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Abstract

We propose a framework for general multiple target

tracking, where the input is a set of candidate regions in

each frame, as obtained from a state of the art background

learning, and the goal is to recover trajectories of tar-

gets over time from noisy observations. Due to occlusions

by targets and static objects, noisy segmentation and false

alarms, one foreground region may not correspond to one

target faithfully. Therefore the one-to-one assumption used

in most data association algorithm is not always satisfied.

Our method overcomes the one-to-one assumption by for-

mulating the visual tracking problem in terms of finding

the best spatial and temporal association of observations,

which maximizes the consistency of both motion and ap-

pearance of trajectories. To avoid enumerating all possi-

ble solutions, we take a Data Driven Markov Chain Monte

Carlo (DD-MCMC) approach to sample the solution space

efficiently. The sampling is driven by an informed proposal

scheme controlled by a joint probability model combining

motion and appearance. To make sure the Markov chain to

converge to a desired distribution, we propose an automatic

approach to determine the parameters in the target distri-

bution. Comparative experiments with quantitative evalua-

tions are provided.

1. Introduction

Multiple targets tracking is a critical component of

video surveillance systems, as it provides the description

of spatio-temporal relationships among moving objects in

the scene required by activity recognition modules. Under

a general tracking setup, environments of interest usually

contain an unknown number of targets and multiple obser-

vations of targets are reported. The purpose of data asso-

ciation in multiple target tracking problem is to recover the

correct correspondence between observations and targets.

Once data association is established, filtering techniques are

applied to estimate the state of targets.

Most existing data association algorithms consider a

one-to-one mapping between targets and observations,

which assumes that at a given time instant one observation

can be associated with at most one target and vice versa:

one target corresponds to at most one observation. This as-

sumption is reasonable when the considered observations

are punctual. However, in the visual tracking problem,

the observations correspond to blobs or meaningful regions

which cannot be faithfully modeled by a single point. More-

over, erroneous detections due to occlusion and spurious

motion segmentation provide a set of observations where

a single moving object is often detected as multiple moving

regions, or multiple moving regions are merged into a sin-

gle blob. Therefore, the one-to-one association is usually

violated in real environments. In this paper, we propose

a general framework which makes use of spatio-temporal

consistency in both motion and appearance and does not re-

quire the one-to-one mapping between observations and tar-

gets. Although our framework can accommodate additional

information, such as generic model information (which is

discussed in future work), in this paper, we use consistency

of motion and appearance as the only constraint.

Instead of inferring the association and targets’ states ac-

cording to current observations, our method uses a batch

of observations. A track is regarded as a path, in space-

time, traveled by a target. We aim to recover the tracks

of an unknown number of targets using the consistency in

motion and appearance of tracks. Due to the high com-

putational complexity of such an association scheme, a

Data-Driven Markov Chain Monte Carlo (DD-MCMC) [15]

method is proposed to sample the solution space. Both spa-

tial and temporal association samples are incorporated into

the Markov chains’ transitions. The key contribution of the

paper is the explicit use of spatio-temporal smoothness in

motion and appearance to overcome the one-to-one assump-

tion used in most of data association algorithms by using a

spatio-temporal MCMC.

The paper is organized as follows. The related work is
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reviewed in Section 2. We formulate the multiple target

tracking problem and present our spatio-temporal MCMC

data association algorithm in Section 3 and 4 respectively.

We discuss how to determine the parameters used in our

probabilistic model by Linear Programming and provides

comparative results on both simulation and real data sets in

Section 5, followed by conclusions and discussion in Sec-

tion 6.

2. Related Work

In the past decades, multiple target tracking has been a

very active field. Among the large body of work, the mul-

tiple hypothesis tracker (MHT) [13] and joint probabilis-

tic data association filter (JPDAF) [2], are the most widely

used. MHT is a statistical framework to evaluate the likeli-

hood of each hypothesis, which represents a set of assign-

ments of observations and targets. To find the best hypoth-

esis over time, in practice k-best hypotheses are maintained

at each time, which can be solved in polynomial time [5].

