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Abstract

Discontinuity preserving filtering of images is an impor-
tant low-level vision task. With the development of new
imaging techniques like diffusion tensor imaging (DTI),
where the data does not lie in a vector space, previous meth-
ods like the original mean shift are not applicable. In this
paper, we use the nonlinear mean shift algorithm to develop
filtering methods for data lying on analytic manifolds. We
work out the computational details of using mean shift on
Sym+

n , the manifold of n × n symmetric positive definite
matrices. We apply our algorithm to chromatic noise filter-
ing, which requires mean shift over the Grassmann manifold
G3,1, and obtain better results then standard mean shift fil-
tering. We also use our method for DTI filtering, which re-
quires smoothing over Sym+

3 .

1. Introduction
Discontinuity preserving filtering and regularization of

images is a widely researched image-processing task. The
ability to smooth image noise while retaining important im-
age structures such as edges has allowed the development
of new algorithms for further processing like segmentation.

Filtering and regularization schemes were initially de-
veloped for scalar valued images [14, Ch.10]. In this case,
the image was considered a real valued map on a 2D lat-
tice which assigned each pixel an intensity value. These
methods were later extended to vector valued images. Now,
the image was viewed as map which assigned each pixel a
vector. Many different algorithms have been proposed for
the discontinuity preserving filtering of vector valued im-
ages, e.g., bilateral filtering [18], adaptive smoothing [15],
mean shift [5, 6] and partial differential equation (PDE)
based methods [21]. Methods for smoothing vector fields
are more elaborate than simply applying the scalar filtering
algorithm to each channel. This is due to the coupling be-
tween the different components of the vectors. It was shown
in [1], that all of the above algorithms are similar with the
difference being in the way they control the smoothing pro-
cess in various directions. For vector-valued image smooth-

ing, mean shift filtering was found to perform the best [1].
Recently, there has been interest in developing filtering

and regularization algorithms for non vector-valued images.
For applications such as the smoothing of diffusion tensor
magnetic resonance images (DT-MRI) [13] and noise chro-
maticity restoration, it is not possible to use filtering algo-
rithms developed for vector fields [19]. The data values at
each pixel (or voxel) satisfy further constraints due to which
the space of all data values is not a vector space. Since,
smoothing algorithms proceed by averaging image values,
previous methods are no longer applicable as the concept of
a (weighted) average is not clearly defined. The general way
of handling this problem has been to use PDE based meth-
ods while ensuring that the data points satisfy the required
constraints at each step in the evolutions [13, 19].

It has not been possible to use mean shift smoothing for
such non-vector values images since the original mean shift
algorithm is only applicable to points lying in vector spaces.
In this paper we extend the nonlinear mean shift algorithm
[17, 22] and use it for the smoothing of tensor fields. Since
nonlinear mean shift is applicable points lying on analytic
manifolds, we can smooth any lattice where the data values
lie on an analytic manifold.

The rest of the paper is organized as follows. In Section
2 we briefly introduce some necessary concepts from the
theory of analytic manifolds. This discussion follows the
presentation in [16]. The nonlinear mean shift algorithm is
introduced in Section 3 and the details of applying the mean
shift algorithm to the manifolds of symmetric positive def-
inite matrices are presented in Section 3.2. In Section 4
we propose our smoothing algorithm and in Section 5 we
present the results of using our algorithm on real and syn-
thetic data.

2. Analytic Manifolds
A manifold is a (topological) space that is locally sim-

ilar (homeomorphic) to an Euclidean space. Intuitively, a
manifold is a continuous surface lying in some higher di-
mensional Euclidean space. Analytic manifolds satisfy fur-
ther conditions of smoothness [3]. From now onwards, we
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Figure 1. Example of a manifold. The tangent space at the point x
is also shown.

restrict ourselves to analytic manifolds and assume the nec-
essary conditions are satisfied.

The tangent space, Tx at x, is the plane tangent to the
surface of the manifold at that point. The tangent space
can be considered as the set of allowed instantaneous ve-
locities a point can have while constrained to move on the
manifold. For d-dimensional manifolds, the tangent space
is a d-dimensional vector space [3]. An example of a two-
dimensional manifold lying in R3, is shown in Figure 1.
The solid arrow ∆, is a tangent at x. We can define an inner
product gx on Tx since it is a vector space. This product
induces a norm for tangents ∆ ∈ Tx as ‖∆‖2x = gx(∆,∆).
It should be noted that the inner product and norm vary with
x and this dependence is indicated by the subscripts.

The length of a curve on the manifold is defined by
an integral over the norms of tangents [3]. For a pair of
points on the manifold, the curve of minimum length which
joins them is known as the geodesic and the length of the
geodesic is the intrinsic distance. Parameter spaces occur-
ring in computer vision usually have well studied geome-
tries and closed form formulae for the intrinsic distance are
usually available.

