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Abstract

Automatic evaluation of visual tracking algorithms in the
absence of ground truth is a very challenging and important
problem. In the context of online appearance modeling,
there is an additional ambiguity involving the correctness
of the appearance model. In this paper, we propose a novel
performance evaluation strategy for tracking systems based
on particle filter using a time reversed Markov chain. Start-
ing from the latest observation, the time reversed chain is
propagated back till the starting time t = 0 of the tracking
algorithm. The posterior density of the time reversed chain
is also computed. The distance between the posterior den-
sity of the time reversed chain (at t = 0) and the prior den-
sity used to initialize the tracking algorithm forms the deci-
sion statistic for evaluation. It is postulated that when the
data is generated true to the underlying models, the deci-
sion statistic takes a low value. We empirically demonstrate
the performance of the algorithm against various common
failure modes in the generic visual tracking problem. Fi-
nally, we derive a small frame approximation that allows
for very efficient computation of the decision statistic.

1. Introduction
Tracking an object continuously over a period of time to

generate a persistent trajectory is crucial in video surveil-
lance. Most subsequent applications, such as object recog-
nition, activity analysis are dependent on the accuracy and
robustness of the tracking algorithms. Although many so-
phisticated algorithms exist for tracking, each of them will
have failure modes or scenarios when the performance will
be poor. Typically, this will happen when the data (the
frames of the video) does not fit the assumptions made in
the modeling. Most algorithms find difficulty in tracking
a target (or targets) through crowded environments, clut-
ter or poor/dramatically changing illumination and self-
occlusion. This often leads to a loss of track. In this
context, performance evaluation plays an important role in
practical visual tracking systems. However, existing per-

formance evaluation algorithms concentrate on off-line sta-
tistical comparisons with manually created ground truth
data. While comparison with ground truth can inform which
tracking algorithm has better overall performance on a spe-
cific sequence, it does not extend gracefully for testing on
new sequences without additional ground truth. In the ab-
sence of ground truth, off-line performance evaluation can
not help to detect the loss of track and/or improve the ro-
bustness of the tracking systems.

In many surveillance scenarios, in situ evaluation of per-
formance is desired. Here, in situ means that the evaluation
is automatic, without use of any ground truth, and that it is
also an online and causal evaluation method.

Prior Work: Online evaluation of tracking algorithms
has received some attention in existing literature. In [5],
Erdem et al. address on-line performance evaluation for
contour tracking. Metrics based on the color and motion
differences along the boundary of the estimated object are
used to localize regions where segmentation results are of
similar quality, and combined to provide quantitative eval-
uation of the boundary segmentation and tracking. As an
extension, [6] proposes the use a feedback loop to adjust
the weights assigned to the features used for tracking and
segmentation. This method of evaluation is specific to con-
tour based tracking systems. Wu and Zheng also present
a method for the performance self-evaluation in [14]. This
empirical method evaluates the trajectory complexity, mo-
tion smoothness, scale constancy, shape and appearance
similarity, combining each evaluation result to form a to-
tal score of the tracking quality. However, this method can
only be applied to a static camera system.

For stochastic nonlinear systems, measurements based
on the innovation error forms a common choice as an eval-
uation metric, for example, the tracking error (TE) or ob-
servation likelihood (OL) statistics, and their corresponding
cumulative summation in time series (CUSUM) [12]. TE
and OL detect only sharp changes which results in loss of
track, and do not register slow changes. A statistic for de-
tection of slow changes called ELL and its generalization
gELL are given in [12]. ELL is defined as a measure of
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inaccuracy between the posterior at time t and the t-step
ahead prediction of the prior state distribution. Interesting,
as we point out later, the proposed evaluation methodology
mirrors ELL in spirit.