The essential difference between JPDAF and MHT is that

instead of finding the best hypothesis, JPDAF computes ex-

pectation of the state of targets over all hypotheses (joint

association events). Any practical implementation of these

algorithms requires pruning all hypotheses to a smaller hy-

potheses set. Both these data association methods assume

the one-to-one mapping between observations and targets.

According to the depth of observations, the existing

methods can be categorized into either sequential inference

or deferred logical inference. Sequential methods make in-

ference according to current observations. In [8], a MCMC-

based particle filter simulates the distribution of the associ-

ation probability with a fixed number of targets, which al-

lows multiple temporal associations between observations

and targets. In [7, 14], sequential tracking methods use

pairwise Markov random field (MRF) based prior to model

the interaction between targets at one time instant. In [16],

Markov network is used to model the interaction between

multiple targets at each time and a mean field Monte Carlo

algorithm is applied to approximately estimate the poste-

rior density of each target. In [17], multiple people are de-

tected and tracked in crowded scene using MCMC based

method to estimate the state and the number of targets se-

quentially. In [10] a multi-view approach uses particle fil-

ter based method to segment and track people against clut-

ter. Many sequential methods employ model information to

identify a specific type of target against background, such

as [16, 17, 8, 7].

Due to the ambiguity existing at any one time instant,

deferred logical inference makes a decision according to a

sequence of observations. By extending a hypothesis from

an assignment set between observations and targets at one

time to a set of disjoint tracks, both MHT and JPDAF have

a deferred logical version. However, the solution space of

Figure 1. One possible cover of the observations, which includes

two tracks (τ1, τ2) and one false alarm. The circles represent the

foreground regions. The number in circles denotes the frame num-

ber of foreground regions. The dashed rectangles represent the

covering rectangles of foreground regions

hypotheses grows exponentially in term of the depth of ob-

servations. In [11], the authors adopted a deferred logic

framework to organize the one-to-one temporal association

between targets and punctual observations over long se-

quences. A dynamic programming method is applied in [3]

to optimize trajectories with a sliding window.

3. General Multiple Target Tracking

3.1. A Bayesian Formulation

Let T ∈ N
+ denote the duration of tracking and assume

that there are K unknown moving targets, within the time

interval [1, T ]. Our observations come from foreground re-

gions. Let yt denote the set of foreground regions at time t,
Y is the set of all available foreground regions within [1, T ].
Here, we define the tracking problem as given the observa-

tion Y , inferring an unknown number of K tracks in Eq. 1,

where τ0 is the set of false alarms, τk is the kth track.

ω = {τ0, τ1, · · · , τK} (1)

Each τk in ω is defined as a sequence of shapes. For simplic-

ity, we use rectangles to represent the shapes covering fore-

ground regions. Therefore, tracking can be regarded as the

problem to find a cover which maximizes spatio-temporal

consistency of targets. In the case of a single target with

perfect foreground segmentation, the set of MBRs (Min-

imum Bounding Rectangles) of each foreground region at

different time forms the best cover of the target. However,

when inter-occlusion between multiple targets and noisy

foreground segmentation exist, it is not trivial to find the op-

timal cover. Figure 1 shows one possible cover of targets,

which includes two tracks (τ1, τ2) and one false alarm.
In our framework, the tracking problem is formulated as

maximizing a posterior (MAP) of a cover of foreground re-
gions, given the set of observations Y :

ω∗ = arg max(p(ω|Y )) (2)

By introducing the concept of cover, we overcome the one-

to-one assumption at each time instant, one foreground re-

gion can be covered by more than one target and one target

can cover more than one foreground region as well.



In a Bayesian framework, the cover ω is denoted by a set
of hidden variables. In the following sections, we discuss
the prior and likelihood model used in our method.

