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Abstract

The dynamic texture is a stochastic video model that
treats the video as a sample from a linear dynamical sys-
tem. The simple model has been shown to be surprisingly
useful in domains such as video synthesis, video segmen-
tation, and video classification. However, one major dis-
advantage of the dynamic texture is that it can only model
video where the motion is smooth, i.e. video textures where
the pixel values change smoothly. In this work, we propose
an extension of the dynamic texture to address this issue.
Instead of learning a linear observation function with PCA,
we learn a non-linear observation function using kernel-
PCA. The resulting kernel dynamic texture is capable of
modeling a wider range of video motion, such as chaotic
motion (e.g. turbulent water) or camera motion (e.g. pan-
ning). We derive the necessary steps to compute the Martin
distance between kernel dynamic textures, and then validate
the new model through classification experiments on video
containing camera motion.

1. Introduction

The dynamic texture [1] is a generative stochastic model
of video that treats the video as a sample from a linear
dynamical system. Although simple, the model has been
shown to be surprisingly useful in domains such as video
synthesis [1, 2], video classification [3, 4, 5], and video seg-
mentation [6, 7, 8, 2]. Despite these numerous successes,
one major disadvantage of the dynamic texture is that it can
only model video where the motion is smooth, i.e. video
textures where the pixel values change smoothly. This lim-
itation stems from the linear assumptions of the model:
specifically, 1) the linear state-transition function, which
models the evolution of the hidden state-space variables
over time; and 2) the linear observation function, which
maps the state-space variables into observations. As a re-
sult, the dynamic texture cannot model more complex mo-
tion, such as chaotic motion (e.g. turbulent water) or camera
motion (e.g. panning, zooming, and rotations).

To some extent, the smoothness limitation of the dy-
namic texture has been addressed in the literature by modi-
fying the linear assumptions of the dynamic texture model.
For example, [9] keeps the linear observation function,
while modeling the state-transitions with a closed-loop dy-
namic system. In contrast, [10, 11] utilize a non-linear
observation function, modeled as a mixture of linear sub-
spaces, while keeping the standard linear state-transitions.
Similarly in [12], different views of a video texture are
represented by a non-linear observation function that mod-
els the video texture manifold from different camera view-
points. Finally, [7] treats the observation function as a
piece-wise linear function that changes over time, but is not
a generative model.

In this paper, we improve the modeling capability of the
dynamic texture by using a non-linear observation function,
while maintaining the linear state transitions. In particular,
instead of using PCA to learn a linear observation function,
as with the standard dynamic texture, we use kernel PCA to
learn a non-linear observation function. The resulting ker-
nel dynamic texture is capable of modeling a wider range of
video motion. The contributions of this paper are three-fold.
First, we introduce the kernel dynamic texture and describe
a simple algorithm for learning the parameters. Second, we
show how to compute the Martin distance between kernel
dynamic textures, and hence introduce a similarity measure
for the new model. Third, we build a video classifier based
on the kernel dynamic texture and the Martin distance, and
evaluate the efficacy of the model through a classification
experiment on video containing camera motion. We begin
the paper with a brief review of kernel PCA, followed by
each of the three contributions listed above.

2. Kernel PCA

Kernel PCA [13] is the kernelized version of standard
PCA [14]. With standard PCA, the data is projected onto
the linear subspace (linear principal components) that best
captures the variability of the data. In contrast, kernel PCA
(KPCA) projects the data onto non-linear functions in the
input-space. These non-linear principal components are de-
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fined by the kernel function, but are never explicitly com-
puted. An alternative interpretation is that kernel PCA first
applies a non-linear feature transformation to the data, and
then performs standard PCA in the feature-space.