In [1][7][13], under the hypothesis that the model is cor-
rect, the authors identify a random process in the scalar ob-
servation space to be a realization of independent identically
distributed variables uniformly distributed on interval [0, 1].
This result holds for any time series and may be used in sta-
tistical tests to determine the adequacy of the model. An ex-
tensions to vector valued measurements is presented in [2],
where the authors utilize a χ2-test for multi-dimensional
uniform distribution to find if the system behaves consis-
tently. However, when it comes to visual tracking, as the ob-
servation could be in a very high dimensional image space,
the computation of the test statistics is infeasible.

[11] uses an entropy based criterion to evaluate the sta-
tistical characteristics of the tracked density function. The
definition of good performance for tracking a single object
is that the posterior distribution is unimodal and of low vari-
ance. In contrast, a multi-modal and a high variance distri-
bution implies poor or lost tracking. In practice, tracking in
the presence of multiple targets and clutter does lead to the
presence of multi-modality in the target’s posterior density.
This, however does not necessarily imply poor tracking.

In this paper, we design an in situ evaluation methodol-
ogy that can be applied to most tracking algorithms to detect
most tracking failures and evaluate performance of track-
ing. We illustrate the efficiency of the proposed method
for a general visual tracking system driven by a particle
filter. To conduct performance evaluation in real time, a
time reversed Markov chain is constructed and the poste-
rior probability distribution of the reversed Markov chain
at the initial time is computed and compared to the prior
distribution used to initialize the tracker. The posterior of
the reversed time system at the initial time (under a certain
condition) is the conditional density of the prior state. Esti-
mates from each density such as the mean can be shown to
be unbiased and equal. In this sense, for a well behaved sys-
tem, the two probability distributions should show proxim-
ity in some statistical sense, with significant discrepancies
between them in the presence of tracking error. While track-
ing back to the initial time is costly with increasing time, we
propose an approximation by tracking back and comparing
the performance against a point in time where by prior veri-
fication we know for sure that the performance is good. The
efficiency of the algorithm against various common failure
modes for visual tracking problems is empirically demon-
strated and compared to the ground truth and other methods.

The remainder of the paper is organized as follows: in
section 2, we summarize the necessary background of the
dynamic tracking system including its evaluation methods
and failure modes. A detailed description of the proposed

method is presented in section 3. Experimental validation
and discussions are given in section 4.

2. Evaluation in Dynamical Systems

In this section, we summarize the necessary background
of Bayesian filtering methods used in dynamical systems, in
particular, the particle filtering method which is used widely
in visual tracking systems [9].

2.1. Particle Filtering

In particle filtering [3], we address the problem of
Bayesian inference for dynamical systems. Let xt ∈ R

d

denote the state at time t, and yt ∈ R
p the noisy obser-

vation at time t. We model the state sequence {xt} as a
Markovian random process. Further we assume that the ob-
servations {yt} to be conditionally independent given the
state sequence. Under these assumptions, the models defin-
ing the system are given as follows: 1) p(xt|xt−1): The
state transition probability density function, describing the
evolution of the system from time t−1 to t; 2) p(yt|xt): Ob-
servation likelihood density, describing the conditional like-
lihood of observation given state; and 3) p(x0): The prior
state probability at t = 0.

Given statistical descriptions of the models and noisy ob-
servations till time t,Yt = {y1, . . . , yt}, we would like to
estimate the posterior density function πt = p(xt|Yt).

The problem is that this computation need not have an
analytical representation. However, foregoing the require-
ment for analytic solution, the particle filter approximates
the posterior πt with a discrete set of particles or samples
{x

(i)
t }N

i=1 with associated weights {w
(i)
t }N

i=1 suitably nor-
malized. The set St = {x

(i)
t , w

(i)
t }N

i=1 is the weighted par-
ticle set that represents the posterior density at time t, and
is estimated recursively from St−1. The initial particle set
S0 is obtained from sampling the prior density π0 = p(x0).

2.2. Common Failure Modes in Visual Tracking

The premise of most work on model validation and
change detection assume that without an exact model, the
system will behave abnormally. However, in visual track-
ing systems, due to the unavoidable and unexpected degra-
dations, it is nearly impossible to design models that are
robust against all possible failure modes.