ω ∼ p(ω|Y ) ∝ p(Y |ω)p(ω) (3)

3.2. Prior Probability

To find a cover with reasonable properties, we first de-
fine a prior model which considers the following criteria:
we prefer long tracks with few false alarms. In addition,
one track should have little overlap with other tracks. Ac-
cordingly, we adopt the prior probability of a cover ω as the
product of the following terms.

p(ω) = p(L)p(F )p(O) (4)

1. Length of each track. We adopt an exponential model
p(L) of the length of each track. Let |τk| denote the
length, i.e. the number of elements in τk.

p(L) =

K
∏

k=1

1

z0
exp(λ0 |τk|) (5)

2. False alarms. Let F denote the size of τ0. We adopt
an exponential model p(F ) to penalize the number of
false alarms.

p(F ) =
1

z1
exp(−λ1F ) (6)

3. Spatial overlap between different tracks. We adopt an
exponential model in Eq.7 to penalize overlap between
different tracks, where Γ(t) denotes the average over-
lap ratio of different tracks at time t.

p(O) =
T
∏

t=0

1
z3

exp(−λ2Γ(t))

Γ(t) =

∑

τi(t)∩τj(t)6=∅
|

τi(t)∩τj(t)

τi(t)∪τj(t)
|

|τi(t)∩τj(t) 6=∅|

(7)

3.3. Joint Likelihood p(Y |ω)

Within a small time span, the appearance of foreground
regions covered by each track τk is supposed to be coher-
ent, and the motion of such a rectangle sequence should be
smooth. Hence, we consider a probabilistic framework for
incorporating two parts of likelihoods: motion likelihood
LM , appearance likelihood LA. We represent the elements
(rectangles) in track k as (τk(t1), τk(t2), . . . , τk(t|τk|)),
where ti ∈ [1, T ], and (ti+1 − ti) ≥ 1, since missing detec-
tion may happen. Given one cover, the motion and appear-
ance likelihood of a target is assumed to be independent of
other targets. The joint likelihood of a cover can be factor-
ized in Eq.8.

p(Y |ω) =
K
∏

k=1

L(τK) =
K
∏

k=1

|τk|−1
∏

i=1

L (τk(ti+1)|τk(ti))

=
K
∏

k=1

|τk|−1
∏

i=1

LM (τk(ti+1)|τk(ti)) LA (τk(ti+1)|τk(ti))

(8)

3.3.1 Motion Likelihood

For each target, we consider a linear kinematic model:

x
k
t+1 = Ax

k
t + w

y
k
t = Hx

k
t + v (9)

where x
k
t is the kinematic state vector, which includes

the position (u, v), size (w, h)and the first order derivatives

(u̇, v̇, ẇ, ḣ) in 2D image coordinates. Measurement y
k
t in

Eq.9 corresponds to the position and size of τk(t) in 2D im-
age coordinates . w ∼ N (0, Q), v ∼ N (0, R) are Gaussian
process noise and observation noise. The motion likelihood
for each track can be represented as follows.

LM (τk(ti+1)|τk(ti)) = p(τk(ti+1)|τ̂k(ti))

= 1/
(

(2π)2 det(Pi)
1/2

)

exp(− 1
2
e

T
i P−1

i ei)
(10)

where ei = τk(ti+1)− τ̄k(ti+1) and Pi = HT P̄i+1H +R.

Let τ̄k(ti) and τ̂k(ti) denote the prior and posterior esti-

mates of τk at time ti. P̄i is the prior estimate of state co-

variance at time ti. The details of updating the prior and

posterior estimates in Kalman filters can be found in [9].

Note that, if missing detection occurs in τk at time t, or say

there is no observation at time t for track k, the prior esti-

mate is assigned to the posterior estimate.

3.3.2 Appearance Likelihood

In order to model the appearance of each detected region,
we adopt the non-parametric histogram-based descriptor [6]
to represent the appearance of image blobs. The appearance
likelihood is defined as follows.

LA (τk(ti+1)|τk(ti)) = (1/z3) exp (−λ3D(τk(ti), τk(ti+1)))
(11)

where D(·) represents the the symmetric Kullback- Leibler

Distance (KL) between the histograms-based descriptor of

foreground covered by τk(ti) and τk(ti+1).
With some manipulations, we combine the prior p(ω) in

Eq. 4 and the likelihood p(ω|Y ) in Eq. 8 to have the whole
posterior represented in Eq. 12.

p(ω|Y ) ∝ exp{−C0Slen − C1K − C2F − C3Solp

−C4Sapp − Smot}

Slen = −

(

K
∑

k=1

|τk|

)

, Solp =

(

T
∑

T=1

Γ(t)

)

Sapp =
K
∑

k=1

Lk−1
∑

i=1

D(τk(ti), τk(ti+1))

Smot =
K
∑

k=1

Lk
∑

i=1

(

log
(

det(Pi)
1/2

)

+ 1
2
e

T
i P−1

i ei

)

(12)

where C0, · · · , C4 are positive real constants. Eq. 12 re-

veals that the MAP estimation is equivalent to finding the

minimum of an energy function. The tradeoff between prior

and posterior will lead to a MAP solution. In the experi-

ment’s section, we discuss how to determine the parameters

in such a probabilistic model by Linear Programming.



