
Incremental Linear Discriminant Analysis

Using Sufficient Spanning Set Approximations

Tae-Kyun Kim1 Shu-Fai Wong1 Björn Stenger2 Josef Kittler3 Roberto Cipolla1

1Department of Engineering

University of Cambridge

Cambridge CB2 1PZ, UK

2Toshiba Research Europe Ltd

Computer Vision Group

Cambridge CB3 2NH, UK

3CVSSP

University of Surrey

Guildford GU2 7XH, UK

Abstract

This paper presents a new incremental learning solution

for Linear Discriminant Analysis (LDA). We apply the con-

cept of the sufficient spanning set approximation in each up-

date step, i.e. for the between-class scatter matrix, the pro-

jected data matrix as well as the total scatter matrix. The

algorithm yields a more general and efficient solution to in-

cremental LDA than previous methods. It also significantly

reduces the computational complexity while providing a so-

lution which closely agrees with the batch LDA result. The

proposed algorithm has a time complexity of O(Nd2) and

requires O(Nd) space, where d is the reduced subspace di-

mension and N the data dimension. We show two appli-

cations of incremental LDA: First, the method is applied

to semi-supervised learning by integrating it into an EM

framework. Secondly, we apply it to the task of merging

large databases which were collected during MPEG stan-

dardization for face image retrieval.

1. Introduction

Face descriptors have been proposed as candidates for

MPEG-7 standardization for face image retrieval in video

streams [5, 6, 8]. An ideal face descriptor should be ex-

tracted without any prior knowledge about the current im-

age content (person identity), i.e. it should be constructed

from images of persons other than those contained in the

test data. The descriptor should also be compact, even for

large data sets. A challenging problem is to retrieve face

images with large variations in lighting and pose when only

a single query image is given. Out of all methods, Lin-

ear Discriminant Analysis (LDA)-based description meth-

ods have shown the best performance in the MPEG-7 com-

petition [5, 6].

LDA finds the linear projections of data which best sep-

arate two or more classes under the assumption that the

classes have equal covariance Gaussian structure [2]. LDA

is an effective and widely employed technique for dimen-

sion reduction and feature extraction. It is often beneficial to

learn the LDA basis from large training sets, which may not

be available initially. This motivates techniques for incre-

mentally updating the discriminant components when more

data becomes available.

A number of incremental versions of LDA have been

suggested, which can be applied to on-line learning tasks [4,

7, 9, 14]. Ye et al. [14] proposed an incremental version of

LDA, which can include only a single new data point in

each time step. A further limitation is the computational

complexity of the method when the number of classes C
is large, as the method involves an eigendecomposition of

C × C-dimensional scatter matrices. Pang et al. [9] intro-

duced a scheme for updating the between-class and within-

class scatter matrices. However, no incremental method is

used for the subsequent LDA steps, i.e. eigenanalysis of

the scatter matrices, which remains computationally expen-

sive. Gradient-based incremental learning of a modified

LDA was proposed by Hiraoka et al. [4]. Limitations of

the method are that it includes only a single new data point

at each time step and that it requires setting a learning rate.

To circumvent the difficulty of incrementally updating the

product of scatter matrices, Yan et al. [13] used a modified

criterion by computing the difference of the between-class

and within-class scatter matrices. However, this may lead to

regularization problems of the two scatter matrices. Lin et

al. [7] dealt with the online update of discriminative mod-

els for the purpose of object tracking. As their task is bi-

nary classification, the discriminative model and the update

method are limited to the two-class case.

Inspiration for incremental LDA can be drawn from

work on incremental Principal Component Analysis (PCA).

Numerous algorithms have been developed to update the

eigenbasis as more data samples arrive. However, most

methods assume zero mean in updating the eigenbasis ex-

cept [3, 10] where the update of the mean is handled cor-
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Figure 1. On-line update of an LDA basis: The basis computed by the new incremental LDA algorithm (top right) closely agrees with the

one computed by batch LDA (bottom right). Shown for each scatter matrix ST,i and SB,i are the first three principal components, which

are combined by merging eigenspaces.

rectly. The dimension of the eigenproblem can be reduced

by using the sufficient spanning set (a reduced set of ba-

sis vectors spanning the space of most data variation). As

the computation of the eigenproblem is cubic in the sub-

space dimension of the respective scatter matrix, this update

scheme is highly efficient.