Generally, there are four main classes of failure modes
in visual systems:

Pose Change: In general, for a moving 3D object, the
appearance projected in any particular frame depends on
its pose and position with respect to the camera. However,
most visual tracking systems lack knowledge of the 3D ap-
pearance of different objects. This is especially true when
appearance modeling is done online, when all the available



information about appearance is the initialization of the sys-
tem, which contains information only from one pose of the
object.

Occlusion: A common failure mode for most tracking
algorithms is when the target is occluded. Typically, given
the wide nature of possible occluding conditions, occlusion
is handled as an outlier to the appearance model.

Imaging System: Image measurements are corrupted by
noise and blur. In a static optical visual system, this may not
have significant consequences. However, when the imaging
modality is infra-red or when we are considering aerial im-
ages, this would be a very important problem.

Clutter: In practical systems, as the objects are moving
in some background, the background clutter can contribute
to loss of tracking. This distractions can not be modeled
before hand either.

It is very tricky to incorporate knowledge of all these
failure modes into visual tracking systems. For a tracking
algorithm, if it uses a fixed appearance template, then it can
not handle the changes in the video. On the other hand, if
the appearance model changes rapidly (say from the latest
estimated appearance), it is susceptible to drift [16]. There-
fore, many sophisticated tracking systems [16] use adaptive
online appearance model (OAM) or multiple features to im-
prove the performance. For such complicated systems, it is
often not immediately obvious what the failure modes will
be, or how the algorithm performs on a particular dataset.
This makes in situ performance evaluation all the more im-
portant but challenging.

3. Evaluation Using the Time Reversed
Markov Chain

3.1. Intuition

Our goal is to provide a general, online evaluation
method for most visual tracking systems. The key idea is to
formulate a time reversed Markov chain, compute the pos-
terior distributions along the time reversed Markov chain
all the way to the initializing frame of the forward Markov
chain, and design a statistic to evaluate the distance between
the initialization (the prior at t = 0) and the time-reversed
posterior distribution. Alternatively, for algorithms employ-
ing OAMs, the identity of the target is defined in the ini-
tializing frame and the prior used to initialize the system.
This prior information encodes all the knowledge given to
the tracking algorithm, and arguably is most critical in de-
termining the performance of the algorithm. In this sense,
the tracking performance can be determined by verifying
the output of the tracker at any particular time instant (say
t = t0) against the prior with suitable time normalization.

From the point of view of information captured in the
tracking algorithms, the underlying intuition is that if, at
time t, the tracker contains enough information about the

target, then the ability to track well till time t along the for-
ward Markov chain implies that it should be able to track
back to the end along time reversed Markov chain equally
well with a high probability.

3.2. Proposed Algorithm

The forward Markov chain state and observation models
of the tracking system considered in our paper are as fol-
lows:

Prior at time t = 0 : p(x0)
State Transition Model : p(xt|xt−1)

Observation Model : p(yt|xt)
(1)

At time T , given an observation sequence YT =
{y1, . . . , yT }, the posterior is πT = p(xT |YT ). To eval-
uate the performance of the system, we propose a reverse
time tracker that uses πT as its prior and the observation
sequence YT in the time reversed order. Using the nota-
tion q(·) for probability density functions associated with
the time reversed system, the reverse tracker is formulated
as follows. For evaluation at time T , the system is initial-
ized at time T +1 and filtered through the observations YT .

• Prior at time T + 1:

q(xT+1) = p(xT+1|YT )
=

∫
p(xT+1|xT )p(xT |YT )dxT

(2)

• State Transition Model: For t ∈ (0, T ),

q(xt|xt+1) =
p(xt+1|xt)p(xt)

p(xt+1)
(3)

This can be directly computed from the models for
most systems used to define the tracking problem.

• Observation Model: We retain the same observation
model used in the forward model.