(a) Temporal Moves (b) Spatial Moves

Figure 2. Illustration of temporal and spatial moves. White circles represent false alarms.

4. Spatio-temporal MCMC Data Association

Searching in such a solution space for Eq.12 is not trivial.

We propose to use a data-driven MCMC to estimate the best

spatio-temporal cover of foreground regions. To ensure that

detailed balance is satisfied, the Markov chain is designed to

be ergodic and aperiodic . It is also important to design sam-

plers that converge quickly. In our proposal distribution, the

sampler contains two types of moves: temporal and spatial

moves, shown in Figure 2. Temporal moves correspond to

changing the labels of rectangles at different time instants,

while spatial moves change covering rectangles at one time

instant.

The overview of our MCMC data association algorithm

is shown in Algorithm 1. The input to the algorithm is the

set of original foreground Y , initial cover ω0 and the total

number of samples nmc.

Each move is sampled according to its own prior prob-
ability. Since the temporal information is also applied
in the spatial moves, we first take ǫ ∗ nmc (ǫ = 0.15)
temporal moves and then both types of moves are non-
discriminatorily considered. Note that, instead of keeping
all samples, we only keep the cover with the maximum pos-
terior since we don’t need the whole distribution but the
MAP estimate. For the same reason, there is no burn-in
procedure. The rectangles in the initial cover ω0 are di-
rectly obtained from MBRs of foreground regions. Given
the stationary distribution π(ω) = p(ω|Y ), the acceptance

Algorithm 1 Spatio-temporal MCMC Data Association

Input: Y , nmc, ω∗ = ω0 Output: ω∗

for n = 1 to nmc do

if n < ǫ ∗ nmc then

Sample one temporal move.

else

Sample one move from all candidate moves.

Propose ω′ according to q(ω′|ω)

Sample U from Unif[0, 1]
if U < A(ω, ω′) then ωn = ω′,

else ωn = ω

if p(ωn|Y ) > p(ω∗|Y ) then

ω∗ = ωn

end for

ratio A(ω, ω′) in Algorithm.1 is defined as follows.

A(ω, ω′) = min

(

1,
π(ω′)q(ω|ω′)

π(ω)q(ω′|ω)

)

(13)

In such a Markov chain transition, the computation for each

MCMC move is actually low, since we only need to com-

pute the ratio π(ω′)/π(ω). To make the sampling more

efficient, we define the neighborhood in spatio-temporal

space. Two covering rectangles are regarded as neighbors if

their temporal distance and spatial distance is smaller than a

threshold. The neighborhood actually forms a graph, where

a covering rectangle corresponds to a node. In the rest of the

paper, we use “node” and “covering rectangle” interchange-

ably. The KD-tree structure is used to implement fast ac-

cess to neighbors. A neighbor with a smaller (larger) frame

number is called a parent (child) node. The neighborhood

makes the algorithm more manageable since candidates are

considered only within the neighborhood system. Figure 3

illustrates the neighborhood and L (y|τk(ti)) represents the

joint motion and appearance likelihood of assigning an ob-

servation y (i.e. one foreground region) to a track τk af-

ter ti. In subsequent sections, we show how to devise the

Markov chain’s transition by considering specific choices

for the proposal distribution q(ω′|ω).

Figure 3. Neighborhood and association likelihood

4.1. Bi­directional sampling

Within the time span [1, T ], the “future” and “past” in-

formation is symmetric: e.g, we can extend a track in both

the positive time direction and the opposite direction. Thus,

we draw samples uniformly at random (u.a.r) in both tem-

poral directions: looking forward and backward. This bidi-

rectional sampling has more flexibility and reduces the total

number of samples. In the following section, we only de-



scribe sampling in the positive time direction and the sam-

pling in the other direction proceeds in a symmetric way.