It is also worth noting the existence of efficient algo-

rithms for kernel PCA and LDA [1, 12]. While studying the

incremental learning of such non-linear models is worth-

while, when considering retrieval from large data sets, the

computational cost of feature extraction of new samples is

as demanding as updating the models [5, 6, 8]. Also note

that the LDA method in [12] assumes a small number of

classes for the update, similar to [14].

This paper proposes a new solution for incremental

LDA, which is accurate as well as efficient in both time

and memory. The benefit of the proposed algorithm over

other LDA update algorithms [7, 14] lies in its ability to

efficiently handle large data sets with many classes. This

is particularly important for the face image retrieval task,

where hundreds of different face classes have to be merged.

An example of an LDA basis of face images is shown in

Figure 1. The result obtained with the incremental algo-

rithm closely agrees with the batch LDA solution. Note that

previous studies have not shown close agreement between

incremental and batch LDA solutions [12, 14].

In the proposed method an LDA criterion which is equiv-

alent to the Fisher criterion, namely maximizing the ratio

of the between-class and the total scatter matrix, is used to

keep the discriminative information during the update. First

the principal components of the two scatter matrices are ef-

ficiently updated and then the discriminant components are

efficiently computed from these two sets of principal com-

ponents. The concept of sufficient spanning sets is applied

in each step, making the eigenproblem computation effi-

cient.The algorithm is also memory efficient as it only needs

to store the two sets of principal components to avoid losing

discriminatory data.

The paper is structured as follows: Section 2 presents the

new incremental LDA algorithm. In section 3 we show how

it can be applied to semi-supervised learning within an EM-

framework. Experimental results for the task of merging

face databases are presented in section 4.

2. Incremental LDA

As noted by Fukunaga [2], there are equivalent variants

of Fisher’s criterion to find the projection matrix U to max-

imize class separability of the data set:

max
arg U

UT SBU

UT SW U
= max

arg U

UT ST U

UT SW U
= max

arg U

UT SBU

UT ST U
, (1)

where

SB = ΣC
i=1ni(mi − µ)(mi − µ)T (2)

is the between-class scatter matrix,

SW = ΣC
i=1Σx∈Ci

(x − mi)(x − mi)
T (3)

is the within-class scatter matrix,

ST = Σall x(x − µ)(x − µ)T = SB + SW (4)

the total scatter matrix, C the total number of classes, ni

the sample number of class i, mi the mean of class i, and

µ the global mean. The algorithm in this paper uses the

third criterion in equation 1 and separately updates the prin-

cipal components as the minimal sufficient spanning sets of

SB and ST . The scatter matrix approximation with a small

number of principal components (corresponding to signifi-

cant eigenvalues) allows an efficient update of the discrim-

inant components. The ST matrix rather than SW is used

to avoid losing discriminatory data during the update. If we

only kept track of the significant principal components of

SB and SW , any discriminatory information contained in

the null space of SW would be lost (note that any compo-

nent in the null space maximizes the LDA criterion). How-

ever, as ST = SB + SW and both SB and SW are positive



Figure 2. Concept of sufficient spanning sets of the total scatter matrix (left), the between-class scatter matrix (middle) and the projected

matrix (right). The union set of the principal components P1,P2 or Q1,Q2 of the two data sets and the mean difference vector µ
1
− µ

2

can span the respective total or between-class scatter data space (left and middle). The dimension for the component m1i − m2i should

not be removed (cross=incorrect) from the sufficient set of the between-class scatter data but retained in the set (circle=correct) (middle).

The projection and orthogonalization of the original components Q31,Q32 yields the principal components of the projected data up to

rotation (right). See the corresponding sections for detailed explanations.

semi-definite, vectors in the null space of ST are also in the

null space of SB , and are thus being ignored in the update.

The three steps of the algorithm are: (1) Update the total

scatter matrix ST , (2) Update the between-class scatter ma-

trix SB and (3) from these compute the discriminant com-

ponents U. These steps are explained in more detail in the

following sections.