Given a training data set of N points Y = [y1, . . . , yN ]
with yi ∈ R

m and a kernel function k(y1, y2) with as-
sociated feature transformation φ(y), i.e. k(y1, y2) =
〈φ(y1), φ(y2)〉, the c-th kernel principal component in the
feature-space has the form [13] (assuming the data has zero-
mean in the feature-space):

vc =
N∑

i=1

αi,cφ(yi) (1)

The KPCA weight vector αc = [α1,c, . . . , αN,c]T is given
by αc = 1√

λc
vc, where λc and vc are the c-th largest

eigenvalue and eigenvector of the kernel matrix K , which
has entries [K]i,j = k(yi, yj). Finally, the KPCA coeffi-
cients X = [x1, · · · , xN ] of the training set Y are given by
X = αTK , where α = [α1, · · · , αn] is the KPCA weight
matrix, and n is the number of principal components.

Several methods can be used to reconstruct the input
vector from the KPCA coefficients, e.g. minimum-norm
reconstruction [15, 16], or constrained-distance reconstruc-
tion [17]. Finally, in the general case, the KPCA equations
can be extended to center the data in the feature-space if it
is not already zero-mean (see [18] for details).

3. Kernel Dynamic Textures

In this section, we introduce the kernel dynamic texture.
We begin by briefly reviewing the standard dynamic texture,
followed by its extension to the kernel dynamic texture.

3.1. Dynamic texture

A dynamic texture [1] is a generative model for video,
which treats the video as a sample from a linear dynamical
system. The model, shown in Figure 1, separates the visual
component and the underlying dynamics into two stochastic
processes. The dynamics of the video are represented as a
time-evolving state process xt ∈ R

n, and the appearance of
the frame yt ∈ R

m is a linear function of the current state
vector with some observation noise. Formally, the system
equations are

{
xt = Axt−1 + vt

yt = Cxt + wt
(2)

where A ∈ R
n×n is the state-transition matrix, C ∈ R

m×n

is the observation matrix, and x0 ∈ R
n is the initial condi-

tion. The state and observation noise are given by vt ∼iid

N (0, Q,) and wt ∼iid N (0, rIm), respectively.

x1 x2 x3 x4

y1 y2 y3 y4

...

Figure 1. Graphical model of the dynamic texture.

Algorithm 1 Learning a kernel dynamic texture

Input: Video sequence [y1, . . . , yN ], state space dimen-
sion n, kernel function k(y1, y2).
Compute the mean: ȳ = 1

N

∑N
i=t yt.

Subtract the mean: yt ← yt − ȳ, ∀t.
Compute the (centered) kernel matrix [K]i,j = k(yi, yj)
Compute KPCA weights α from K .
[x̂1 · · · x̂N ] = αTK
Â = [x̂2 · · · x̂N ][x̂1 · · · x̂N−1]†

v̂t = x̂t − Âx̂t−1, ∀t
Q̂ = 1

N−1

∑N−1
t=1 v̂tv̂

T
t

ŷt = C(x̂t), ∀t, (e.g. minimum-norm reconstruction).
r̂ = 1

mN

∑N
t=1 ‖yt − ŷt‖2

Output: α, Â, Q̂, r̂, ȳ

When the parameters of the model are learned using the
method of [1], the columns of C are the principal compo-
nents of the video frames (in time), and the state vector is
a set of PCA coefficients for the video frame, which evolve
according to a Gauss-Markov process.

3.2. Kernel Dynamic Textures

Consider the extension of the standard dynamic texture
where the observation matrix C is replaced by a non-linear
function C(xt) of the current state xt,{

xt = Axt−1 + vt

yt = C(xt) + wt
(3)

In general, learning the non-linear observation function can
be difficult since the state variables are unknown. As an
alternative, the inverse of the observation function, i.e. the
function D(y) : R

m → R
n that maps observations to the

state-space, can be learned with kernel PCA. The estimates
of the state variables are then the KPCA coefficients, and
the state-space parameters can be estimated with the least-
squares method of [1]. The learning algorithm is summa-
rized in Algorithm 1. We call a non-linear dynamic system,
learned in this manner, a kernel dynamic texture because it
uses kernel PCA to learn the state-space variables, rather
than PCA as with the standard dynamic texture. Indeed
when the kernel function is the linear kernel, the learning
algorithm reduces to that of [1].