4.2. Temporal moves

Forward Extension: First we u.a.r select a track to extend

its length. We then select one false alarm node from the

set of child nodes of the track’s end node according to the

joint likelihood exk(y). We keep on extending the track

according to a probability γ ∈ [0, 1]. Hence, the extension

proposal distribution can be represented as follows.

qextension(·) = (1/K)pT

∏

n

γexk(y)

exk(y) = (− log L(y|τk(ti))+1)−1

∑

y∈child(τk(ti))

(− log L(y|τk(ti))+1)−1

where n is the number of actual extensions. The prior of
the extension move is pT and all temporal moves have the
same prior. Forward Reduction: We u.a.r select a track
k to reduce its length. We then select a break point from
(|τk| − 1) links according to the probability brk(i). The
nodes in the track which are after the break point are moved
to τ0.

qreduction(·) = (1/K)pT brk(i)

brk(i) =
− log L(τk(ti+1)|τk(ti))

|τk−1|∑

j=1
− log L(τk(ti+1)|τk(ti))

Birth: We select u.a.r a node y ∈ τ0 and associate it to a
new track.

qbirth(·) = (1/|τ0|)pT

Death: We choose u.a.r a track τk and delete it. The nodes
belonging to the deleted track are moved to τ0.

qdeath(·) = (1/K)pT

Split: We u.a.r select a track τk and then select a break point
according to the probability brk(i). The nodes in the track
which are after the break point are moved to a new track.

qsplit(·) = (1/K)pT brk(i)

Merge: If a track’s (τk1) end node is in the parent set of
another track’s (τk2) start node, this pair of two tracks is
candidate for a merge move. We select u.a.r a pair of tracks
from candidates and merge the two tracks into a new track
τk = {τk1

}∪{τk2
}. Let C denote the number of candidates

(which is also used for the remaining moves).

qmerge(·) = (1/C)pT

Switch: If there exist two break points p, q in two tracks
τk1

, τk2
, such that τk1

(tp) is in the parent set of τk2
(tq+1)

and τk2
(tq) is in the parent set of τk1

(tp+1) as well, this
pair of nodes is one candidate for a switch move. We u.a.r
select a candidate and define two new tracks as:

τ ′
k1

= {τk1(t1), ..., τk1(tp), τk2(tq+1), ..., τk2(t|τk2
|)}

τ ′
k2

= {τk2
(t1), ..., τk2

(tq), τk1
(tp+1), ..., τk1

(t|τk1
|)}.

qswitch(·) = (1/C)pT

4.3. Spatial Moves

Temporal moves only change the label of rectangles in
the cover. However, since detected moving regions do not
always correspond to a single target (they may represent
parts of a target or delineate multiple targets moving closely
to each other), merely using temporal moves cannot probe
the spatial cover of foreground. Hence, we propose a set
of spatial moves to segment, aggregate or diffuse detected
regions to infer the best cover of foreground. The spatial
and temporal moves are interdependent: the result of a spa-
tial move is evaluated within temporal moves, meanwhile
the result of a temporal move will guide subsequent spatial
moves. The prior of segmentation and aggregation moves is
pS and the prior of diffusion moves is pD.
Forward Segmentation: If more than one track’s predic-
tion τ̄k(t) has enough overlap with one covering rectangle at
time t, the rectangle is a candidate for a segmentation move
and the tracks are related tracks of the candidates. We ran-
domly select such a candidate y and for each related track
τk generate a new covering rectangle τ ′

k(t) according to the
probability S(τ ′

k(t)|τ̄k(t))

S(y′
t|yt) ∼ N

(

yt + α
dE

dx
|x=yt ,u

)

(14)

where E = − log LA (x|yt) is the appearance energy func-
tion, α is a scalar to control the step size and u is a Gaussian
white noise to avoid local minimum. In practice, we adopt
the spatio-scale mean shift vector[4], which provides an ap-
proximation of the gradient of the appearance likelihood in
terms of position and scale. The newly generated covering
rectangles will take the place of τk(t).

