficient. Further
details on this theorem can be found in [7]. It is straightfor-
ward to prove that our proposed spatially-constrained pro-
cedure in Algorithm 1 is equal to Eq. (9) with cp,q = +∞
for q �∈ Nγ

p . Hence the linear programming solution for the
procedure in Algorithm 1 is also an integer solution, mean-
ing that for any given p (or q), there exists only one Rpq that
is one for all q (or p). Consequently, the element rearrange-
ment operator Rpq constructs a one-to-one correspondence
between the original and target tensors.



Based on the derived solution R, we rearrange the ten-
sor data and update the training samples to obtain Xt+1

i .
Then, CSA and the proposed procedure are repeated until
convergence, which occurs when R contains no more ele-
ment movement, i.e., Rpq = 0 if p �= q. The overall solution
method is outlined in Algorithm 2.

Complexity Analysis. Each step iterates between CSA
and linear programming for tensor element rearrangement.
For a 2nd order tensor of size 64 × 64 and γ = 2

√
2,

there exist about 4096 × 25 = 102400 parameters1 and
4096 × 2 = 8192 constraints. The constraint matrix is very
sparse since each Rpq appears in it only three times. The
linear program can hence be rapidly processed. In our ex-
periments on a 2.8G CPU with 1.0G memory, the training
time for each iteration is about 30 seconds with unoptimized
Matlab code, and algorithm convergence is reached in about
twenty iterations.

Discussion. In Algorithm 1, the spatial constraints re-
strict tensor element movement in each iteration to within
a limited neighborhood. This bound was placed mainly to
ensure the computational feasibility of the linear program-
ming problem. Without these constraints, the number of
parameters would balloon to 40962 for a 2nd order tensor
of size 64 × 64, which is computationally prohibitive both
in complexity and memory requirements. Although move-
ment is constrained within a neighborhood in each iteration,
movement between distant pixels is possible after several it-
erations.

4. Justifications and Extensions

4.1. Theoretical Justifications

To prove the convergence of Algorithm 2, we will make
use of an auxiliary function similar to that used in the
Expectation-Maximization algorithm [4]. Let

F (Xi|Ni=1) =
∑N

i=1 ‖Xi−Xi ×k UkUkT |nk=1‖2,

G(Xi|Ni=1,X
′
i|Ni=1) =

∑N
i=1 ‖Xi−X′

i ×k U ′kU ′kT |nk=1‖2,

where Uk|nk=1 are computed from Xi|Ni=1 by minimizing∑N
i=1 ‖Xi−Xi×k UkUkT |nk=1‖2 with the CSA algorithm;

and similarly, U ′k|nk=1 are computed from X′
i|Ni=1 by min-

imizing
∑N

i=1 ‖X′
i−X′

i ×k U ′kU ′kT |nk=1‖2 with CSA.

Definition: The function G(Xi|Ni=1,X
′
i|Ni=1) is an auxil-

iary function for F (Xi|Ni=1) if the following two conditions
are satisfied: 1) F (Xi|Ni=1) ≤ G(Xi|Ni=1,X

′
i|Ni=1), and 2)

G(Xi|Ni=1,Xi|Ni=1) = F (Xi|Ni=1).
Theorem-2: The function G(Xi|Ni=1,X

′
i|Ni=1) defined

above is an auxiliary function for F (Xi|Ni=1).

1The actual number of parameters is 98596 because some neighboring
pixels do not exist for border pixels.

Proof. It is obvious that the second condition for an auxil-
iary function is satisfied. Here, we prove that the first con-
dition also holds. For fixed Xi|Ni=1, we denote

Q(Z̃i|Ni=1, Ũ
k|nk=1) =

∑N
i=1 ‖Xi−Z̃i ×k Ũk|nk=1‖2,

where Z̃i ∈ Rm′
1×···m′

n and Ũk ∈ Rmk×m′
k . For given

Ũk|nk=1, the optimum is given by Z̃i = Xi ×k Ũk
T |nk=1, so

we have

F (Xi|Ni=1) ≤ Q((Xi ×k U ′k|nk=1)|Ni=1, U
′k|nk=1) ≤

Q((X′
i ×k U ′k|nk=1)|Ni=1, U

′k|nk=1) = G(Xi|Ni=1,X
′
i|Ni=1).