Tangents (on the tangent space) and geodesics (on the
manifold) are closely related. For each tangent ∆ ∈ Tx,
there is a unique geodesic starting at x with initial veloc-
ity ∆. The exponential map, expx, maps ∆ to the point
on the manifold reached by this geodesic. The logarithm
map is the inverse of the exponential map, logx = exp−1

x .
The exponential and logarithm operators vary as the point
x moves. These concepts are illustrated in Figure 1, where
x, y are points on the manifold and ∆ ∈ Tx. The dot-
ted line shows the geodesic starting at x and ending at y.
This geodesic has an initial velocity ∆ and consequently, y
and ∆ satisfy expx(∆) = y and logx(y) = ∆. The spe-
cific forms of these operators depend on the manifold. The
operator, expx is usually onto but not one-to-one. For any

y on the manifold, if there exist many ∆ ∈ Tx satisfying
expx(∆) = y, logx(y) is chosen as the tangent with the
smallest norm.

For a smooth, real valued function f defined on the man-
ifold, the gradient of f at x, ∇f ∈ Tx, is defined to be the
unique tangent vector satisfying

gx(∇f,∆) = ∂∆f (1)

for any ∆ ∈ Tx, where ∂∆ is the directional derivative
along ∆. This gradient has the property of representing the
tangent of maximum increase.

We represent the points on manifolds by small bold let-
ters, e.g., x,y. In some of our examples, the manifold con-
sists of matrices and each point represents a matrix. Al-
though matrices are conventionally represented by capital
bold letters, when we consider them to be points on a man-
ifold, we denote them by small letters. This should not be a
problem, since any matrix can be represented as a vector by
rearranging its elements into a single column.

3. Nonlinear Mean Shift
Mean shift is a nonparametric clustering algorithm

which was first proposed in [9, p.535] and then introduced
to the vision community by [6]. Since then it has been used
for a wide variety of applications.

The original mean shift algorithm was proposed for vec-
tor spaces. It works by defining a kernel density estimate,
which is a data-driven estimate of the original density form
which the given data was sampled. The mean shift algo-
rithm is an iterative procedure for finding the modes of the
kernel density. At each iteration, the current estimate of the
mode is updated to be the weighted mean of all the points
lying a local neighbourhood of the present position. The
change in the mode location is the mean shift vector.

3.1. Nonlinear Mean Shift

While the ideas of weighted means and vectors are well
known for vector spaces, they are not well defined for mani-
folds. In this section we follow the derivation of [16], where
the mean shift vector was formulated as the weighted sum
of tangent vectors. Since tangent spaces are vector spaces,
a weighted average of tangents is possible and can be used
to update the mode estimate. This method is valid over any
analytic manifold.

Consider a manifold with a metric d. Given n points on
the manifold, xi, i = 1, . . . , n, the kernel density estimate
with profile k and bandwidth h is

f̂k(x) =
ck,h

n

n∑
i=1

k

(
d2(x,xi)

h2

)
. (2)

The bandwidth h can be included in the distance as a param-
eter. However, written in this form, the bandwidth gives a



parameter which can be used to tune performance. If the
manifold is a Euclidean space with a Euclidean distance
metric, (2) reduces to the well known Euclidean kernel den-
sity estimate.

Estimating ck,h is requires the integration of the profile
function over the manifold. Since a global scaling does not
affect the mode, we drop ck,h from now onwards [4].

Taking the gradient of f̂k at x,

∇f̂k(x) =
1
n

n∑
i=1

∇k

(
d2(x,xi)

h2

)

= − 1
n

n∑
i=1

g

(
d2(x,xi)

h2

)
∇d2(x,xi)

h2
(3)

where, g(x) = −k′(x). The gradient of∇d2(x,xi) is taken
with respect to x. Similar to the original mean shift step [6],
we define the nonlinear mean shift vector as

mh(x) =

−
n∑

i=1

∇d2(x,xi)g
(

d2(x,xi)
h2

)
n∑

i=1

g

(
d2(x,xi)

h2

) . (4)

The operations in (4) are well defined. The gradient terms,
∇d2(x,xi) lie in the tangent space Tx, and the kernel terms
g(d2(x,xi)/h2) are scalars. The mean shift vector is a
weighted average of tangent vectors, and lies in Tx. The
iteration moves the point along the geodesic defined by the
mean shift vector. The nonlinear mean shift iteration is

x(j+1) = expx(j)

(
mh(x(j))

)
. (5)

The iteration (5), moves the current mode estimate x(j)

along the geodesic defined by the mean shift vector, to get
the next updated estimate, x(j+1).