qseg(·) = (1/C)pS

∏

k

S(τ ′
k(t)|τ̄k(t))

If there exist partial foreground regions which are not cov-
ered by newly added rectangles, the MBRs of the uncovered
foreground regions are added into τ0. This is applied to all
spatial moves.
Forward Aggregation: If one track’s prediction has
enough overlap with more than one covering rectangle at
time t, this forms a candidate for an aggregation move. We
randomly select a candidate and merge the related covering
rectangles to form a new rectangle.

qagg(·) = (1/C)pS

Diffusion: We randomly select one covering rectangle in a
track, update its position and size to generate a new covering
rectangle τ ′

k(t) according the probability S(τ ′
k(t)|τ̄k(t)).

qdif (·) = (1/
∑K

k=1
|τk|)pDS(τ ′

k(t)|τ̄k(t))



5. Experiments

Comparative experiments on both simulation and real

data are reported in this section. To evaluate the perfor-

mance of our approach quantitatively, we adopt the met-

ric “Sequence Tracking Detection Accuracy” (STDA) pro-

posed in [12], which is a spatio-temporal based measure

penalizing fragmentation in the temporal and the spatial

domains. STDA produces a real number value between

zero and one (worst and best possible performance, respec-

tively).

5.1. Parameters Training

Properly selecting the parameters in Eq. 12 is necessary

to assure the Markov chain converges to the correct distri-

bution. Here, we propose an automatic solution to deter-

mine the parameters in such a probabilistic model. As men-

tioned in Section 4, we only need to compute the ratio of

π(ω′)/π(ω) in Markov chain transition. We use this prop-

erty to establish constraints on the parameters in the model.

First we determine parameters in the motion model, i.e. Q
and R in Eq.9. Then we start with the best cover ω∗ ob-

tained from ground truth and use the temporal and spatial

moves to degrade the best cover to ωi. For each ωi, we

have a constraint that π(ω∗)/π(ωi) ≥ 1, which provides

a linear inequality in terms of the parameters. After col-

lecting multiple constraints, we use Linear Programming to

find a solution of positive parameters with a minimum sum.

However, due to the ambiguity existing in the ground truth,

a few conflict constraints may exist. Thus, in our experi-

ment, 5,000 constraints, which covers most of cases of dif-

ferent moves from multiple sequences in one data set, are

sequentially generated and added to a constraint set. Any

constraint, which conflicts with the existing set, is ignored.

Each LP problem is solved by GNU Linear Programming

Kit (GLPK). A desired Markov chain transition and a cor-

rect MAP solution are ensured by the trained parameters.

5.2. Simulation results

To demonstrate the concept of our approach, we design

simulation experiments. In a L×L square region, there are

K (unknown number) moving discs. Each disc presents an

independent color appearance and an independent constant

velocity and scale change in the 2D region. False alarms

(non-overlapping with targets) are u.a.r located in the scene

and the number of false alarms is an uniform distribution on

[0, FA]. If the number of existing targets in the square re-

gion is less than the upper bound N , a target will be added

randomly. We also add several bars as occlusions in the

scene. This static occlusion causes a target to break into

several foreground regions. This simulates real scenarios

when foreground regions are fragmented due to noisy back-

ground modelling. These sequences challenge many exist-

ing data association methods due to the frequent occlusions

and fragmented observations. The input to our tracking al-

gorithm contains merely foreground regions in each frame

without using any model information. Figure 4 gives the

result of our spatio-temporal MCMC data association algo-

rithm. Colored and black rectangles display the targets and

false alarms respectively. Red links indicate the spatial seg-

mentation happens between nodes.

We compare the tolerance of the target density and

false alarms with other methods, including a JPDAF based

method from [6], the MHT from [5] and our own algo-

rithm with only temporal moves. For each different set-

ting, we generate 20 sequences and each sequence contains

T = 50 frames. The MCMC sampler was run for a total of

10K iterations where the first 15% iterations consist solely

of temporal moves. The average score from multiple runs

of our method is reported. To make the comparison fair,

all four methods employ the same motion and appearance

likelihood. Figure 5(a) compares the performance when the

number of targets increases. Figure 5(b) shows the tolerance

to false alarms for different methods. Because we consider

the spatial and temporal association seamlessly, our method

is able to handle the case when split or merged observations

exist.