The kernel dynamic texture has two interpretations:
1) kernel PCA learns the non-linear observation function
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Figure 2. Synthesis examples: (left) The original time-series (sine wave, triangle wave, or periodic ramp); and a random sample generated
from: (middle) the dynamic texture; and (right) the kernel dynamic texture, learned from the signal. The two dimensions of the signal are
shown in different colors.

C(x), which contains non-linear principal components; or
2) kernel PCA first transforms the data with the feature-
transformation φ(y) induced by the kernel function, and
then a standard dynamic texture is learned in the feature-
space. This feature-space interpretation will prove useful in
Section 4, where we compute the Martin distance between
kernel dynamic textures.

3.3. Synthetic examples

In this section we show the expressive power of the ker-
nel dynamic texture on some simple synthetic time-series.
Figure 2 (left) shows three two-dimensional time-series: 1)
a sine wave, 2) a triangle wave, and 3) a periodic ramp wave.
Each time-series has length 80, and contains two periods of
the waveform. The two-dimensional time-series was pro-
jected linearly into a 24-dimensional space, and Gaussian
i.i.d. noise (σ = 0.01) was added. Note that the triangle
wave and periodic ramp are not smooth signals in the sense
that the former has a discontinuity in the first derivative,
while the latter has a jump-discontinuity in the signal.

A dynamic texture and a kernel dynamic texture1 were
learned from the 24-dimensional time-series, with state-
space dimension n = 8. Next, a random sample of
length 160 was generated from the two models, and the 24-
dimensional signal was linearly projected back into two di-
mensions for visualization. Figure 2 shows the synthesis
results for each time-series. The kernel dynamic texture is
able to model all three time-series well, including the more
difficult triangle and ramp waves. This is in contrast to the
dynamic texture, which can only represent the sine wave.
For the triangle wave, the dynamic texture fails to capture
the sharp peaks of the triangles, and the signal begins to de-
grade after t = 80. The dynamic texture does not capture

1The centered RBF kernel with width computed from (11) was used.

any discernible signal from the ramp wave.
The results from these simple experiments indicate that

the kernel dynamic texture is better at modeling arbitrary
time-series. In particular, the kernel dynamic texture can
model both discontinuities in the first derivative of the sig-
nal (e.g. the triangle wave), and jump discontinuities in the
signal (e.g. the periodic ramp). These types of discontinu-
ities occur frequently in video textures containing chaotic
motion (e.g. turbulent water), or in texture undergoing cam-
era motion (e.g. panning across a sharp edge). While the
application of the kernel dynamic texture to video synthesis
is certainly interesting and a direction of future work, in the
remainder of this paper we will focus only on utilizing the
model for classification of video textures.

3.4. Other related works

The kernel dynamic texture is related to non-linear dy-
namical systems, where both the state transitions and the
observation functions are non-linear functions. In [19], the
EM algorithm and the extended Kalman filter are used to
learn the parameters of a non-linear dynamical system. In
[20], the nonlinear mappings are modeled as multi-layer
perceptron networks, and the system is learned using a
Bayesian ensemble method. These methods can be com-
putationally intensive because of the many degrees of free-
dom associated with both non-linear state-transitions and
non-linear observation functions. In contrast, the kernel dy-
namic texture is a model where the state-transition is linear
and the observation function is non-linear.

The kernel dynamic texture also has connections to di-
mensionality reduction; several manifold-embedding algo-
rithms (e.g. ISOMAP, LLE) can be cast as kernel PCA with
kernels specific to each algorithm [21]. Finally, the kernel
dynamic texture is similar to [22, 23], which learns appear-



ance manifolds of video that are constrained by a Gauss-
Markov state-space with known parametersA and Q.