3.2. Symmetric Positive Definite Matrices

In practice, nonlinear mean shift requires the computa-
tion of a distance metric and its gradient. These functions
depend on manifold on which the data lies. The details of
nonlinear mean shift over Grassmann manifolds [7] and ma-
trix Lie groups are in [16, 22]. Here, we state the formulae
for applying nonlinear mean shift to the manifold, Sym+

n

of n× n symmetric positive definite (SPD) matrices.
Let exp and log be the standard matrix exponential and

logarithm operators. These are general matrix operators and
no subscript is necessary. They should not be confused with
the manifold operators which we define later. For symmet-
ric matrices these operators can be simplified. Let ∆ be a
symmetric matrix such that ∆ = uduT , where u is a matrix
of eigenvectors and d is a diagonal matrix of eigenvalues.
The matrix exponential becomes

exp(∆) = u diag(exp(di)) uT . (6)

This exp operator is defined for all symmetric matrices, not
just SPD matrices. However, the eigenvalues of exp(∆),
are positive and it is always SPD. Therefore, log, which is
the inverse of exp, is only defined for SPD matrices. Let
vsvT be the eigenvalue decomposition of a SPD matrix x,
where v is orthonormal and s is the diagonal matrix of pos-
itive eigenvalues. Then

log(x) = v diag(log(si)) vT . (7)

We also define the square root of x as

x1/2 = exp( 1
2 logx) (8)

x−1/2 = inv(x1/2). (9)

Let x and y be two n × n SPD matrices. The distance
between x and y is given by

d2(x,y) =
n∑

i=1

ln2 λi(x,y) (10)

where, λi(x,y) is the i-th generalized eigenvalue of x and
y. Computationally, the generalized eigenvalues are the
eigenvalues of x−1/2yx−1/2. This metric was first pro-
posed in [8] and later it was shown by Pennec et al. [13]
to be the only affine invariant distance measure on Sym+

n .
Since, Sym+

n is a Riemannian manifold [13], we approx-
imate the gradient by the logarithm operator [16],

∇d2(x,y) = −logx(y) (11)

where, the manifold logarithm is given by

logx(y) = x1/2log(x−1/2yx−1/2)x1/2. (12)

The tangent space of Sym+
n is the set of symmetric matri-

ces, and logx(y) lies in this tangent space. The mean shift
vector will also lie in this tangent space.

Given a tangent ∆, the manifold exponential operator is

expx(∆) = x1/2exp(x−1/2yx−1/2)x1/2. (13)

4. Discontinuity Preserving Filtering
The original mean shift has been used for the discontinu-

ity preserving filtering of color images [5, 6]. Our algorithm
works in a similar manner.

We consider the image I as a mapping defined on a n-
dimensional lattice which assigns a data value to each point
on the lattice. Typically, n = 2, e.g., images or n = 3, for
DTI images. At each location zi, we require the data values
I(zi), to lie on an analytic manifold,M. Each image value
I(zi) along with its location zi is considered as a single data
point x = (z, I(z)), in the joint domain Rn ×M.

For each pixel location zi, we initialize a mean shift
iteration in the joint space at the point (zi, ci), where



Figure 2. Orthonormal Field Filtering. A 2D lattice of rotation matrices. Red, green and blue dots are used to represent the x-, y-, and
z-axis, respectively. The original field is on the left, the noisy field is in the middle and the filtered field is on the right.

ci = I(zi). Let the point where this iteration converges
be (ẑi, ĉi). In the filtered image If , we set If (zi) = ĉ.

The profile in the joint domain is taken to be the product
of a spatial profile defined on the Euclidean part of the joint
domain and a parameter profile defined on the manifold, as

k(x,xi) = ks

(
‖z− zi‖2

h2
s

)
kp

(
d2(c, ci)

h2
p

)
. (14)

The bandwidth in the joint domain consists of a spatial
bandwidth hs and a parameter bandwidth hp. In practice,
we use a truncated normal kernel and the performance of
the algorithm can be controlled by varying hp and hs.

Note, when mean shift is run in the joint domain, both
the spatial and parameter values are updated in an iteration.
Unlike other methods which average parameter values in a
fixed spatial window, mean shift accounts for information
beyond the initial spatial window. In [1], this was found to
be the reason for the better performance of mean shift as
compared to other color image filtering algorithms.

To optimize performance, we used the heuristic sug-
gested in [5] and used in the EDISON system. The filtering
step was not applied to pixels which are on the mean shift
trajectory of another (already processed) pixel. These pix-
els were directly associated with the mode to which the path
converged. The approximation does not noticeably change
the filtered image but reduces processing time.