∀t, q(yt|xt) = p(yt|xt) (4)

With this characterization of the system, we can now fil-
ter the observation sequence Yb

T = {yT , . . . , y1} in re-
verse time. The posterior density function of this filter is
of great interest to us. At time t, the posterior density
πb

t = q(xt|Y
b
t ) = q(xt|yT , yT−1, . . . , yt).

We can now estimate the posterior density at time t = 0,
πb

0 by recursion. From intuition, we expect this density to
be close in some statistical sense to the prior density p(x0).
To this extent, we postulate the following property.

Proposition: Suppose the reverse tracker is initialized
with the prior q(xT+1) = p(xT+1), then the posterior den-
sity of the time reversed system at time t = 0 and the prior
density p(x0) are close to each other on distance metrics



comparing the means of the corresponding random vari-
ables, provided the underlying model completely fits the
data.

Suppose we initialize the reverse time Markov chain us-
ing the density p(xT+1) as opposed to p(xT+1|YT ). It is
easy to verify that the final posterior distribution in the time
reversed process is equal to the smoothing result [10] at the
beginning of the forward process using all the observations
till time T , i.e, πb

0 = p(x0|y1,...,T ).
Now, πb

0 and the p(x0) are close in the sense that

∫
x0p(x0)dx0 =

∫
Yt

∫
x0

x0π
b
0dYtdx0 (5)

Suppose we compare E(x0) and EYt
(x0), then on an aver-

age (over the ensemble set of possible observations) the two
means will be the same.

It should be noted that the above result is true only when
the reverse time system is initialized with the prior p(xT+1).
In practice, the prior p(xT+1|YT ) is expected to have a bet-
ter localization of the target at time T +1 when the data fits
the modeling correctly. Hence, the system defined with the
prior p(xT+1|YT ) is over-trained and provides a model that
fits the data better.

To evaluate the tracking performance of a system, we
verify if the tracker output at current time has sufficient in-
formation to allow a reversed time system to track back to
the initial frame.

The key point of our algorithm is that for many visual
tracking systems using OAMs, the identity of the target that
is tracked comes from prior information. With no additional
knowledge of the target, the prior is the equivalent of a
ground truth, defining a point of reference against which
the performance of the system can be verified against.

3.3. Evaluation Statistic

There exists distance metrics and measures for compar-
ing density functions such as the Kullback-Leibler (KL) di-
vergence and the Bhattacharya distance [4]. However, in
our case, the distributions are represented by particles or
samples from the density function. In general, given the
differences in the individual proposal densities and the ran-
dom number generation, the exact locations at which the
densities are sampled will be different. Computing the
KL divergence or the Bhattacharya distance for such non-
overlapping sample sets would require interpolation (such
as Parzen windowing [4] ) or the use of approximations such
as the Unscented Transformation [8]. We circumvent this
problem with the use of the Mahalanobis distance that uses
only the moments of the distributions.

The distance d(p, π) between the distributions p and π

computed at time t is

To evaluate the performance of the tracking at time T , the
density πT represented by the samples {x(i)

t }N
i=1,

1. Propagate the particles using p(xT+1|xT ) to get sam-
ples from p(xT+1|YT ),

x̃
(i)
T+1 ∼ p(xT+1|x

(i)
T ), i = 1, . . . , N (7)

2. Using the prior represented by the particle set
{x̃

(i)
T+1}

N
i=1, iterate the steps 3, 4 and 5 for t ∈ {T, T −

1, . . . , 1},

3. Proposition: At time t, propose a new particle set
{x̃

(i)
t }N

i=1 using the state transition model,

x̃
(i)
t ∼ p(xt|x̃

(i)
t+1), i = 1, . . . , N (8)

4. Weight Computation: Compute the weight w
(i)
t asso-

ciated with the particle x̃
(i)
t ,

w
(i)
t = p(yt|x

(i)
t ) (9)

5. Resample to obtain an unweighted particle set.

6. Using the particle set x̃
(i)
0 ∼ q(x̃0|YT ), compute mean

µ̂π and var-covariance matrix Σ̂π using sample statis-
tics.

