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Abstract 

 
 Clustering is a common operation for data partitioning 

in many practical applications. Often, such data 
distributions exhibit higher level structures which are 
important for problem characterization, but are not 
explicitly discovered by existing clustering algorithms.  In 
this paper, we introduce multi-resolution perceptual 
grouping as an approach to unsupervised clustering. 
Specifically, we use the perceptual grouping constraints of 
proximity, density, contiguity and orientation similarity. 
We apply these constraints in a multi-resolution fashion, to 
group sample points in high dimensional spaces into 
salient clusters. We present an extensive evaluation of the 
clustering algorithm against state-of-the-art supervised 
and unsupervised clustering methods on large datasets. 

1. Introduction 
The problem of clustering a collection of data points 

occurs in a wide variety of practical applications ranging 
from data mining in web e-commerce [25], monitoring of 
metric streams in systems management [24], to people 
identification in computer vision [26]. The goal of 
clustering is to simplify the characterization of the data 
into semantically meaningful groups. In the absence of a 
priori knowledge, the nearest neighbor proximity 
constraint is fundamental to any clustering algorithm. This 
is based on the rationale that good feature representations 
map similar objects to be close together in a feature space. 
However, in many data distributions from applications, 
there is more structure in the data than can be captured by 
proximity constraints alone. Figure 1 shows several 
examples of such data distributions.  For example, Figure 
1a shows the distribution of 4000 time points from a pair of 
metric time series in systems monitoring. The data can be 
clearly seen to lie along three lines, a fact important in 
characterizing the functional dependency of these metrics, 
but difficult to discover in existing clustering methods 
based on nearest neighbor constraints alone. Similarly, 
Figure 1b shows a 4D dataset of optical flow vectors (2D 
location, magnitude, direction) of 15,000 samples drawn 
from a cardiac echo video sequence.  Using proximity 
alone, it will be difficult to separate the heart valves from 

the chamber walls, which could cause errors in 
computer-aided diagnosis of heart wall motion. Finally, 
Figure 1c shows a case where density rather that proximity 
determines the structure. A point C in the inner disc that 
lies on a line AB  joining two points in the outer disc would 
be more proximal to A and B and yet belongs to a different 
group.  Thus additional constraints may have to be used to 
discover such high-level structures during clustering.    

 
In this paper, we introduce perceptual grouping, 

previously used for capturing structure in images, as an 
approach to unsupervised multidimensional clustering. 
Specifically, we model the feature space as a 
multidimensional image and use perceptual grouping 
constraints of proximity, density, contiguity, and 
orientation similarity, to group sample points into dense 
clusters. To accommodate perceptual groups at different 
scales, the grouping is performed at multiple image 
resolutions in a pyramidal fashion, with the top level of the 
pyramid representing the largest perceptual groups found 
in the multidimensional data.  

 
     The paper makes several novel contributions. Unlike 

previous approaches that have used conventional 
clustering for performing perceptual grouping, we 
introduce the opposite idea, i.e., perceptual grouping as a 
way of clustering. Again, unlike previous hierarchical 
clustering methods that indicate all data as grouped into 
one cluster at the top level, our algorithm converges to the 
stable number of perceived clusters at the top level. This 
gives an operational and efficient way of automatically 
determining the number of clusters in an unsupervised 
fashion. Finally, unlike other clustering algorithms, 
outliers are easily separated from the rest of the data 
distribution as isolated clusters making it applicable for 
noise removal in data distributions.  

2. Related Work 
Clustering is a well-researched field with algorithms 

available in data mining (database), machine learning, 
bioinformatics and other pattern recognition communities. 
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Algorithms are available to cluster the data in feature space 
derived directly from data (eg. Color histogram)[12]  or 
from a model of the data (eg. AR model for image texture) 
[13].   The popular techniques include partitional 
(k-means, k-mediod see [5] for a review), overlapping 
(fuzzy c-means), hierarchical (agglomerative) [5], 
probabilistic (EM-based such as Mixture of Gaussians 
[17]), graph-theoretic (spectral clustering variants [16]), 
and scale-space [7] approaches.  More recently, 
dimensionality reduction techniques have been combined 
with traditional clustering to exploit the simple structure in 

the data when the data lies along low-dimensional 
manifolds [23], as well as methods for clustering the 
manifolds directly [14]. Finally, there are clustering 
algorithms that are use density in addition to proximity for 
clustering [4][8]. Many of these algorithms are supervised, 
that is, need hints on the number of clusters. The 
unsupervised clustering schemes are compute-intensive 
requiring repeated computations of distances over an N x 
N distance matrices. Moreover, they  
 

 
(a) (b)                                           (c)                  

Figure 1. Illustration of the need to capture structure in the data distribution. (a) Data derived from time series metrics in systems 
monitoring. (b) 4D data set from (space+motion) cardiac echo videos. (c) Two disc discrimination dataset.
 