2.1. Updating the total scatter matrix

The total scatter matrix is approximated with a set

of orthogonal vectors that span the subspace occupied by

the data and represent it with sufficient accuracy. The

eigenspace merging algorithm of Hall et al. [3] can be used

with the slight modifications ([3] considered merging co-

variances) in order to incrementally compute the principal

components of the total scatter matrix: Given two sets of

data represented by eigenspace models

{µi,Mi,Pi,Λi}i=1,2, (5)

where µi is the mean, Mi the number of samples, Pi

the matrix of eigenvectors and Λi the eigenvalue ma-

trix of the i-th data set, the combined eigenspace model

{µ3,M3,P3,Λ3} is computed. Generally only a subset of

dT,i eigenvectors have significant eigenvalues and thus only

these are stored in Λi and the corresponding eigenvectors in

Pi. We wish to compute the eigenvectors and eigenvalues

of the new eigenspace model that satisfy ST,3 ≃ P3Λ3P
T
3 .

The eigenvector matrix P3 can be represented by a suffi-

cient spanning set (see below for discussion) and a rotation

matrix as

P3 = ΦR = h([P1,P2, µ1 − µ2])R, (6)

where Φ is the orthonormal column matrix spanning the

combined scatter matrix, R is a rotation matrix, and h is an

orthonormalization function (e.g. QR decomposition).

Using the sufficient spanning set, the eigenproblem is

converted into a smaller eigenproblem as

ST,3 = P3Λ3P
T
3 ⇒ ΦT ST,3Φ = RΛ3R

T . (7)

By computing the eigendecomposition on the r.h.s. one ob-

tains Λ3 and R as the respective eigenvalue and eigenvector

matrices. After removing nonsignificant components in R

according to the eigenvalues in Λ3, the minimal sufficient

spanning set is obtained as P3 = ΦR. Note the matrix

ΦTST,3Φ has the reduced size dT,1 + dT,2 + 1 and the

dimension of the approximated combined total scatter

matrix is dT,3 ≤ dT,1 + dT,2 + 1, where dT,1, dT,2 are the

number of the eigenvectors in P1 and P2 respectively. Thus

the eigenanalysis here only takes O((dT,1 + dT,2 + 1)3)
computations, whereas the eigenanalysis in batch mode (on

the l.h.s. of (7)) requires O(min(N,M3)
3), where N is the

dimension of the input data 1. See Section 2.4 for a more

detailed discussion about the time and space complexity.

Discussion. We conclude this section by giving more in-

sight into the sufficient spanning set concept. Generally,

given a data matrix A, the sufficient spanning set Φ can be

defined as any set of vectors s.t.

B = ΦT A, A′ = ΦB = ΦΦT A ≃ A. (8)

That is, the reconstruction A′ of the data matrix by the suffi-

cient spanning set should approximate the original data ma-

trix. Let A ≃ PΛPT where P,Λ are the eigenvector and

1When N ≫ M , the batch mode complexity can effectively be

O(M3) as follows: ST = YYT , where Y = [...,xi−µ, ...]. SVD of Y

s.t. Y = UΣVT yields the eigenspace model of ST by U and ΣΣT as

the eigenvector and eigenvalue matrix respectively. YT Y = VΣT ΣVT

as UT U = I. That is, by SVD of the low-dimensional matrix YT Y, the

eigenvector matrix is efficiently obtained as YVΣ−1 and the eigenvalue

matrix as ΣT Σ. This greatly reduces the complexity when obtaining the

eigenspace model of a small new data set in batch mode prior to combin-

ing.



eigenvalue matrix corresponding to most energy. Then, PR

where R is an arbitrary rotation matrix can be a sufficient

spanning set:

A′ = ΦΦT A ≃ PΛPT ≃ A (9)

as RRT = PT P = I. This also applies to the sufficient

spanning set in equation (6).

As visualized on the left of Figure 2, the union of the

two principal components and the mean difference vector

can span all data points of the combined set in the three-

dimensional space. The principal components of the com-

bined set are found by rotating this sufficient spanning set.

Note that this use of the sufficient spanning set is only

possible in the case of merging generative models where

the scatter matrix of the union set is represented as the sum

of the scatter matrices of the two sets explicitly as

ST,3 = ST,1 +ST,2 +M1M2/M3 · (µ1−µ2)(µ1−µ2)
T ,

(10)

where {ST,i}i=1,2 are the scatter matrices of the first two

sets. The method can therefore not be used to directly merge

the discriminant components of LDA models.

