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Abstract

Tracking objects using the mean shift method is per-
formed by iteratively translating a kernel in the image space
such that the past and current object observations are sim-
ilar. Traditional mean shift method requires a symmetric
kernel, such as a circle or an ellipse, and assumes con-
stancy of the object scale and orientation during the course
of tracking. In a tracking scenario, it is not uncommon to
observe objects with complex shapes whose scale and ori-
entation constantly change due to the camera and object
motions. In this paper, we present an object tracking method
based on the asymmetric kernel mean shift, in which the
scale and orientation of the kernel adaptively change de-
pending on the observations at each iteration. Proposed
method extends the traditional mean shift tracking, which is
performed in the image coordinates, by including the scale
and orientation as additional dimensions and simultane-
ously estimates all the unknowns in a few number of mean
shift iterations. The experimental results show that the pro-
posed method is superior to the traditional mean shift track-
ing in the following aspects: 1) it provides consistent object
tracking throughout the video; 2) it is not effected by the
scale and orientation changes of the tracked objects; 3) it is
less prone to the background clutter.

1. Introduction

In computer vision, tracking refers to the task of gener-
ating the trajectories of the moving objects by computing
its motion in a sequence of images. Object motion recorded
in the form of a trajectory commonly contains translational
motion. Numerous approaches have been dedicated to com-
puting the translation of an object in consecutive frames,
among which the mean shift method is one of the most
common methods which is also used in the commercial ap-
plications. The popularity of the mean shift method is due
its ease of implementation, real time response and robust

tracking performance.
Mean shift is a nonparametric density estimator which

iteratively computes the nearest mode of a sample distri-
bution. After its introduction in the literature [7], it has
been adopted to solve various computer vision problems,
such as line fitting [2], segmentation [5] and object track-
ing [6]. Despite its promising performance, as discussed in
various papers [4], [3] and [12], the traditional mean shift
method has two main limitations, the first of which is the
constancy of the kernel bandwidth. The changes in the ob-
ject scale requires an adjustment of the kernel bandwidth in
order to consistently track the object. An intuitive approach
to estimate the object scale is to search for the best scale by
testing different kernel bandwidths and selecting the band-
width which maximizes the appearance similarity [6]. Al-
ternatively, after the object center is estimated, a mean shift
procedure can compute the bandwidth of the kernel in the
scale space, which is formed by convolving the image with
a set of Gaussian kernels at various scales [3].

The second limitation of the traditional mean shift
method is the use of radially symmetric kernels which are
isotropic in shape. In the view of often anisotropic struc-
ture of the object, radially symmetric kernels inhibit robust
image segmentation [12] and object tracking. For example,
representing an elongated object with a circular kernel will
bias the position estimation due to the non-object regions
residing inside the kernel. This object can be better repre-
sented by an anisotropic symmetric kernel, such as an el-
lipse. The scale and orientation of a kernel representing an
object can be computed by evaluating the second order mo-
ments from the object silhouette [1] or the posterior appear-
ance probabilities [10]. Both of these methods, however,
are computationally expensive compared to the mean shift
tracking method. This observation resulted in the introduc-
tion of anisotropic symmetric kernels to the mean shift anal-
ysis. In particular, Wang et al. [12] has shown the improved
performance of the mean shift segmentation when a circu-
lar kernel is replaced with an elliptical kernel. In their ap-
proach, in contrast to analyzing the local data distribution,
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the authors estimated the orientation and the scale of the
elliptical kernel from images.

In this paper, we extend the traditional mean shift
method by introducing the use of asymmetric kernels in the
density estimation process. Asymmetric kernels have been
used in the area of statistics for over a decade and have been
shown to improve the density estimation [8]. This paper,
however, does not use asymmetric kernels which have para-
metric profiles, due to their inability to represent the shape
of the tracked objects. We introduce the level set kernel
to nonparametric density estimation whose profile is also
nonparametric. The second contribution of our paper is
the online estimation of the kernel scale and orientation at
each mean shift iteration by analyzing the local data statis-
tics. In our approach, the kernel scale and orientation are
introduced as additional dimensions in the estimation pro-
cess. Proposed approach evaluates the mean shift vector si-
multaneously in all dimensions. This approach overcomes
local solutions observed due to the estimation of the ker-
nel translation, scale and orientation sequentially. In order
to demonstrate the advantages of the proposed method, we
chose the object tracking application, where the objects usu-
ally have asymmetric shapes.