Figure 2. Illustration of unsupervised clustering using multi-scale grouping. The emergence of structure at different scales is shown here 
from left to right, top to bottom. Only 4 selected scales are shown due to space limitations. 

        (a)             (b)               (c) 
Figure 3: Assorted figures. (a) Convergence on the number of clusters in pyramidal grouping. (b) Effect of logarithmic versus regular 
sampling. (c) Time performance of different clustering algorithms
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    (a)                                    (b)                                        (c)                                         (d) 
Figure 4. Comparison with Normalized cut.  (a),(c) Clusters by pyramidal grouping. (b) (d) Clusters by N-cut. 

  
      (a)             (b)               (c)        (d) 
Figure 5. Comparison with ISOMAP. (a)(c) Clusters by pyramidal grouping. (b)(d) Clusters by ISOMAP. 

                 
    (a)               (b)                (c)        (d) 

      
    (e)               (f)             (g)         (h) 
 
Figure 6. Illustration of the cross-data comparison between pyramidal grouping, Normalized cuts, and ISOMAP. (a)(e) Original data. Not 
the outliers in (e). (b)(f) Pyramidal grouping (c)(g) N-cut cluster (d)(h) ISOMAP clusters. 
 
explore many more combination groupings of points than 
are practically plausible, and group all data into one at the 
top level. Of these, scale-space clustering is similar in 
spirit to ours, although it often overestimates both the 
centers of the clusters and the clusters themselves due to 

the non-directional region blurring using isotropic kernel 
density functions [7].  

3. Clustering by perceptual grouping 
We now present our approach to unsupervised 

clustering using perceptual grouping. Perceptual grouping 
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refers to the human visual ability to extract significant 
image relations from lower-level primitive image features 
without any knowledge of the content, and to group them 
to obtain a meaningful higher-level structures [1][11]. A 
number of factors have been known to influence the parts 
of an image that are combined to form an object. These are 
based on the Gestalt principles of psychology [1]. Of these, 
we consider the principles of proximity, good 
continuation, connectivity, and density as also relevant for 
clustering. Local changes in dominant orientation of 
regions can signal important structural changes in the data 
distributions as can density changes. The contiguity 
constraint is needed to characterize region clouds from 
sparse point sets.   
 
  Due to sparse and irregular nature of point distribution, 
grouping has to be applied at multiple scales to see the 
emergence of high-level structures. Using the analogy of 
multi-resolution image pyramids [6][18], we sub-sample 
the feature space at multiple levels of resolution in a 
pyramidal fashion. At each sampling step, the perceptual 
grouping constraints of proximity, contiguity, orientation 
and density are applied to form candidate groups. While 
not all resolution levels produce a distinct change in the 
number of groups, the number of clusters is expected to 
monotonically decrease with the decrease in resolution 
levels, with salient bends emerging at levels where a new 
hierarchical structure emerges as shown by the arrows in 
Figure 3a for sample data distributions. We propose that 
these change points be used to signal the various levels in a 
hierarchical clustering, with the clusters at the top level 
emerging as the stable number of automatically 
determined clusters in the dataset.  
 

We now describe the clustering algorithm in detail. It 
involves 3 main steps: (1) Determining a sampling scheme 
for the multi-dimensional feature space, (2) Using 
perceptual grouping constraints to assemble the clusters at 
successive pyramidal levels, and (3) Estimating the bends 
in the cluster curve to determine the clustering hierarchy, 
with the top level indicating the stable number of clusters 
perceived.   