2.2. Updating the between­class scatter matrix

In the update of the total scatter matrix, a set of new

vectors are added to a set of existing vectors. The between-

class scatter matrix, however, is the scatter matrix of the

class mean vectors, see equation (12). Not only is a set of

new class means added, but the existing class means also

change when new samples belong to existing classes. Inter-

estingly, the proposed update can be interpreted as simulta-

neous incremental (adding new data points) and decremen-

tal (removing existing data points) learning (see below).

The principal components of the combined between-

class scatter matrix can be efficiently computed from the

two sets of between-class data, represented by

{µi,Mi,Qi,∆i, nij , αij |j = 1, ..., Ci}i=1,2, (11)

where µi is the mean vector of the data set i, Mi is the to-

tal number of samples in each set, Qi are the eigenvector

matrices, ∆i are the eigenvalue matrices of SB,i, nij the

number of samples in class j of set i, and Ci the number of

classes in set i. The αij are the coefficient vectors of the

j-th class mean vector mij of set i with respect to the sub-

space spanned by Qi, i.e. mij ≃ µi+Qiαij . The task is to

compute the eigenmodel {µ3,M3,Q3,∆3, n3j ,α3j |j =
1, ..., C3} for the combined between-class scatter matrix.

To obtain the sufficient spanning set for efficient eigen-

computation, the combined between-class scatter matrix is

represented by the sum of the between-class scatter matrices

of the first two data sets, similar to (10). The between-class

scatter matrix SB,i can be written as

SB,i =

Ci∑

j=1

nij(mij − µi)(mij − µi)
T (12)

=

Ci∑

j=1

nijmijm
T
ij − Miµiµ

T
i . (13)

The combined between-class scatter matrix can further be

written w.r.t. the original between-class scatter matrices and

an auxiliary matrix A as

SB,3 = SB,1+SB,2+A+M1M2/M3·(µ1−µ2)(µ1−µ2)
T ,

(14)

where

A =
∑

k∈s

−n1kn2k

n1k + n2k
(m2k − m1k)(m2k − m1k)T . (15)

The set s = {k|k = 1, ..., c} contains the indices of the

common classes of both data sets. The matrix A needs

to be computed only when the two sets have common

classes, otherwise it is simply set to zero. If we assume

that each between-class scatter matrix is represented by the

first few eigenvectors such that SB,1 ≃ Q1∆1Q
T
1 , SB,2 ≃

Q2∆2Q
T
2 , the sufficient spanning set for the combined

between-class scatter matrix can be similarly set as

Ψ = h([Q1,Q2, µ1 − µ2]), (16)

where the function h is the orthonormalization function

used in section 2.1. Note that the matrix A is negative

semi-definite and does not add any more dimensions to Ψ.

As illustrated in the middle of Figure 2, the sufficient span-

ning set can be a union set of the two eigen-components

and the mean difference vector. The negative semi-definite

matrix A can conceptually be seen as the scatter matrix

of the components to be removed from the combined data.

When ignoring the scale factors, the decremental elements

are m2i − m1i. This decreases the data variance along the

direction of m2i−m1i but the respective dimension should

not be removed from the sufficient spanning set. The re-

sulting variance reduction along this direction is taken into

account when removing eigencomponents with nonsignifi-

cant eigenvalues in the subsequent eigenanalysis.

Let dB,i and N be the dimension of Qi and input

vectors, respectively. Whereas the eigenanalysis of the

combined between-class scatter in batch mode 2 requires

O(min(N,C3)
3), the proposed incremental scheme re-

quires only O((dB,1 + dB,2 +1)3) computation for solving

SB,3 = ΨR∆3R
T ΨT ⇒ ΨT SB,3Ψ = R∆3R

T ,
(17)

2The batch solution of the between-class scatter matrix can be com-

puted using the low-dimensional matrix similarly to the total scatter matrix

when N ≫ C. Note SB,i = YYT , Y = [...,
√

nij(mij − µi), ...].



Algorithm 1. Incremental LDA (ILDA)

Input: The total and between-class eigenmodels of an ex-

isting data set, {P1, ...}, {Q1, ...} and a new data set

Output: Updated LDA components U

1. Compute {P2, ...}, {Q2, ...} from the new data set in batch

mode.

2. Update the total scatter matrix for {P3, ...}:

Compute ST,3 by (10) and {ST,i}i=1,2 ≃ PiΛiP
T
i .

Set Φ by (6) and compute the principal components R of

ΦT ST,3Φ. P3 = ΦR.