We organized the paper as follows. The next section pro-
vides a brief overview of the traditional mean shift track-
ing for completeness. We introduce the asymmetric kernel
mean shift, its motivation and formulation within the track-
ing framework in section 3. Section 4 provides insight to the
automated scale and orientation estimation for both sym-
metric and asymmetric kernels. Experimental results using
the proposed method are given in section 6. Finally, we dis-
cuss the future directions and conclude in section 7.

2. Mean Shift Tracking: An overview

The mean shift method iteratively computes the closest
mode of a sample distribution starting from a hypothesized
mode. In the context of tracking, a sample corresponds to
the color observed at a pixel x and has an associated sample
weight w(x), which defines how likely the pixel color I(x)
belongs to an object model q.

The traditional mean shift tracking method evaluates the
displacement (translation) of the object centroid by comput-
ing the mean shift vector ∆x. Let the initial object position
be x̂, and we want to compute the new object position x̂′,
such that x̂′ = x̂ + ∆x. The mean shift vector is computed
using the following:

∆x =
∑

i K(xi − x̂)w(xi)(xi − x̂)∑
i K(xi − x̂)w(xi)

, (1)

where the denominator serves as a normalization term, and
K(.) is a radially symmetric kernel with bandwidth h defin-
ing the tracked object region. Given the color distribution

functions q and p generated from the model and candidate
object regions, the weight at pixel x is derived from the
Bhattacharyya measure and is given by:

w(x) =
√

q(I(x))/p(I(x)). (2)

3. Asymmetric Kernel Mean Shift

At each mean shift iteration, the samples that lie within
the kernel effect the amount of kernel shift, hence, con-
tribute equally to the selection of the mode. Although, this
property is one of the strengths of the mean shift method [7],
it also poses a limitation due to the method’s sensitivity to
the kernel selection [12]. Especially in the context of object
tracking, where the kernel represents the object shape, this
limitation becomes more evident. Take a look at Figure 1,
where we show four different kernels defining the tracked
object region. The traditional mean shift requires radially
symmetric kernels in the shape of a circle given in part (a).
These kernels have promising performance for object seg-
mentation, however, their use dramatically effects the per-
formance of object tracking. The main reason for the perfor-
mance loss stems from considering the non-object regions
residing inside the kernel as a part of the object. The use
of anisotropic symmetric kernels, such as the ones shown in
parts (b) and (c), has shown to improve segmentation [12],
and object tracking [3].

The main advantage of anisotropic symmetric kernels is
that most of the non-object region resides outside of the
kernel. These kernels, however, do not represent the ob-
ject shape and still contain non-object regions as part of
the object. An ideal kernel has the shape of the tracked
object which may be asymmetric as shown in Figure 1 d.
Asymmetric kernels, however, may not have an analytical
form. This observation suggests the use of implicit func-
tions for defining the profile of arbitrarily shaped kernels.
Implicit functions are commonly employed in fluid dynam-
ics, where an evolving fluid is modeled by either the vol-
ume fluid representation or the level set representation. Be-
tween the two approaches, level set is more popular among
vision researchers for its simplicity and robustness and is
often used for contour based region segmentation or object
tracking [13]. In this paper, we adopt a modified form of the
implicit level set function as the asymmetric kernel required
for the mean shift method.

Implicit level set function φ(x) encodes the signed dis-
tances of the pixels x (inside positive, and outside negative)
from the object boundary, such that the object boundary re-
sides on the zero level set. This property provides a smooth
and differentiable function [9], and satisfies the regularity
requirement of a kernel [11, p. 95]. The level set function,
however, does not provide a compact support which is a re-
quired in order to be used as a density estimator in the mean
shift framework. Hence, we introduce an indicator function
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Figure 1. (a) Radially symmetric object kernel. (b, c) Symmetric object kernels which are anisotropic in shape. These kernels are commonly
used for object tracking. (d) Asymmetric object kernel tightly fitting the object shape. (e) Non parametric level set kernel associated with
the shape given in (d); the bottom view shows the projection of the kernel weights into the image coordinates.