3.1. Terminology 
We begin with some necessary terminology. Consider 

an M-dimensional data set of N samples 
),...,,( 21 NXXXX =  where each of the samples 

),...,,( 21 Miiii fffX =  is an M-dimensional feature vector 
with features normalized so that 0.10 ≤≤ jif . Each of 

the iX  is a point in a MR space, which in turn, can be 

regarded as an M-dimensional image kI of size kL  x kL  x 
… kL  at level k. Each sample then has an image coordinate 

at level k that is an M-tuple Tk
Mi

k
i

k
i qqD ],...,[ 1=  where 

10 −≤≤ k
k
ji Lq  are the coordinates representing the pixel 

in the image. Each image pixel at level k is an 
M-dimensional unit of size )11(

kk LL
× . 

Using this model, clusters become multi-dimensional 
regions with image intensity formed from the cluster 
number, so that at each image size kL , the sample 

iX belonging to cluster k
lc is represented by intensity k

lc  

at the pixel Tk
Mi

k
i

k
i qqD ],...,[ 1= .  The set of clusters at each 

image size kL  is denoted by },...,,{ 21
k
n

kkk
k

cccC = with 

kn as the distinct number of regions at image size kL . 
 In the ensuing discussions, we refer to clusters 

interchangeably as regions, pixels as bins, scale as 
resolution, and feature space as image, respectively. In 
addition, we will refer to our clustering method as 
pyramidal grouping.  

 
The variation in the number of clusters as a function of 

image size is given by a 1D-cluster curve 
},...,0|),{( TkLnz kk == . The bends in the curve, i.e., 

points where there is a significant change of curvature are 
denoted by ))(),(( pypxzp = . These form the clusters in 

the clustering level pC  of the clustering hierarchy. Note 
that we distinguish between pyramidal image levels and 
hierarchical clustering levels, although for some data 
distributions, they may coincide. 

3.2. Pyramid image sampling 
Following the convention in pyramid image 

representations [6], we use a logarithmic sampling scheme. 
Since all the feature dimensions are normalized to be in the 
range [0, 1], we can use a square grid. We start with an 
image of size 

0L x 
0L  x .. 

0L . Each successive image is of 
size iL x iL  x .. iL where 2/1−= ii LL  until we reach an 
image size of 1 x 1.  Section 3.7 discusses the implications 
of logarithmic sampling over other sampling schemes.  

3.3. Perceptual grouping constraints 
We use four grouping constraints, namely, proximity, 

orientation similarity, and density similarity, and region 
contiguity.   
3.3.1 Proximity constraint 

Using the multi-dimensional image model, a pair of 
points ),( ji XX  are considered proximal at pyramidal level k, 
if 
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1|| ≤− k
j

k
i DD  or Mlqq k

lj
k
li ≤≤∀≤− 1,1|| ,        (1) 

Where the | | operation stands for the absolute value.  
 Since at each pyramidal level, the grouping will 
consider the clusters from the previous level as the 
grouping elements, the proximity constraints states that 
they can be merged provided at least a pair of their 
respective image bins are adjacent. Let 

},...,{)( 1
k
li

k
ii

k DDcD =  be the set of image pixels at level 

k occupied by the cluster 1−k
ic  (i.e. at least one of the 

sample points of the cluster belongs to one of these image 
bins). Then the proximity constraint to group two clusters 

11, −− k
j

k
i cc from level k-1 into one at level k can be given as 

1||, ≤−∃ k
mj

k
li DDml                       (2)  

3.3.2 Density constraint 
Using the image sampling grid, the average density of a 

cluster at pyramid level k is obtained by noting the average 
number of samples with the given cluster label within an 
image pixel. Let k

cN  be the number of image pixels for 

cluster c at pyramid level k and k
cln be the number of 

sample points belonging to cluster c in bin l at pyramid 
level k. Then the average density of the cluster c is given by 

k
c

N

l

k
cl

k

N

n
cDensity

k
c

∑
== 1)(                   (3) 

The grouping constraint of density attempts to group 
clusters that have a small difference in density. That is, 
given two clusters from pyramid level k-1, 11, −− k

j
k
i cc , the 

density constraint is 
τ≤− −− |)()(| 11 k

j
k
i cDensitycDensity                (4) 

3.3.3 Orientation constraint 
The orientation of the region is characterized by the 

eigenvectors of the covariance matrix. For simplicity, we 
only consider the eigenvector corresponding to the largest 
eigenvalue. Let ji vv , be the eigenvectors corresponding to 
the largest eigenvalues for two clusters 