3. Update the between-class scatter for {Q3, ...}:

Obtain SB,3 from (14), {SB,i}i=1,2 ≃ Qi∆iQ
T
i and

mij ≃ µi + Qiαij .

Set Ψ by (16) and eigendecompose ΨT SB,3Ψ for the

eigenvector matrix R. Q3 = ΨR.

4. Update the discriminant components:

Compute Z = P3Λ
−1/2

3
and Ω = h([ZT Q3]).

Eigendecompose ΩT ZT Q3∆3Q
T
3 ZΩ for the eigenvector

matrix R. U = ZΩR.

Table 1. Pseudocode of Incremental LDA.

where R is a rotation matrix. Finally, the eigenvectors of

the combined between-class scatter matrix, which are mem-

orized for the next update, are obtained by Q3 = ΨR af-

ter the components having zero eigenvalues in R are re-

moved, i.e. dB,3 ≤ dB,1 + dB,2 + 1. All remaining para-

meters of the updated model are obtained as follows: µ3 is

the global mean updated in Section 2.1, M3 = M1 + M2,

n3j = n1j + n2j , α3j = QT
3 (m3j − µ3), where m3j =

(n1jm1j + n2jm2j)/n3j .

2.3. Updating discriminant components

After updating the principal components of the total

scatter matrix and the between-class scatter matrix, the dis-

criminative components are found using the updated to-

tal data {µ3, M3,P3,Λ3} and the updated between-class

data {µ3,M3,Q3,∆3, n3j , α3j |j = 1, ..., C3} using the

new sufficient spanning set. Let Z = P3Λ
−1/2

3 , then

ZT ST,3Z = I. As the denominator of the LDA criterion is

the identity matrix in the projected space, the optimization

problem is to find the components that maximize ZT SB,3Z

s.t. WT ZT SB,3ZW = Λ and the final LDA components

are obtained by U = ZW. This eigenproblem of the pro-

jected data can be solved using the sufficient spanning set

defined by

Ω = h([ZTQ3]). (18)

See the right of Figure 2. The original components are pro-

jected and orthogonalized to construct the sufficient span-

ning set. The principal components of the projected data

can be found by rotating the sufficient spanning set. By this

sufficient spanning set, the eigenvalue problem changes into

Batch LDA Inc LDA

time O(NM2

3 O(d3

T,1 + d3

B,1

+min(N, M3)
3) +NdT,3dB,3)

space O(NM3 + NC3) O(NdT,3 + NdB,3)
Table 2. Comparison of time and space complexity: The savings

of incremental LDA are significant as usually M3 ≫ dT,3 ≥ dB,3.

N is the data dimension and M3, C3 are total number of data

points and classes, respectively, dT,i, dB,i are the dimensions of

the total and between-class scatter subspaces.

a smaller dimensional eigenvalue problem by

ZTSB,3Z = ΩRΛRT ΩT ⇒ ΩT ZT SB,3ZΩ = RΛRT .
(19)

The final discriminant component is given as

ZW = ZΩR. (20)

This eigenproblem takes O(d3) time, where d is the dimen-

sion of Ω, which is equivalent to dB,3, the dimension of

Q3. Note that in LDA, dT,3, the dimension of P3 is usually

larger than dB,3 and therefore the use of the sufficient span-

ning set further reduces the time complexity of the eige-

nanalysis: O(d3
T,3) → O(d3

B,3). The pseudocode of the

complete incremental LDA algorithm is given in Table 1.

2.4. Time and space complexity

So far we have mainly considered the computational

complexity of solving the eigenproblem for merging two

data sets. Table 1 provides a comparison of the batch and

the proposed incremental LDA in total time complexity

(considering the necessary matrix products e.g. those in (7))

and space complexity, when the additional set is relatively

small compared to the existing set, i.e. M2 ≪ M1.

The computational saving of the incremental solution

compared to the batch version is large as normally M3 ≫
dT,3 ≥ dB,3. Both time and space complexity of the pro-

posed incremental LDA are independent of the size of the

total sample set and the total number of classes. The im-

portant observation from the face data base merging experi-

ments (see Table 3) is that the intermediate dimensions dT,3

and dB,3 do not increase significantly when new data is suc-

cessively added.