I(x) to bound the level set by the zero level set, such that
outside of the object boundary is set to 0. In this formalism,
the level set kernel is computed by:

φ̂(x) = Cφ(x)I(x),

where C is the normalization term: 1P
φ(x)I(x) . Using the

level set kernel, the density estimator in the mean shift
framework becomes:

f̂(x) =
1
n

n∑
i=1

φ̂x(xi). (3)

The level set kernel generated from this equation for the
object shown in Figure 1 d is given in part (e).

4. Automated Scale and Orientation Selection

A radially symmetric kernel is an unbiased density esti-
mator compared to an anisotropic symmetric kernel or an
asymmetric kernel. For instance, an elliptical kernel has
more data along its major axis compared to its minor axis,
which is not the case for a circular kernel. If used appropri-
ately, such as by controlling the orientation of the kernel, the
estimation bias can be controlled by the underlying distribu-
tion and produce a more accurate shift of the mean resulting
in better mode estimation.

An intuitive approach to search for the kernel scale and
orientation is to evaluate the Bhattacharyya distance over
a set of predefined scales and orientations. A brute-force
search of predefined scales and orientations, however, is not
practical. In addition, a brute force search requires that the
object translation has already been computed. Performing
the search independent of the computing the object trans-
lation −mean shift in image coordinates−, however, may
result in loss of the tracked object. Alternatively, the mean
shift iterations can be carried out simultaneously for the ob-
ject scale and orientation as well as the object translation.
This approach requires the mean shift iterations to be per-
formed in a higher dimensional space which corresponds to
scale, orientation, apses and ordinate.

In the following discussion, we provide details of the
proposed scale and orientation selection method which is
applicable to both the asymmetric and anisotropic kernels.
In order to be consistent with the experiments given later
in the text, we will structure the discussion around object
tracking.

4.1. Scale Dimension

Before providing the details, we will first define some of
the variables used throughout the discussion. Let the spa-
tial object center be denoted by o = (ox, oy) where x and
y are the image coordinates. The scale and orientation di-
mensions are defined by σ and θ respectively. The kernel
bandwidth at an angle α ∈ [0, 2π) is denoted by r(α). The
distance of a pixel xi = (xi, yi) inside the object from o is
referred to as δ(xi).

The scale of an object pixel is represented by a linear
transformation of the image coordinates to the scale dimen-
sion. This transformation is computed by the ratio between
δ(xi) of point xi and the bandwidth observed at angle θi:

σi =
δ(xi)
r(θi)

=
||xi − o||

r(θi)
. (4)

Considering that the object is represented by a closed curve,
the scale dimension becomes an irregular grid in contrast to
the regular image coordinates. This can be exemplified by
the variation in the number of observations with an increase
in the scale; for instance, at σ = 0.1 there are less number of
pixels on the circumference of a circle than there are at σ =
0.7. This property also results in an important observation
regarding the constancy of the sample mean, σ̂, in the scale
dimension. The scale-mean satisfies the equilibrium of the
sum of the pixel-scales on both sides of the scale-mean:

∫ 2π

0

∫ σ̂r(α)

0

δ

r(α)
dδdα =

∫ 2π

0

∫ r(α)

σ̂r(α)

δ

r(α)
dδdα. (5)

Solving this equation for the unknown σ̂ provides us with
2σ̂2 − 1 = 0, and the solution of the scale-mean is given



by σ̂ =
√

2
−1

. The scale-mean for any type of object rep-
resented with a closed curve is not dependent on the shape
of the object and is constant throughout the sequence. This
property differentiates the scale dimension from the image
coordinates when conducting the mean shift iterations. An
update in the scale dimension should take relation between
the bandwidth and the scale into consideration. Let the
mean shift iteration provide a scale update of ∆σ. Substi-
tuting the new scale, σ̂ + ∆σ in equation (5) and replacing
the upper bound of the bandwidth to its prospective value
kr(α) will result in the bandwidth update factor k given by
k = 1 +

√
2∆σ.