G(Xi|Ni=1,X
′
i|Ni=1) is therefore an auxiliary function for

F (Xi|Ni=1). �
Notice that the first inequality is satisfied with the as-

sumption that the CSA computation of projection matrices
from tensors Xi|Ni=1 is initialized as U ′k|nk=1, and Algo-
rithm 2 follows this rule if the auxiliary function takes the
parameters as the rearranged tensors from two successive
steps.
Theorem-3: From Algorithm 1 and 2, the objective func-
tion F (Xt

i|Ni=1) will monotonically decrease until conver-
gence.

Proof. From Theorem-2, we have G(Xt+1
i |Ni=1,X

t+1
i |Ni=1)

≤ G(Xt+1
i |Ni=1,X

t
i|Ni=1). As seen from Algorithm 1,

G(Xt+1
i |Ni=1,X

t
i|Ni=1) ≤ G(Xt

i|Ni=1,X
t
i|Ni=1). Conse-

quently, we can conclude that 0 ≤ F (Xt+1
i |Ni=1) ≤

F (Xt
i|Ni=1), and the objective function F (Xt

i|Ni=1) will
monotonically decrease until convergence. �

4.2. Extension for Supervised Subspace
Learning

The purpose of the tensor rearrangement algorithm is to
enhance intra-tensor correlations, which is useful for ten-
sor data compression. Another important task of subspace
learning is to derive low dimensional representations with
strong discriminative power for different data classes. In
this subsection, we examine how element rearrangement
can enhance the discriminating power of tensor-based sub-
spaces.

For the task of classification, the class labels of train-
ing samples Xi are denoted by ci ∈ {1, 2, · · · , Nc}, where
Nc is the total number of classes, and nc is the number of
samples in the c-th class. Here, we discuss the popular su-
pervised subspace learning algorithm, Linear Discriminant
Analysis (LDA).

LDA can be extended to handle tensor data, as discussed
in [3, 15, 18]. In the following, we take LDA as an exam-
ple to show how to enhance discriminative ability by tensor
element rearrangement.

LDA seeks a lower dimensional representation that min-
imizes intra-class scatter and at the same time maximizes



inter-class scatter. Let the vector representation of the train-
ing data be denoted by {x1, x2, · · · , xN}. The vector and
tensor based LDA formulations can then be respectively ex-
pressed as

max
U

∑Nc

c=1 nc‖UT (xc − x)‖2

∑N
i=1 ‖UT (xi − xci

)‖2
, (10)

max
Uk|nk=1

∑Nc

c=1 nc‖(Xc − X) ×k UkT |nk=1‖2

∑N
i=1 ‖(Xi − Xci

) ×k UkT |nk=1‖2
, (11)

where Xc and xc represent the mean of the c-th class, while
X and x are the means of all samples in tensor and vector
forms respectively.

We develop a two-step procedure for improving algo-
rithmic classification capability by element rearrangement.
First, we compute the null space of the denominator of
Eq. (10), which we represent as PN , and then we recon-
struct each data sample using PN as

yi = PNPT
Nxi. (12)

We denote the corresponding tensor representation of the
reconstructed data as {Yi, i = 1, 2, · · · , N}. For the re-
constructed data, the intra-class scatter is zero, hence the
optimization of Eq. (11) is simplified to

maxUk|nk=1

∑Nc

c=1 nc‖(Yc − Y) ×k UkT |nk=1‖2,

which is equivalent to minimizing

∑Nc

c=1 nc‖(Yc − Y) − (Yc − Y) ×k UkUkT |nk=1‖2.

This objective function is the same as Eq. (3) except that
the samples are the weighted and centered class means
{√nc(Yc−Y), c = 1, 2, · · · , Nc}. Algorithm 2 can hence
be used here to minimize the objective function by tensor
element rearrangement.

After the pixel rearrangement process, tensor-based
LDA is then conducted on the rearranged training data to
learn the projection matrices Uk|nk=1. The data is projected
to a lower dimension by the derived projection matrices, and
then classified with a proper classifier. In this work, we use
the Nearest Neighbor classifier for simplicity.

5. Experiments

We present a set of experiments to verify the effective-
ness of the tensor element rearrangement algorithms for
both unsupervised and supervised tasks. We focus on image
input, namely 2nd order tensors. For performance analysis
on face image compression, we take as examples the two
unsupervised learning algorithms Generalized Low Rank
Approximations of Matrices (GLRAM) [17], which is a
special case of Concurrent Subspace Analysis (CSA) for

2nd order tensor input, and 2DPCA [16], which is a special
case of GLRAM that computes only one projection matrix.
For supervised learning, we take 2DLDA [18], which is the
2nd order tensor-based version of LDA, as an example to
examine performance on face recognition. When element
rearrangement is included with these algorithms, they are
labeled as 2DPCA-ER, GLRAM-ER, and 2DLDA-ER.