4. Martin distance for kernel dynamic textures

Previous work [3] in video classification used the Mar-
tin distance as the similarity distance between dynamic tex-
ture models. The Martin distance [24] is based on the
principal angles between the subspaces of the extended ob-
servability matrices of the two textures [25]. Formally, let
Θa = {Ca, Aa} and Θb = {Cb, Ab} be the parameters of
two dynamic textures. The Martin distance is defined as

d2(Θa,Θb) = − log
n∏

i=1

cos2 θi (4)

where θi is the i-th principal angle between the extended
observability matrices Oa and Ob, defined as Oa =[
CT

a AT
aC

T
a · · · (AT

a )nCT
a · · · ]T

, and similarly
for Ob. It is shown in [25] that the principal angles can be
computed by solving the following generalized eigenvalue
problem:[

0 Oab

(Oab)T 0

] [
x
y

]
= λ

[ Oaa 0
0 Obb

] [
x
y

]
(5)

subject to xTOaax = 1 and yTObby = 1, where

Oab = (Oa)TOb =
∞∑

t=0

(At
a)TCT

a CbA
t
b (6)

and similarly for Oaa and Obb. The first n largest eigenval-
ues are the cosines of the principal angles, and hence

d2(Θa,Θb) = −2
n∑

i=1

logλi (7)

The Martin distance for kernel dynamic textures can be
computed by using the interpretation that the kernel dy-
namic texture is a standard dynamic texture learned in the
feature-space of the kernel. Hence, in the matrix F =
CT

a Cb, the inner-products between the principal compo-
nents can be replaced with the inner-products between the
kernel principal components in the feature-space. However,
this can only be done when the two kernels induce the same
inner-product in the same feature-space.

Consider two data sets {ya
i }Na

i=1 and {yb
i }Nb

i=1, and two
kernel functions ka and kb with feature transformations
φ(y) and ψ(y), i.e. ka(y1, y2) = 〈φ(y1), φ(y2)〉 and
kb(y1, y2) = 〈ψ(y1), ψ(y2)〉, which share the same inner-
product and feature-spaces. Running KPCA on each of the
data-sets with their kernels yields the KPCA weight matri-
ces α and β, respectively. The c-th and d-th KPCA compo-
nents in each of the feature-spaces are given by,

uc =
Na∑
i=1

αi,cφ(ya
i ), vd =

Nb∑
i=1

βi,dψ(yb
i ). (8)

Figure 3. Examples from the UCLA-pan video texture database.

The inner-product between these two KPCA components is

〈uc, vd〉 =

〈
Na∑
i=1

αi,cφ(ya
i ),

Nb∑
i=1

βi,dψ(yb
i )

〉
(9)

= αT
c Gβd (10)

where G is the matrix with entries [G]i,j = g(ya
i , y

b
j), and

g(y1, y2) = 〈φ(y1), ψ(y2)〉. The function g is the inner-
product in the feature-space between the two data-points,
transformed by two different functions, φ(y) and ψ(y). For
two Gaussian kernels with bandwidth parameters σ2

a and
σ2

b , it can be shown that g(y1, y2) = exp(− 1
2‖ 1

σa
y1 −

1
σb
y2‖2) (see [18] for details). Finally, the inner product

matrix between all the KPCA components is F = αTGβ.

5. Experimental evaluation

In this section we evaluate the efficacy of the kernel dy-
namic texture for classification of video textures undergoing
camera motion.

5.1. Databases

The UCLA dynamic texture database [3, 4] contains 50
classes of various video textures, including boiling water,
fountains, fire, waterfalls, and plants and flowers swaying in
the wind. Each class contains four grayscale sequences with
75 frames of 160×110 pixels. Each sequence was clipped to
a 48× 48 window that contained the representative motion.

A second database containing panning video textures
was built from the original UCLA video textures. Each
video texture was generated by panning a 40 × 40 window
across the original UCLA video. Four pans (two left and
two right) were generated for each video sequence, result-
ing in a database of 800 panning textures, which we call the
UCLA-pan database. The motion in this database is com-
posed of both video textures and camera panning, hence the
dynamic texture is not expected to perform well on it. Ex-
amples of the UCLA-pan database appear in Figure 3, and
video montages of both databases are available from [18].