11, −− k
j

k
i cc respectively. Then the two clusters are merged at 

the next pyramid level k if  
0.1||),( 11 ≤=Θ≤ −−

ji
k
j

k
i vvcc Dρ ,        (5) 

where 0.10 ≤≤ ρ . Here the D represents dot product 
between the two (unit) eigenvectors.  
3.3.4 Contiguity constraint 

Using only the three constraints above, it is possible to 
have physically implausible clusters consisting of 
intersecting regions belonging to different clusters, 
particularly at higher levels of the image pyramid. Unlike 

other constraints, such contiguity check must be a three-way 
constraint, to check if two of the groups being merged 
potentially intersect with a third group already assembled. 
Determining region intersections of point clouds in 
n-dimensional spaces, in general, is a challenging problem 
in computational geometry. For purposes of perceptual 
grouping, we detect contiguity of two potential groups  

1−k
ic and 1−k

jc  if the potential minimum spanning tree 

(MST) formed from their merger k
ijV  does not have  an 

edge intersecting with the MST k
lV of a group already 

formed at this level k
lc  or with 1−k

mV for the region 1−k
mc at 

previous scale. Notice that }{ min
11 EVVV k

j
k

i
k

ij ∪∪ −−=                   

where },,min{ 11
min

−− ∈∈= k
j

k
iuv cvcuEE and uvE is the 

distance between the M-dimensional points u and v 
belonging to groups 1−k

ic and 1−k
jc respectively. The two 

groups 1−k
ic and 1−k

jc   meet the contiguity constraint if 
'

min
k

lVE �                        (6) 
where k’=k or k-1 (as the case may be) and �  denotes no 
proper line segment intersection. 

3.4. Salient bend extraction from cluster curve 
The levels of the clustering hierarchy are determined by 

extracting the salient bends in the cluster curve. That is, the 
number of clusters at each pyramidal level are collected to 
form a curve. A line segment approximation to the curve is 
performed and corners thus extracted are retained as salient 
bends in the curve.  

3.5. Unsupervised Clustering Algorithm 

1. At level 0, ii Xc =0 , 
,0.1)( =icDensity and 0.1),( 00 =Θ ji cc , and 

}{)( 00
ii DcD = . 

2.  For  k=1 to log 0L do 

a. Let kn be the number of clusters at pyramid 
level k.  Let them be in their own 
components.   

b. Merge clusters 1−k
ic and 1−k

jc   if all of the 
conditions specified in Equations (2), (4), 
(5), and (7) are true.   

3. Find salient bends in the curve of kn vs. kL  as 
described in Section 3.4. Let the bends be at 
positions )},),...(,{(

11 SS llll nLnL .  This gives the levels of 
the hierarchy as well as the clusters at such levels.  
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The clusters at the top level are the automatically 
determined clusters. 

3.6.  Complexity Analysis 
 The connected component generation is made efficient 

using the Union-Find data structure for merging taking 
O(1) amortized time per merge. The number of iterations is 
O(Log 0L ). The eigenvector computations take O(n2) for a 
region of size n. Since the number of regions nk rapidly 
decrease with scale (See Figure 3a), the overall cost of 
these computations remains low. The minimum spanning 
tree computations are also of the O(n2) per iteration, which 
is much less than doing the MST on the entire graph taking 
O(N4) as in graph-based clustering since ∑= nN . In 
practice, the region intersection test can be made much 
faster using a simple intersection of line joining centroids 
and extremal points of regions, which are already available 
from the eigenvector computations. Thus the overall 
complexity of the algorithm is O(n2nkLogL0)  = O(N2).  

3.7.  Choice of parameters 
The algorithm has three parameters, namely, ρτ ,,0L . 

The starting scale 0L for the pyramidal sampling is taken 
as the minimum distance separating the samples when 
projected along each dimension. This is a lower bound on 
the minimum separating distance between points but can 
be computed much faster without pair-wise distance 
comparisons. In practice, we found a separating distance of 
0.00195 = 1/512 to be sufficient, thus making L0 
independent of the dataset for clustering. The thresholds 
for the density perception and orientation perception are 
also independent of the dataset. They were chosen based 
on recommendations of earlier researchers in cartography 
that performed psychophysical studies on the perception of 

spatial dispersion on point distributions [2][3]. There it 
was observed that salient regions could be distinguished 
based on a density difference by as much as 30% from their 
surroundings. Similarly, the orientation difference over 5 
degrees was taken as sufficient distinction between the 
orientation of regions.  