To extend our algorithm for long sequences, we imple-

ment the proposed association algorithm as an online al-

gorithm within a sliding window containing the latest W
frames. The cover of the current sliding window at time

t is initialized with the best cover obtained at t − 1. The

comparison between online and offline version is shown in

(a) 1st frame (b) 30th frame

(c) 43th frame (d) 50th frame

Figure 4. Simulation result L = 200, N = 7, FA = 7 and

T = 50. Color rectangles indicate the IDs of targets. Targets may

split or merge when they appear.
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Figure 5. (a)STDA as the function of N the maximum number of targets, (b)STDA as the function of FA the number of false alarms,

(c)STDA and runtime (second) for online/offline, different W window size and nmc number of samplings.

Figure 5(c). By implementing the online version, we reduce

the complexity of data association and control the delay of

output for long sequences.

5.3. Real scenarios

We show results and evaluations on three video sets to

demonstrate the effectiveness of our method in real scenar-

ios. The first set is a selection from CLEAR [1], which is

captured with a stationary camera, mounted a few meters

above the ground and looking down towards a street. The

targets in the scene include vehicles and pedestrians. The

second set, called “campus ground set”, is captured with a

stationary camera on a tripod. The foreground in second

set is clear, however the inter-target occlusion is intensive.

The third set is a selection from VIVID-I and II data set,

which is captured from UAV cameras. The main difficulty

of the third data set comes from noisy foreground regions

and false alarms caused by erroneous registration and par-

allax. The input to our tracking algorithm contains fore-

ground regions which are extracted using a dynamic back-

ground model estimated within a sliding window. Tracking

is performed automatically from the detected blobs without

any initialization. In the case of a moving camera, the im-

ages are first stabilized using an affine motion model [6].

Table 1 gives the quantitative comparison, where the com-

plete track is defined as 80% of the trajectory is tracked and

no ID changes. In the experiments, we use online track-

ing with a sliding window W = 50 and nmc = 1000. The

tracking process runs around 3 fps on P4 3.0 GHz PC. Some

foreground regions used as input and tracking results are

shown in Figure 6.

Table 1. Comparative results on three real data sets. Method 1:

JPDAF in[6]; Method 2: the proposed method.

One advantage of our tracking algorithm (shown in both

simulation and real data set) is worth highlighting. Because

the bi-directional (forward/backward) sampling is applied

in a symmetric way, our approach can deal with the case

where targets are merged or split when they appear. Fig-

ure 7 illustrates the comparison to the algorithms with only

forward or backward inference on the image sequence in

“campus ground set”. The colors at the bottom of each chart

correspond to labels allocated by the algorithm for the three

moving persons in the sequence, while the red bars cor-

respond to mislabeled targets due to merged observations.

The proposed bi-directional sampling allows to estimate the

trajectories and label them consistently throughout the se-

quence.

6. Conclusion and Discussion

We have presented a framework to find a global opti-

mal spatio-temporal association which maximizes the con-

sistency of motion and appearance of targets over time. Our

method overcomes problems encountered with one-to-one

mapping between observations and targets. A data driven

MCMC method is used to sample the solution space effi-

ciently and the forward and backward inferences enhance

the search performance. Compared to other data associ-

ation algorithms, the proposed method shows remarkable

improvement both temporally (i.e. consistency of labels)

and spatially (i.e. accuracy of outlined regions).

The work can be extended along the following lines:

first, the target motion model can be extended to a more

general model. Second, our framework can naturally incor-

porate object model information in two ways: 1) we can

assign a model likelihood for each node to extend our like-

lihood function. 2) we will also use model information to

drive the MCMC proposal. Third, tracking failures caused

by long term occlusions can be resolved by data association

at the level of tracklets.
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Figure 6. Experiment results of real scenarios from both stationary cameras and Unmanned Aerial Vehicle (UAV) cameras

(a) forward inference Only (b) backward inference Only

(c) JPDAF in [6] (d) Proposed method

Figure 7. The STDA and ID label for each frame
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