4.2. Orientation Dimension

There is an analogy between the scale and orientation di-
mensions in terms of their differences from the image coor-
dinates. Similar to the scale dimension the number of pixels
at each angle is different, however, the number of observa-
tions does not increase with an increase in the angle. To
generate samples in the orientation space, the object pixels
xi = (xi, yi) are nonlinearly transformed to the orientation
space by computing:

θi = arctan
yi − oy

xi − ox
, (6)

where o = (ox, oy) is the object centroid. An important
observation arising from equation (6) is that the orientation
is not directly dependent on the object shape which is ex-
pressed by the bandwidth r(θi). We should, however, note
that there is an indirect dependence between the shape and
orientation, which can be exemplified by the difference in
the number of observations between the minor and major
axis of an elliptical kernel. This dependence results in com-
puting the orientation-mean θ̂ of the object region:

∫ θ̂

0

∫ r(α)

0

αdδdα =
∫ 2π

θ̂

∫ r(α)

0

αdδdα. (7)

solving for the inner integral and rearranging terms, we
have:

2
∫ θ̂

0

αr(α)dα =
∫ 2π

0

αr(α)dα. (8)

In contrast to the scale-mean, the orientation-mean is not
constant and requires an update with every new frame.
This update has the form of the mean shift iterations per-
formed the image coordinates to find the object centroid:
θ̂new = θ̂old + ∆θ. An exception to the orientation up-
date is observed when the kernel is an isotropic kernel,
where r(α) = r. In this case, similar to the scale-mean,
orientation-mean becomes a constant, θ̂ =

√
2π, such that

∆θ = 0.
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Figure 2. Mean shift iterations in the joint space. Yellow contour
represents the tracked object. (a) Initial orientation and interme-
diate mean shift iterations. (b) Plot showing the distance between
the model histogram and the candidate histogram computed using
L1 norm as a function of the iteration number.

5. Object Tracking in (σ, θ, x, y) Space

Estimating the object position in the joint space refers to
finding the spatial position as well as the scale and orien-
tation of the object. To reduce the estimation bias of one
dimension over the other dimension, the mean shift itera-
tions are required to be conducted simultaneously on all di-
mensions. Let Γ = (σ, θ, x, y) denote the joint space. The
density estimator in Γ is given by

f̂(Γ) =
1
n

n∑
i=1

K(Γ − Γi) (9)

Since the orientation and scale of the object is independent
of its centroid, the 4D kernel K(.) can be broken into a
product of three different kernels:

K(x, y, σ, θ) = K(x, y)KE(σ)KE(θ), (10)

where KE(.) is a one-dimensional Epanechnikov kernel
with a profile kE(z) = 1 − |z| if |z| < 1 and 0 other-
wise, and K(x, y) is the spatial kernel with the profile as
discussed in Section 3. Using the estimator given in equa-
tion (10), the mean shift vector which maximizes the den-
sity iteratively is computed by:

∆Γ =
∑

i K(Γi − Γ̂)w(xi)(Γi − Γ̂)∑
i K(Γi − Γ̂)w(xi)

, (11)

where ∆Γ = (∆x, ∆y, ∆σ, ∆θ) denotes the update of the
mode. The mean shift in the joint space always points in
the direction of the true density mode due to the monotonic
decreasing profiles of the kernels in each dimension; hence,
the mean shift procedure convergences to a local solution in
the joint space.



In contrast to estimating the object translation in the im-
age coordinates, simultaneous estimation in the joint space
requires a slightly higher number of iterations. This ob-
servation is due to increase in the number of parameters
to estimate. Nevertheless, the tracking performance is real
time. Empirically, the number iterations ranges from three
to nine depending on the amount of motion and the distinc-
tiveness of the object appearance from its background. In
Figure 2 (a) we show a synthetic sequence where the ob-
ject undergoes a scaling, translation and rotation from one
frame to the next. As shown in part (b) of the figure, the
Bhattacharyya distance decreases exponentially with each
iteration.