3. Semi-supervised incremental learning

This section deals with the LDA update when the class

labels of new samples are not given. Unlike incremental

learning of generative models [3, 10], discriminative

models such as LDA, require the class labels of additional

samples for the model update. The proposed incremental

LDA can be incorporated into a semi-supervised learn-

ing algorithm so that the LDA update can be computed



efficiently without the class labels of the additional data

set being known. For an overview of semi-supervised

learning, including an explanation of the role of unlabeled

data, see [15]. Although graph-based methods have been

widely adopted for semi-supervised learning [15], the

classic mixture model has long been recognized as a natural

approach to modeling unlabeled data. A mixture model

makes predictions for arbitrary new test points and typically

has a relatively small number of parameters. Additionally

mixture models are compatible with the proposed incre-

mental LDA model assuming multiple Gaussian-distributed

classes [2]. Here, classic EM-type learning is employed

to generate the probabilistic labels of the new samples.

Running EM in the updated LDA subspaces allows for

more accurate estimation of the class labels. We iterate the

E-step and M-step with all data vectors projected into the

LDA subspaces (similar to [11]), which are incrementally

updated in an intermediate step. The class posterior proba-

bilities of the new samples are set to the probabilistic labels.

Incremental LDA with EM. The proposed EM algorithm

employs a generative model with the most recent LDA

transformation U by

P (UT x|Θ) =

C∑

k=1

P (UT x|Ck; Θk)P (Ck|Θk), (21)

where class Ck, k = 1, ..., C is parameterized by Θk, k =
1, ..., C, and x is a sample of the initial labeled set L and

the new unlabeled set U . The E-step and M-step are iter-

ated to estimate the MAP model over the projected samples

UT x of the labeled and unlabeled sets. The proposed incre-

mental LDA is performed every few iterations on the data

sets {xj , yj |xj ∈ L} and {xj , y
′

jk|xj ∈ U , k = 1, ..., C},

where yj is the class label and y′

jk is the probabilistic class

label given as the class posterior probability

y′

jk = P (Ck|U
T xj). (22)

We set

m2i =

∑
j xjy

′

ji∑
j y′

ji

, n2i =

M2∑

j=1

y′

ji. (23)

for the update of the between-class scatter matrix. All other

steps for incremental LDA are identical to the description in

Section 2 as they are independent of class label information.

Discussion. Using a common covariance matrix Θk for

all class models rather than C class covariance matrices is

more consistent with the assumption of LDA [2] and can

additionally save space and computation time during the M-

step. The common covariance matrix can be conveniently

updated by UT (ST,3 − SB,3)U/M3, where ST,3,SB,3

are the combined total and between-class scatter matrices,

which are kept track of in the incremental LDA as the as-

sociated first few eigenvector and eigenvalue matrices. The

other parameters of Θ are also obtained from the output of

the incremental LDA algorithm.

So far it is assumed that the new data points are in one

of the existing classes, but this is not necessarily the case.

Samples with new class labels can be screened out so that

the LDA update is not biased to those samples by

y′

jk = P (Ck|U
T xj) · P (C|UT xj), (24)

where P (C|UT xj) denotes a probability of a hyper class.

We can set this probability as being close to zero for sam-

ples with new class labels.

4. Experimental results

The algorithm was applied the task of face image re-

trieval from a large database. All experiments were per-

formed on a 3 GHz Pentium 4 PC with 1GB RAM.

4.1. Database and protocol

In the experiments we followed the protocols of evaluat-

ing face descriptors for MPEG-7 standardization [6]. Many

MPEG-7 proposals, including the winning method, have

adopted LDA features as their descriptors [5, 6]. A de-

scriptor vector is extracted without knowledge of the test

subject’s identity, i.e. its statistical basis should be gener-

ated from images of subjects other than those in the test

set. As it is necessary to learn the LDA basis from a very

large training set, which may not be available initially, the

proposed algorithm can be used to successively update the

LDA basis as more data becomes available. An experimen-

tal face database was obtained consisting of the version 1

MPEG data set (635 persons, 5 images per person), the

Altkom database (80 persons, 15 images per person), the

XM2VTS database (295 persons, 5 images per person), and

the BANCA database (52 persons, 10 images per person).

The version 1 MPEG data set itself consists of several pub-

lic face sets (e.g. AR, ORL). All 6370 images in the database

were normalized to 46 × 56 pixels using manually labeled

eye positions. The images for the experiments were strictly

divided into training and test sets. All basis vectors were

extracted from the training set. All test images were used

as query images to retrieve other images of the correspond-

ing persons (called ground truth images) in the test data set.