7. The evaluation statistic is computed using (6).

Table 1. Outline of the proposed algorithm.

d(p, π) = (µp − µπ)T Σ−1
p (µp − µπ)+

(µp − µπ)T Σ−1
π (µp − µπ)

(6)

where µp and Σp are the mean and the var-covariance ma-
trix of the distribution p and µπ and Σπ are those of the
distribution π, all of which can be easily computed or esti-
mated from the particles or in some cases, analytically. We
also note that just using the part of the state space corre-
sponding to location (or translation on the image plane)
gave better results, or results more in tune with the percep-
tual notion of tracking performance.

An outline of the proposed evaluation framework is in
Table 1.

The proposed algorithm also encompasses another inter-
esting idea. Suppose we have a video sequence in which the
first frame and the last frame are identical, then we would
expect the tracker to localize the target in the last frame at
the same location as the prior given in the first frame. Such
an idea is exploited for detecting drift in feature point track-
ing in [15]. The proposed algorithm is an extension of that
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Figure 1. Schematic of the reference point used in the proposed
algorithm.

idea for performance characterization.
Finally, the proposed framework extends gracefully even

to systems where the inference is not driven by particle fil-
ters. For example, if the system is linear Gaussian, then the
posterior can be computed using a Kalman filter. The time
reversed system is also linear Gaussian, and its posterior can
also be computed using a Kalman filter. In this case, the
time reversed posterior and the prior can be compared using
(6). Given the Gaussian distribution of both distributions,as
an alternative similarity score, one could analytically com-
pute their KL divergences too. Finally, it might be possible
to provide theoretical guarantees for the algorithm in this
simple case.

3.4. Similarity to the ELL

The proposed evaluation methodology is similar to the
ELL statistic in spirit, both involving posterior of the track-
ing algorithm and the prior at time t = 0. ELL propagates
the prior density to time t and computes the inaccuracy be-
tween the t-step predicted prior and the the posterior πt. In
contrast, the proposed methodology time reverses the pos-
terior πt back to initial time using a time reversed system
and compares it against the prior at time t = 0. The main
difference in our formulation is the t-step reverse prediction
is conditioned on the observed data, while the t-step predic-
tion in ELL is unconditional.

3.5. Fast Approximation

The proposed evaluation framework poses a requirement
to process (or track) across all the frames seen by the track-
ing algorithm. For such an algorithm, the computational
requirements increase linearly with the number of frames
(see Figure 1). This is in practice a steep requirement.

However, a set of sufficient (though not necessary) con-
ditions can be designed to alleviate this problem. We argue
that if the performance at time T is good, then not only does
the final posterior match well with the prior density, but that
the posterior densities of the forward and reverse tracker
should match at all intermediate time instants. A fast ap-
proximation is now proposed using this observation. Sup-
pose at time t0, the performance of the system is evaluated
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Figure 2. Schematic of the reference point used in the faster ap-
proximation to the proposed algorithm.

to be good, then for an evaluation at a future time instant
t′ > t0, the time t0 can be used as a reference point in the
place of the t = 0 (see Figure 2). However, the suitability
of the approximation depends on the length ∆t = t′ − t0.
The trade-off here is between the computation time, that is
proportional to ∆t and the ability to detect slow changes
that are of the order ∆t. A clever choice of ∆t can go a
long way in reducing the computation requirements of the
proposed algorithm.

4. Experimental Results and Discussions

4.1. Experimental Results

The proposed evaluation algorithm can detect various
common failure modes in visual tracking systems. The par-
ticle filter based visual tracking system proposed in [16] is
used in our experiments. The system uses an OAM in its ob-
servation model and the six-dimensional affine deformation
matrices as its state space. We used the proposed evaluation
methodology to study the performance of the OAM based
tracker intensively over various failure modes.