6. Experiments

Given the object outline in the first frame, proposed
tracking algorithm is initialized by computing the object
centroid and orientation. The scale-mean is not computed
as it is independent of the shape and is constant. In order
to represent the asymmetric shape of an object, we create
an r-table which encodes the bandwidth observed at each
angle. The r-table is utilized for generating the modified
level set kernel for conducting the mean shift iterations. We
should emphasize that the level set kernel is computed only
for once and used throughout the sequence. The appearance
of the object is modeled by the kernel density estimated
(KDE) in the RGB space. For practical purposes, we have
used the weighted histogram approximation of the KDE us-
ing the Epanechnikov kernel with 8 bins along each dimen-
sion. The bandwidth of the Epanechnikov kernels used in
the scale and the orientation dimensions are set to hσ = .4
and hθ = 10◦ respectively. In addition, we also generate
the KDE of the immediate outside region of the tracked ob-
ject to suppress the bins of the model histogram which also
appear in the background histogram. This step improves
the tracking considerably due to reducing the ambiguity be-
tween the background and object appearances. Once the
initialization is achieved, tracking is performed iteratively
computing the mean shift vector in the search space follow-
ing the steps given in Figure 3.

In order to evaluate the performance of the proposed
method, we present two sequences in which the objects un-
dergo scaling, translation and in-plane rotations. The video
sequences of the results given in this section are provided
as a media attachment to this submission. The proposed
approach successfully computes the translation, orientation
and scale on the average of 40fps where the estimation in
every frame took on the average five iterations. For the same
sequences, the traditional mean shift tracker took longer
time due to fluctuations of the object center around multiple
modes in the weight surface.

The first sequence, which is given in Figure 4 a, includes
a phone handle. The outline of the handle is marked by

Tracking()

1 Compute o0, θ0 (equation 8)
2 Generate object model q
3 Generate r-table and level set kernel φ(x) in spatial dimensions
4 for (all frames)
5 Loop until convergence
6 Generate candidate prior p
7 Perform mean shift iterations in Γ (equation (11)
8 Update object centroid: onew = oold + ∆o
9 Update object orientation: θnew = θold + ∆θ

10 Update object scale: rTablenew = rTableold(1 +
√

2∆σ)
11 endLoop
12 endFor

Figure 3. Mean shift algorithm for tracking objects by automated
scale and orientation selection.

hand in the smallest object scale which provides a rough
estimate of the object shape. This initialization results in a
slightly imperfect tracking for higher object scales as shown
in the second row of part (a). The second sequence is a
zooming-in sequence of a cruiseliner. Towards the end of
the sequence, out-of-plane rotation of the object due to the
camera motion results in the tracked shape not to perfectly
fit on the ship outline, especially around the foremast of the
ship. This effect will occur regardless of the initial shape
due to the change in the object view. Regardless, the tracked
outline provides the minimum Bhattacharyya distance in the
mean shift tracking space.

7. Conclusions and Future Work

This paper introduces the use asymmetric kernels to the
mean shift tracking framework. The complex object shapes
which may not have an analytical form are implicitly rep-
resented by a modified level set formalism. Introducing the
asymmetric kernels reduce the estimation bias due to a bet-
ter representation of the underlying density. Another advan-
tage of the asymmetric kernel is that it is a generalization
of the previous kernels, such that both radially symmetric
and anisotropic kernels are forms of an asymmetric kernel.
Tracking is achieved by automatically estimating the kernel
scale and orientation in addition to its translation in the im-
age coordinates. Proposed method’s simultaneous estima-
tion of all parameters using the kernel mean shift contrasts
with most kernel tracking methods which sequentially esti-
mates the parameters (first, the translation parameters, then
the scale parameter without the orientation parameter).

Despite the advantages of the proposed tracking method,
our method suffers from the constancy of the kernel shape
which is also a drawback for all other kernel trackers. In
computer vision literature, this problem has been addressed
by contour trackers which are capable of tracking the com-
plete object boundary. We are working on techniques to
merge the kernel trackers, especially the mean shift tracker,
with contour trackers which would overcome the compu-
tational complexity problem of the contour trackers. This
proposal would require a better contour handling technique



(a)

(b)
Figure 4. Tracking result using the proposed tracking method. For video files, please look at the attached media file.

compared to the currently used r-table representation.
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