5.2. Experimental setup

A kernel dynamic texture was learned for each video in
the database using Algorithm 1 and a centered Gaussian
kernel with bandwidth parameter σ2, estimated for each
video as

σ2 =
1
2
median{‖yi − yj‖2}i,j=1,...,N (11)

Both nearest neighbor (NN) and SVM classifiers [26] were
trained using the Martin distance for the kernel dynamic
texture. The SVM used an RBF-kernel based on the Martin
distance, kmd(Θa,Θb) = e−

1
2σ2 d2(Θ1,Θ2). A one-versus-

all scheme was used to learn the multi-class SVM problem,
and the C and γ parameters were selected using three-fold
cross-validation over the training set. We used the libsvm
package [27] to train and test the SVM.

For comparison, a NN classifier using the Martin dis-
tance on the standard dynamic texture [3] was trained, along
with a corresponding SVM classifier. NN and SVM clas-
sifiers using the image-space KL-divergence between dy-
namic textures [4] were also trained. Finally, experimental
results were averaged over four trials, where in each trial the
databases were split differently with 75% of data for train-
ing and cross-validation, and 25% of the data for testing.

5.3. Results

Figures 4 (a) and (c) show the NN classifier perfor-
mance versus n, the number of principal components (or
the dimension of the state space). While the NN classi-
fier based on the kernel dynamic texture and Martin dis-
tance (KDT-MD) performs similarly to the dynamic texture
(DT-MD) on the UCLA database, KDT-MD outperforms
DT-MD for all values of n on the UCLA-pan database.
The best accuracy increases from 84.3% to 89.8.% on the
UCLA-pan database when using KDT-MD instead of DT-
MD, while only increasing from 89.0% to 89.5% on the
UCLA database. This indicates that the panning motion in
the UCLA-pan database is not well modeled by the dynamic
texture, whereas the kernel dynamic texture has better suc-
cess. The performance of the SVM classifiers is shown
in Figures 4 (b) and (d). The dynamic texture and kernel
dynamic texture perform similarly on the UCLA database,
with both improving over their corresponding NN classi-
fier. However, the KDT-MD SVM outperforms the DT-MD
SVM on the UCLA-pan database (accuracies of 94.3% and
92.8%, respectively).

When looking at the performance of the KL-based clas-
sifiers, we note that for the UCLA databases the mean-
image of the video is highly discriminative for classifica-
tion. This can be seen in Figures 4 (a), where the accuracy
of the KL-divergence NN classifier is plotted for dynamic
textures learned from the normal data (DT-KL) and from

Database KDT-MD DT-MD DT-KL0
UCLA NN 0.895 (20) 0.890 (15) 0.365 (2)
UCLA SVM 0.975 (20) 0.965 (15) 0.725 (2)
UCLA-pan NN 0.898 (30) 0.843 (30) 0.816 (5)
UCLA-pan SVM 0.943 (30) 0.928 (25) 0.920 (5)

Table 1. Classification results for the UCLA and UCLA-pan
databases. (n) is the number of principal components.

zero-mean data (DT-KL0). The best performance for DT-
KL occurs when n = 0, i.e. the video is simply modeled
as the mean image with some i.i.d. Gaussian noise. On the
other hand, when the mean is ignored in DT-KL0, the per-
formance of the classifier drops dramatically (from 94% to
15% accuracy for n = 0). Hence, much of the discrimina-
tive power of the KL-based classifier comes from the simi-
larity of image means, not from video motion. Because the
Martin distance does not use the image means, we present
the classification results for DT-KL0 to facilitate a fair com-
parison between the classifiers. The DT-KL0 NN classifier
performed worse than both KDT-MD and DT-MD, as seen
in Figures 4 (a) and (c). The SVM trained on DT-KL0 im-
proved the performance over the DT-KL0 NN classifier, but
is still inferior to the KDT-MD SVM classifiers. A sum-
mary of the results on the UCLA and UCLA-pan databases
is given in Table 1.

Finally, Figure 5 shows the distance matrix for DT-
MD and KDT-MD for three classes from UCLA-pan: two
classes of water falling from a ledge, and one class of boil-
ing water (see Figure 5 (right) for examples). The DT-MD
performs poorly on many of these sequences because the
water motion is chaotic, i.e. there are many discontinuities
in the pixel values. On the other hand, KDT-MD models
the discontinuities, and hence can distinguish between the
different types of chaotic water motion.
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