We use the CMU PIE [10] and FERET [8] databases for
experiments. For the CMU PIE database, we choose five
near frontal poses (C27, C05, C29, C09 and C07) and il-
lumination indexed as 08, 11, 10 and 13. Due to incom-
pleteness of data, only 63 persons are used in this work,
with each person having 20 images. We also test our al-
gorithm on a subset of the FERET database. This subset
includes 1,400 images of 200 individuals (each with seven
images labeled as ba, bc, bd, be, bf , bg, and bh). All the
gray-level images are aligned by fixing the locations of the
two eyes, normalizing in size to a resolution of 64×64 pix-
els, and preprocessing with histogram equilibrium. We also
normalize the grayscale values by dividing by 255 and then
subtracting 0.5. Typical examples before grayscale value
normalization are given in the first row of Figs. 5 and 6.

5.1. Data Compression

For greater clarity, we set the reduced dimension m′
1

to d for 2DPCA and 2DPCA-ER. Also, for GLRAM and
GLRAM-ER we assume that the height and the width af-
ter dimensionality reduction are the same, such that m′

1 =
m′

2 = d. We first take 2DPCA-ER and GLRAM-ER as
examples to illustrate algorithmic convergence. In Fig. 2,
we plot the Root Mean Squared Error (RMSE), defined as√∑N

i=1 ‖Xt
i − Xt

i
REC‖2/N , for different numbers of it-

erations and d = 5. Convergence to a local minimum is
evident for both algorithms.

In Fig. 3, we plot the element-rearranged original image
data computed with GLRAM-ER on the CMU PIE database
for different values of d. From the results, we can see that
smaller values of d lead to greater correlation among the
elements of each row/column vector. This is observed be-
cause most of the image information has been concentrated
into the first d principal components along the row/column
dimensions.

To examine data compression performance, we use in
Fig. 4 the FERET and CMU PIE databases to compare
the RMSEs of 2DPCA-ER to 2DPCA, and GLRAM-ER to
GLRAM for different values of d. The proposed element re-
arrangement algorithm is shown to efficiently remove more
redundancy, especially when d is small. When d is suffi-
ciently large, the RMSEs from GLRAM-ER and 2DPCA-
ER are very close to those of GLRAM and 2DPCA, since
in these cases the RMSE without tensor element rearrange-
ment is already very low.



Figure 3. Comparison of fourteen element-rearranged images from the CMU PIE database based on the GLRAM-ER algorithm. The top
row displays the original images. The subsequent rows show the rearranged images for d = 2, 3, 4, and 5, respectively.

0 10 20 30 40 50
7.5

8

8.5

Iteration Number

R
M

S
E

0 10 20 30
9.6

9.7

9.8

9.9

10

Iteration Number

R
M

S
E

0 10 20 30 40
7

7.5

8

8.5

9

Iteration Number

R
M

S
E

0 10 20 30
10

10.1

10.2

10.3

10.4

Iteration Number

R
M

S
E

2DPCA-ER GLRAM-ER
Figure 2. Algorithm convergence with element rearrangement.
Root Mean Squared Error (RMSE) vs. number of iterations on the
CMU PIE (top) and FERET (bottom) databases.

Figs. 5 and 6 show the original images (first row), the
reconstructed images from 2DPCA (second row), 2DPCA-
ER (third row), GLRAM (fourth row), and GLRAM-ER
(fifth row) on the FERET and CMU PIE databases (with
d = 5). The results clearly show the reconstructed images
from GLRAM-ER and 2DPCA-ER to be better than the im-
ages from GLRAM and 2DPCA in terms of visual quality
and similarity to the original images.

Finally, we compare the RMSEs of PCA, 2DPCA,
2DPCA-ER, GLRAM and GLRAM-ER at various com-
pression ratios (CR). CR is defined as Nm1m2/s with s
as the number of scales required to represent the data. Ac-
cording to the work on GLRAM [17], for a given lower di-
mension d, we have s = d(N + m1 ∗ m2) for PCA, s =
d(N ∗m2+m1) for 2DPCA, and s = (N ∗d+m1+m2)∗d
for GLRAM. For 2DPCA-ER and GLRAM-ER, the addi-
tional space sad for storing the element rearrangement in-
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Figure 4. Root Mean Squared Error (RMSE) for different values
of d on the CMU PIE (top) and FERET (bottom) databases.