Figure 3 shows results over a complete occlusion sce-
nario, with evaluation performed once every 15 frames. The
target undergoes occlusion around 110th frame. The pro-
posed statistic and its fast approximations register peaks or
sharp rises in value around this frame. Further, a fast ap-
proximation with ∆t = 5 does not seem large enough to
capture the tracking failure. However, a higher value of ∆t

registers the loss of track. It is also noticed that inference
using fast approximations is not useful after a track failure
is registered. This is because that reference point against
which the algorithm is being compared is corrupted.

Figure 4 shows evaluation on a sequence in which a tar-
get exhibits a small change in pose, which the tracker can
easily keep track of. As expected, the proposed evaluation
methodology generates test statistics which takes low val-
ues indicating a good tracking performance. Figure 5 shows
evaluation results on an aerial sequence in which the tracker
loses track of the target due to jerky motion of the cam-
era. The test statistics register sharp peaks around the point
where the loss of track happens.



4.2. Testing with Ground Truth

The proposed algorithm was tested over sequences of the
PETS-2001 dataset and the evaluation is compared with the
ground truth. The comparison with the ground truth is done
by computing the distance between the center of the tar-
get as hypothesized by the tracker to the ground truth. Fig-
ures 6 and 7 show the results on two sequences from the
dataset. In Figure 6, the tracker tracks the object fairly well.
Both the proposed statistic and the comparison against the
ground truth take a low value. Figure 7 shows evaluation
results over a scenario involving tracking failure. While all
statistics register the failure of track, the proposed statistic
registers the track failure before the ground truth. This is
because of the specific evaluation criterion used with the
ground truth, which involves comparing only the centers of
the target, while the bounding box is inaccurate before the
loss of track (frame 60).

4.3. Discussion

To summarize the results, the following properties of the
proposed evaluation scheme are highlighted. The proposed
evaluation algorithm is shown to detect common failure
modes in visual tracking and also compares favorably with
ground truth based evaluation. The value of ∆t is shown
to be critical in the efficiency of the fast approximations. A
value of ∆t = 30 seems reasonably large enough to regis-
ter failures. It is also noteworthy that fast approximations
are meaningless after detection of failure, as the reference
point against which they are compared does not correspond
to good tracking. Finally, the choice of threshold to declare
poor performance can be easily decided for a specific track-
ing system by inspection. The choice is also influenced by
the value of ∆t. It can be seen that for all the experiments
in this paper, the inference from the proposed evaluation
agrees well with human perception.

5. Conclusions
In this paper, we present a novel method to provide auto-

matic and online evaluation of the tracking performance in
visual systems without the knowledge of ground truth. The
proposed evaluation algorithm works by verifying the prior
at time t = 0 against the posterior of a time reversed chain.
The time reversed chain is initialized using the posterior of
the tracking algorithm. It is postulated that when the data
obey the modeling, the posterior of the time reversed chain
at time t = 0 is close to the prior p(x0). We propose fast ap-
proximation schemes that reduce the computational cost for
filtering across the whole observation sequence. The pro-
posed algorithm has been tested extensively on datasets and
it is empirically shown that the evaluation scheme works
well in detecting common failure modes. While the focus
in the paper has been on systems using particle filtering, the
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Figure 3. Performance evaluation over occlusion. Target is com-
pletely occluded by frame number 100. (Top left to bottom right)
Tracking results at frame numbers 1, 20, 40, 60, 80, 100, 120, 135
and 150 (Bottom row) Evaluation results using the proposed algo-
rithm (∆t = t) and its fast approximations (∆t = 5, 15, 30, 60).

underlying algorithm is fairly independent of the actual fil-
tering tools used. We expect that such an algorithm would
also be useful for validation in linear Gaussian models. Fu-
ture work involves deriving strong guarantees for the detec-
tion of failure modes, in terms of receiver operating charac-
teristics.
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