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Abstract

Thin-Plate Spline warps have been shown to be very
effective as a parameterized model of the optic flow field
between images of various deforming surfaces. Examples
include a sheet of paper being manually handled. Recent
work has used such warps for images of smooth rigid sur-
faces. Standard Thin-Plate Spline warps are not rigid, in
the sense that they do not satisfy the epipolar geometry con-
straint, and are intrinsically affine, in the sense of the affine
camera model.

We propose three types of warps based on the Thin-Plate
Spline. The first one is a flexible rigid warp. It describes the
optic flow field induced by a smooth rigid surface, and sat-
isfies the affine epipolar geometry constraint. The second
and third ones extend the standard Thin-Plate Spline and
the proposed rigid flexible warp to the perspective camera
model. The properties of these warps are studied in details,
and a hierarchy is defined. Experimental results on simu-
lated and real data are reported, showing that the proposed
warps outperform the standard one in several cases of in-
terest.

1. Introduction
Given two images of some scene surface, there exists an

R
2 → R

2 function, called a warp, mapping a point from

the first image to the corresponding point in the second im-

age. For instance, two images of a rigid planar surface taken

by two perspective cameras are related by an homographic

warp. For a non-planar 3D scene, the warp is more complex

since it depends on the surface depth. When the observed

surface deforms, the warp is even more involved. Examples

of rigid scene models include piecewise or nearly planar

structures. Examples of deformable scene models include

the flexible low-rank shape and face models.

Representing the warp using a parametric function re-

quires prior assumptions about the observed scene structure.

One common, fairly generic assumption is that a smooth

surface is observed. This naturally leads to using the Thin-

Plate Spline (TPS) as a building block for the warps. TPS

are smooth, compact and convenient, R
2 → R functions.

Standard TPS warps, built by ‘stacking’ a pair of TPS, are

very flexible in that they are controlled by centres that may

be placed anywhere in the images. They are known to be ef-

fective approximations to many types of deformations, see

e.g. [1]. Standard TPS warps have recently been used as

simple parametric warps for images of rigid 3D surfaces by

Wills and Belongie [8] and Masson et al. [5], for respec-

tively wide-baseline matching and object tracking.

There are, however, two main issues with the use of stan-

dard TPS warps in this context, that have not been dealt with

in the literature. (i) Standard TPS warps overfit affine im-
ages of rigid surfaces. They do not in general satisfy the

rigidity constraint modeled by the affine epipolar geometry.

In that sense they are ‘too flexible’ in affine imaging condi-

tions. (ii) Standard TPS warps do not model perspective
projection. They are intrinsically affine, in the sense of the

affine camera model, since their formulation does not in-

clude a division. For instance, as mentioned in [8], they are

not able to ‘reproduce’ simple homographic warps with a

finite number of centres. Henceforth, we call DA-Warps the

standard TPS warps (for ‘Deformable Affine’).

This paper addresses the two above-mentioned issues.

First, the DA-Warps are specialized to rigid surfaces in §4.

These warps are called RA-Warps (for ‘Rigid Affine’) and

are very similar to DA-Warps with an epipolar constraint on

the warp coefficients. This solves the first issue. Second, the

RA-Warps are extended to the perspective camera model in

§5. These warps, dubbed RP-Warps (for ‘Rigid Perspec-

tive’), naturally include FP-Warps (‘Flat Perspective’) simi-

larly to the RA-Warps including FA-Warps1. This solves the

second issue for the case of rigid surfaces. Third, we intro-

duce the DP-Warps (for ‘Deformable Perspective’) which

are shown to be the perspective analogue of the DA-Warps.

This solves the second issue for the case of deformable sur-

faces. The derivation of these warps is made possible by

a feature-driven parameterization of the Thin-Plate Spline

1The FP-Warps are 2D homographic warps with 8 parameters. The

FA-Warps (for ‘Flat Affine’) are 2D affine warps with 6 parameters.
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we propose in §3. The hierarchy and dependencies between

the six types of warps mentioned so far is studied in details

in §6. In order to derive warps independent of the intrinsic

camera parameters, we consider uncalibrated cameras.

The second line of contributions in this paper, presented

in §7, is a set of algorithms for estimating the proposed

warps from image point correspondences. Experimental re-

sults are reported in §8 and our contributions discussed in

§9. Most proofs of our statement will appear in an extended

version of the paper.

2. Preliminaries
Previous work. DA-Warps, i.e. standard TPS warps, are

used in many different contexts. While there is a great body

of work on defining alternative warps, such as FFD (Free-

Form Deformations) [6] or more recently diffeomorphic

warps, DA-Warps are usually used in their original form.

Since the seminal paper by Bookstein [1], the literature is

mostly focused on estimation methods. Bookstein proposed

a method relying on point landmark correspondences, that

are chosen as centres for the DA-Warp. The DA-Warp and

point matching are simultaneously estimated using the sof-

tassign in [2]. Algorithms to make faster the computation

of DA-Warps from point correspondences are proposed in

[3]. Several papers use the integral bending energy for 3D

surface reconstruction, for instance, as one of the terms in

an energy functional, see e.g. [7]. In contrast, we build on

the existing DA-Warps to derive new warps by taking into

account the possible rigidity of the observed surface and the

perspective camera model.