dex matrix must also be considered.
In our implementation, we employ a simple technique

for compression of the index matrix, but more a sophis-
ticated method could be used in its place. For a single
64*64 image, index values range from 1 to 4096, requir-
ing 12 bits for encoding. We observe that for most tensor
elements (more than 80% when d is small), the change in in-
dex from element rearrangement is relatively small, within
28 index values. Based on this observation, we use a 2-
bit header to indicate four possible cases: 00 means that
the element does not change in position, 01 means that the
global index changes within 28 index values, 10 indicates
the offset sign for the 01 case, and 11 means that the global
index change is beyond 28. For case 01 the global index
differences are encoded in eight bits, and for case 11 the
full twelve bits are used to directly encode the new index
after element rearrangement. Considering that 32 bits are
needed to store the floating-point reconstruction error, we



Figure 6. Comparison of fourteen reconstructed images from the CMU PIE database. The top row displays the original images. The
subsequent rows show reconstructed results from 2DPCA, 2DPCA-ER, GLRAM, and GLRAM-ER, respectively.

Figure 5. Comparison of seven reconstructed images from the
FERET database. The top row displays the original images.
The subsequent rows show reconstructed results from 2DPCA,
2DPCA-ER, GLRAM, and GLRAM-ER, respectively.

set sad = (f1 ∗ 8+ f2 ∗ 12+2) ∗ 4096/32, where f1 and f2

are the percentages of pixels in case 01 and 11, respectively.

Fig. 7 plots the RMSE for different compression ratios.
These results indicate better performance of GLRAM-ER
than GLRAM, and also of 2DPCA-ER in comparison to
2DPCA. The performance of 2DPCA is the worst, likely be-
cause 2DPCA only removes redundancies among different
rows, and does not remove redundancies among columns or
along the person dimension [14] [17]. As observed in [17],
GLRAM is not always better than the original PCA, possi-
bly because GLRAM does not remove redundancies along
the person dimension. As also noted in [16][17] , it is pos-
sible to apply PCA as a second-stage dimensionality reduc-
tion to remove more redundancy for 2DPCA, 2DPCA-ER,
GLRAM and GLRAM-ER.
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Figure 7. The Root Mean Squared Errors (RMSE) of different al-
gorithms for different compression ratios on the FERET database
(left) and the CMU PIE database (right).

5.2. Classification

To examine the effects of element rearrangement on
classification performance, we compare 2DLDA-ER with
2DLDA on the CMU PIE and FERET databases. We also
report the results from PCA, and LDA, and LDA is referred
as 1DLDA here. For the CMU PIE database, four images
per person are randomly chosen for training and the remain-
ing sixteen images are used for testing. For the FERET
database, the three images ba, bc and bh are used for train-
ing, and the other four images bd, be, bf and bg are used for
testing.

A comparison of recognition rates is listed in Table 1,
and recognition rates with respect to numbers of dimen-
sions are plotted in Fig. 8. From these results, several
observations can be made: 1) The tensor-based algorithm
2DLDA is usually better than 1DLDA for multi-view face
recognition, which is consistent with findings in [15]; and
2) 2DLDA-ER demonstrates higher accuracy than 2DLDA,
which supports the use of element rearrangement.



Figure 8. Top-one recognition accuracy on the CMU PIE database
for LDA related algorithms.

Algorithm FERET CMU PIE

PCA [12] 45.1 43.3
1DLDA [1] 91.8 76.2

2DLDA [18] 94.8 81.9
2DLDA-ER 95.6 83.7

Table 1. The top-one recognition rates (%) on the CMU PIE and
FERET databases

6. Conclusion

In this paper, we have studied the problem of how to
rearrange tensor elements for better unsupervised and su-
pervised subspace learning. For unsupervised learning, this
problem was formulated to find a tensor element rearrange-
ment operator that maximizes intra-tensor correlation. An
approximate iterative solution based on a computationally
feasible linear programming problem was proposed. In ad-
dition, the iterative algorithm was extended to supervised
subspace learning problems for improvement of classifica-
tion ability. The proposed algorithms have achieved en-
couraging results for both the unsupervised and supervised
tasks.

There exist a number of potential directions for future
work. Since the spatial structure of the original data objects
are not preserved after rearrangement, the order and dimen-
sions of the original tensors need not be maintained. How
to rearrange elements into a more optimal tensor structure
is an interesting topic for investigation. Another direction is
to examine other classes of data objects that are structurally
similar enough to benefit from element rearrangement. One
possibility is human gait data, for which cues such as opti-
cal flow and motion estimation might additionally be used
to guide the element rearrangement process.
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