Since each cluster is successively refined, it may be 
questioned that the logarithmic sampling is too coarse, and 
that some of the clusters can be missed due to the coarse 
sampling. In general, if we take a histogram of the nearest 
neighbor distances, the distribution is dense for low values 
of the distance.  Since we desire to minimize the 
intra-cluster distance while maximizing inter-cluster 
distance, the lower distance values must be sampled more 
finely than the larger distance values. Thus logarithmic 
sampling which samples the lower distances finely 
(1/2,1/4/,1/8,1/16,1/32,..) can give a good approximation to 
higher frequency distance sampling. This is also observed 
from our experiments as shown in Figure 3b which shows 
the difference in the number of clusters based on uniform 
and logarithmic sampling. Here, the cluster curve for 
logarithmic sampling appears to be a smoother version of 
the cluster curve formed from uniform sampling.  Thus the 
salient bends in the cluster curve can still be estimated from 
a logarithmic sampling. It may be noted that other sampling 
schemes could be substituted into the clustering algorithm 
without fundamentally changing the result.  

4. Results 
We performed a number of experiments to assess the 

performance of the algorithm. The datasets were assembled 
from a variety of sources including benchmark 2D and 3D 
datasets such as the Sequoia benchmark 2000 and the sonar, 
liver and diabetes datasets from UCI Machine

Agreement in the number of clusters with ground truth
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    (a)              (b)               (c) 
Figure 7. Illustration of performance of unsupervised clustering against a ground truth data set of action videos.
  
 Learning Repository [21],  the manifold learning datasets 
(see Figure 4-5), 10-dimensional time series metrics from 
systems monitoring scenarios, 4D optical flow maps from 

cardiac echo videos, and  2D average velocity vector maps 
from activity videos[22]. The number of samples in the 
data set varied from a minimum of 20 samples to a 
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maximum of 40,500 samples. The number of dimensions 
varied from 2 to 200 (for the action videos).  

4.1.  An Example 
We first illustrate the operation of the clustering 

algorithm by an example. Figure 2 illustrates clustering by 
multi-scale grouping on a 2000 point dataset shown in 
Figure 1c at some of the scale levels. As can be seen, 
increasingly large groups are being formed at successive 
scales. The inner disc is cleanly separated from the outer 
disc matching with our perception in this case.  

4.2. Comparison with supervised clustering 
Next, we compared pyramidal clustering to two 

state-of-the-art supervised clustering algorithms on the 
ability to extract perceptual structure from the data. 
Specifically, we used a reference implementation of 
ISOMAP [23] and Normalized cuts [16]. We ran the three 
clustering algorithms on the same datasets but gave hints 
on the correct number of clusters perceived to both 
ISOMAP and Normalized Cuts, whereas our algorithm ran 
unsupervised.  The results can be seen in Figures 4, 5, and 
6. First, we note that our algorithm overestimates the 
number of perceived clusters (some noise is still present). 
However, the groups produced are perceptually plausible 
regions as shown in these figures.  In Figure 4, we show the 
clusters produced by pyramidal clustering and normalized 
cuts on the datasets shown in Figure 1 a and b.  The line 
grouping errors are clearly evident from Figure 4b for 
normalized cuts. Similarly, the segmentation errors of 
valves with ventricular walls are more evident for 
normalized cuts in Figure 4d.  Next, comparing to the 
ISOMAP algorithm in Figure 5, we also observe the 
structural grouping errors in both the Split Gaussian and 
3D planes datasets (here the planes are split vertically). 
Finally, Figure 6 shows all three algorithms for two other 
datasets. Of the three algorithms, only pyramidal grouping 
could separate the inner disc from the outer disc of Figure 
1c. Further, only it could isolate the noisy outliers at the 
edges of the dataset of Figure 6a as separate clusters while 
the other two merged them into one of the larger clusters.   