5. Results
Post processing of the filtered data is usually necessary.

To remove extraneous modes, modes which are close to-
gether are fused into one mode. For segmentation, each
mode is considered a separate region. Finally, in an (op-
tional) pruning step, modes which have few points are re-
moved by assigning them to the closest mode with sufficient
support. Typically, we prune modes with less than 20 points
converging to it.

5.1. Synthetic Data Sets

The synthetic data was a two dimensional lattice of 3×3
orthonormal matrices with determinant one. Each lattice
point had a value on the manifold (Lie group) of rotation
matrices, SO(3). The details of using mean shift over Lie
groups are presented in [16, 22]. We perform mean shift
over R2 × SO(3), as discussed in the previous section.

The results are shown in Figure 2. The original field is
on the left. We show every 10th point in each direction of
the 101 × 101 field. Zero-mean normal noise of variance
0.49 was added along the tangent space to generate the field
in the middle. Filtering was done with a spatial bandwidth
of hs = 7.0 and a parameter bandwidth of hp = 1.5. The
filtered field is shown on the right.

5.2. Chromatic Noise Filtering

Chromatic image noise affects the direction (chromatic-
ity) of the color vector and not its intensity. The direction
of a 3D vector can be represented by a unit vector in 3D
and these form the Grassmann manifold, G3,1. By filter-
ing chromaticity we obtain better results than original mean
shift which smooths chromaticity and brightness. The com-
putational details of running nonlinear mean shift on Grass-
mann manifolds are in [17].

The results for the baboon image are shown in Figure 3.
Chromatic noise of standard deviation 0.2 was added to the
original image. The maximum distance between points on
G3,1 is 1.0 [16] and a standard deviation of 0.2 represents a
20% level of noise. The original mean shift image filtering
algorithm from EDISON, with spatial bandwidth hs = 11.0
and color bandwidth hp = 7.0, was used to get the middle
image. Using a larger hp leads to oversmoothing and us-
ing smaller values does not change the image much. Our
algorithm was run with hs = 11.0 and hp = 0.7 to get the
image on the right. To clearly illustrate the difference in the
results, two image regions, outlined in yellow in the input



Figure 3. Chromatic Noise Filtering. The baboon image corrupted with chromatic noise is shown on the left. The results of using standard
mean shift filtering with EDISON are in the middle and the results of our method are on the right.

image, are shown in close-up. Our filtering is clearly better
than EDISON.

5.3. DT-MRI Filtering

Diffusion tensor imaging (DTI) [2, 11] is a widely used
medical imaging method which measures the diffusivity
of the water molecules in three dimensional space. Non-
invasive reconstruction of connectivity in the brain is usu-
ally based on DTI techniques [12, 23]. The diffusivity is
encoded as a 3 × 3 SPD matrix and the image is a 3D grid
of 3 × 3 SPD matrices. Discontinuity preserving regular-
ization of DT-MRI images is necessary to obtain a coherent
diffusion map [20]. We smooth the DTI image by perform-
ing mean shift over R3 × Sym+

3 .
The results for synthetic data are shown in Figure 4. The

noisy ellipses are shown on top and the smoothed field is
shown below.

Our real data set is a DTI of the human heart obtained
from [10]. The lattice size is 128×128×67 and we ran the
smoothing with bandwidth values hs = 9.0 and hp = 1.0.
For visualization purposes, each matrix is converted into a
single scalar value and planes of the 3D lattice are drawn
[21]. We use the fractional anisotropy given by√

3
2

(λ1 − λ̄)2 + (λ2 − λ̄)2 + (λ3 − λ̄)2

λ2
1 + λ2

2 + λ2
3

(15)

where, λ1, λ2 and λ3 are the eigenvalues and λ̄ = (λ1 +
λ2 +λ3)/3. The fractional anisotropy for a particular plane
z = 47 is shown in Figure 5.

6. Conclusions

We use the nonlinear mean shift algorithm to develop
a new discontinuity preserving filtering technique for im-
ages where the data values do not lie in a vector space.
PDE based methods are the standard way to achieve such
smoothing. However, mean shift filtering has been found to
be more effective than PDE based methods for vector data
[1]. We expect a similar difference for nonlinear data sets
and hope to make a rigorous comparison in the future. We
also presented the details of using mean shift over Sym+

n ,
the manifold of symmetric positive definite matrices.

Figure 4. Synthetic DTI data before and after smoothing.



Figure 5. Real DTI data of a human heart before and after smooth-
ing. The jitter in the top image is due to noisy voxels having dif-
ferent anisotropies from their surroundings. These are removed by
the smoothing and more continuous regions of uniform anisotropy
are visible below.
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