As a measure of retrieval performance, we used the average

normalized modified retrieval rate (ANMRR) [8]. The AN-

MRR is 0 when images of the same person (ground truth

labeled) are ranked on top, and it is 1 when all images are

ranked outside the first m images (m = 2NG, where NG is

the number of ground truth images in the test data set).



LDA update M3 [# images] C3 [# classes] dT,3 [dim(St,3)] dB,3 [dim(Sb,3)]

1[first] – 10[final] 465–2315 93–463 158–147 85–85
Table 3. Efficient LDA update: Despite the large increase in the number of images and classes, the number of required principal compo-

nents, dT,3 and dB,3, remains small during the update process implying that computation time remains low.
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Figure 3. Database merging experiments for the MPEG+XM2VTS data set: The solution of incremental LDA closely agrees to the batch

solution while requiring much lower computation time. (a) Retrieval inaccuracy, ANMRR is 0 when all ground truth images are ranked on

top, and 1 when none of the ground truth images are ranked among the first m images. (b) Computational cost.

4.2. Results

The training set was further partitioned into an initial

training set and several new sets which are added succes-

sively for re-training. We used the combined set of MPEG

and XM2VTS database (the total number of classes is 930)

for the experiment where the new sets contain the images of

new classes. We also performed the experiments for the Al-

tkom and BANCA database separately where the additional

sets contain new images of the existing classes of the ini-

tial training set. The proposed incremental LDA yielded

nearly the same solution as batch LDA for both scenar-

ios. The basis images of LDA of the incremental and batch

versions are compared in Figure 1. The accuracy of the

incremental solution can be seen in Figure 3 (a). Incre-

mental LDA yields essentially the same accuracy as batch

LDA, provided enough components are stored of the total

and between-class scatter matrices. This is an accuracy vs.

speed trade-off: using less components is clearly beneficial

in terms of computational cost. The subspace dimensions

for incremental learning were chosen from the eigenvalue

plots by setting a fixed threshold on the variance of each

component (similar results were obtained by choosing the

first components that contain a specified fraction of the to-

tal variance)3. Table 3 shows the number of components

3Note that accuracy of LDA is dependent on dimensionality of interme-

diate components (total scatter matrix) and final components (discriminant

selected during the experiment using the MPEG+XM2VTS

data set. Even if the total number of images or classes in-

creases, the number of components does not increase signif-

icantly, thus saving time and space (See section 2.4). The

computational costs of the batch and the incremental ver-

sion are compared in Figure 3 (b). Whereas the compu-

tational cost of the batch version increases significantly as

data is successively added, the cost of the incremental so-

lution remains low. Note that the cost of incremental LDA

is comparable to that of incremental PCA while giving a

much higher retrieval accuracy as shown in Figure 3 (a). In-

cremental PCA did not significantly increase the retrieval

accuracy.

Figure 4 shows the result of comparing the proposed

semi-supervised incremental LDA solution with the LDA

solution when the correct class labels are provided. For

this experiment the projection of all data points into the

LDA subspace was performed once with the most recent

LDA components before the EM iteration, and the incre-

mental LDA with the probabilistic labels was carried out

after EM converged, typically after ten iterations. The so-

lution boosted the retrieval accuracy even without the class

labels and its incremental solution yielding the same solu-

tion as the batch version. The cost of semi-supervised LDA

is slightly higher than that of incremental LDA, but still far

components). These dimensions of ILDA were set to be the same as those

of batch LDA.
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Figure 4. Performance of semi-supervised incremental LDA: Semi-supervised incremental LDA decreases the error rate without the

class labels of new training data being available, while being as time-efficient as incremental LDA with given labels. (a) Retrieval

inaccuracy (ANMRR), (b) computational costs for the Altkom database. Similar results were obtained for the BANCA database.

lower than any batch-mode computation.

5. Conclusions

The proposed incremental LDA solution allows highly

efficient learning to adapt to new data sets. A solution

closely agreeing with the batch LDA result can be obtained

with far lower complexity in both time and space. The in-

cremental LDA algorithm can also be incorporated into a

classic semi-supervised learning framework and applied to

many other problems in which LDA-like discriminant com-

ponents are required. Directions for future research are the

extension to the non-linear case, adaptive learning with a

time-decaying function and using temporal information for

more efficient semi-supervised learning.
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