Next, we recorded the running time of the three 
algorithms as a function of the size of the dataset on a T1300 
Pentium 4, 1.6GHz, 1GB RAM machine. The performance 
of these algorithms is indicated in Figure 3c on a 
logarithmic time scale. It can be observed that ISOMAP 
runs much slower than N-cut for the dataset tested.  For 
larger than 3000 samples, both ISOMAP and Normalized 
Cut had memory problems and often crashed. From this we 
conclude that pyramidal grouping is computationally as 
efficient as normalized cuts while still being unsupervised 
in automatically determining the number of clusters. 

4.3. Clustering performance 
To assess the performance of pyramidal grouping in 

automatically indicating the number of clusters, we used 
the action video dataset provided by KTH [22]. This 
collection depicts  six types of human actions  as shown in 
Figure 7a, (walking, jogging, running, boxing, hand 
waving and hand clapping) performed several times by 25 
subjects in four different scenarios: outdoors s1, outdoors 
with scale variation s2, outdoors with different clothes s3 
and indoors s4. Currently the database contains 2391 
sequences at 25fps frame rate each of which is 4 seconds 
long. We processed each video to extract the moving 
objects and their motion was described using average 
velocity curves using the method in [20]. This gave rise to 
a 2 x 4 x 25 = 200 dimensional feature space for the 1200 
videos. Of the 2391 sequences available from the KTH 
database, we retained 1200 sequences for our study. 
Unsupervised clustering was performed to generate a 
hierarchy of clusters for the 1200 training videos. 

To evaluate the correctness of clustering, we selected 
combinations of scenarios at a time such as s1 alone, s2 
alone, s1+s2, s1+s2+s3, s1+s2+s3+s4, etc.  and collected all 
videos of individuals depicting the 6 different action types. 
The ground truth action type was used to label the 1200 
sample data sets in groups of scenarios mentioned above.  

We measured the correctness of clustering by observing 
two parameters, namely, the match in the number of 
detected clusters, and the overlap of the cluster regions. The 
match in the number of detected clusters was given by the 
fraction of ground truth clusters that were indicated by the 
top level of multi-scale grouping.  The percentage overlap 
of the cluster manifolds was taken as the difference in the 
fraction of grid occupied by the ground truth versus the 
clusters given by pyramidal clustering.   

The data from each action type was averaged to generate 
the summary results in Figure 7.  Figure 7b shows the 
agreement of the pyramidal clustering with the ground truth 
data in the clustering of actions.  In all cases, we noted at 
least 70% agreement in the number of clusters by pyramidal 
clustering and the ground truth clusters, although the 
number of clusters was usually higher with pyramidal 
clustering. More surprisingly, there was a large region 
overlap of the pyramidal clusters with ground truth clusters. 
This indicates that the seed regions suggested by pyramidal 
clustering closely agreed with the ground truth perceptual 
grouping of the actions. As expected, the agreement 
worsened as the scenarios became mixed such as 
s1+s2+s3+s4 over individual scenarios s1. The scenario of 
s4 depicting indoor situations was the most difficult due to 
the existence of large background clutter.  

4.4. Comparison with unsupervised clustering 
Finally, we compared pyramidal clustering to two other 

hierarchical clustering schemes namely, Chameleon [4] 
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and scale-space clustering [7]. These two methods were 
chosen as they are both hierarchical, and perform a hard 
clustering of data. Further, they agree with pyramidal 
clustering in the use of proximity and/or density cues, 
although the orientation cue is not used. We cut the 
clustering dendrogram at points indicated by the two 
algorithms in their papers [4][7] to make the comparison 
meaningful. The fraction of overlap with the number of 
clusters and the area overlap with the ground truth clusters 
is shown in Figure 7b and 7c. As can be seen, pyramidal 
clustering shows better agreement in both the number and 
the area overlap with the ground truth clusters. 
Furthermore, the time performance of our algorithm was at 
least orders of magnitude faster as shown in Figure 3c.  

5. Conclusions 
In this paper, we have presented a novel algorithm for 
unsupervised clustering of multi-dimensional data using 
the principles of multi-resolution perceptual grouping. We 
have shown that the clustering algorithm is successful at 
automatically determining the number of clusters and 
results in groups that match our perception. Extensive 
comparisons with state-of-the-art clustering algorithms 
have shown the superiority of this method in extracting 
higher-level structures in the data. 
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