Notation. Scalars are in italics, e.g. x, vectors in bold

right fonts, e.g. q, and matrices in sans-serif and calli-

graphic fonts, e.g. P and E . The elements of a vector are

written as in aT = (a1 a2 a3) where T is vector and matrix

transpose. We do not make a difference between coordinate

vectors and physical entities. The coordinates of a point in

the first image are written with a 2-vector qT = (x y). R
r

and P
r designate respectively the Euclidean and projective

spaces of dimension r. We write d2(q,q′) = ‖q − q′‖2

the Euclidean distance between two points q and q′ with

‖ · ‖2 the vector two-norm and matrix Frobenius norm. Ho-

mogeneous coordinates are written q̌T ∼ (qT 1), where

∼ means equality up to scale. Scaled homogeneous coor-

dinates are written q̃T = (qT 1). The homogeneous to

affine coordinate function ψ is defined by q = ψ(q̌). The

skew-symmetric (3 × 3) cross-product matrix [q̌]× is de-

fined such that [q̌]×q̌′ = q̌ × q̌′. Full column rank portrait

matrix pseudo-inverse is defined by X† =
(
XTX

)−1
XT.

We consider l centres with coordinates ck in the first im-

age, with k = 1, . . . , l. They are gathered in an (l × 2) ma-

trix P containing their x and y coordinates on its columns,

and an (l × 3) matrix P̃ with a third column of ones, i.e.
P̃ = (P 1). Matrix P̌ equals matrix P̃ with each row

rescaled by some scalar factor, i.e. P̌ = diag(d)P̃. The

centres in the second image are written c′k. Matrices P′, P̃′

and P̌′ are defined similarly as for the first image.

Warps in affine coordinates are written W , while W̃ and

W̌ are used for scaled homogeneous and homogeneous co-

ordinates respectively. The sets of flat affine warps and flat

perspective warps (i.e. homographic warps) are respectively

denoted SFA and SFP. For a (2 × 3) flat affine warp matrix

A and a (3 × 3) flat perspective warp matrix H, we have:

WFA(q; A) def= Aq̃ and W̌FP(q; H) def∼ Hq̃.

Thin-Plate Splines. The TPS is an R
2 → R function

driven by assigning target values αk to the l 2D centres ck

and enforcing several conditions: the TPS is the Radial Ba-

sis Function (RBF) that minimizes the integral bending en-

ergy. It is usually parameterized by an l +3 coefficient vec-

tor hT
α,λ = ( wT aT) computed from the target vector α

and a regularization parameter λ ∈ R
+. The coefficients in

w must satisfie P̃Tw = 0. These three ‘side-conditions’ en-

sure that the TPS has square integrable second derivatives.

The TPS is defined by:

ω(q,hα,λ) def= �T
qhα,λ, (1)

with �T
q

def= (ρ(d2(q, c1)) · · · ρ(d2(q, cl)) q̃T) and

ρ(d) def= d log(d) is the TPS kernel function for the squared

distance. Combining the equations obtained for all the l
centres cr with target values αr in a single matrix equation

gives:

Kλw + P̃a = α, Kr,k =


λ r = k
ρ(d2(cr, ck)) r �= k.

(2)

Adding λI acts as a regularizer. Solving for hα,λ using the

above equation and the side-conditions is the classical lin-

ear method for estimating the TPS coefficients due to Book-

stein [1]. The coefficient vector hα,λ is a nonlinear function

of the regularization parameter λ and a linear function of the

target vector α.

Rigid surfaces, fundamental and projection matrices.
The rigidity of the observed scene is modeled by the fun-

damental matrix that we write F or A for the perspective

and affine camera models respectively. In both cases, the

rigidity constraint is q̃′TF q̃ = 0. A warp W is rigid if and

only if:

W̌(q)
TF q̃ = 0 ∀q ∈ R

2. (3)

Parameterizing the affine fundamental matrix as:

A def∼

0 0

ı0 0
T


 with

{
T def= (c d e)
ıT def= (a b),

(4)



we rewrite the definition (3) of a rigid affine warp as:

W(q)Tı + q̃T = 0 ∀q ∈ R
2. (5)

The (perspective) fundamental matrix has 7 degrees of free-

dom and lies on a nontrivial algebraic variety in R
9, written

F. The affine fundamental matrix has 4 degrees of freedom

and is a point in P
4, see e.g. [4, §9.2].

The fundamental matrix is an implicit reconstruction of

the two cameras. Canonical cameras are obtained by setting

the first (3 × 4) camera matrix to (I 0)M and the second

one to GF = ([ě′]×F ě′)M, where the second epipole e′

is defined by FTě′ = 0. Matrix M simply swaps the third

and fourth coordinates, making affine the first camera, even

in the perspective case. Note that MM ∼ I. In the affine

case, we write SA the first two rows of GF , the third row be-

ing (0 0 0 1). Within this canonical reconstruction basis,

a 3D point with depth δ can be written2 Q̃T ∼ (qT δ 1).
Reprojecting a 3D point in the second camera GF gives the

transfer equation q̃′ ∼ ḠF q̃ + gFδ with ḠF the first, sec-

ond and fourth columns of GF and gF the third one. In the

affine case, the second camera matrix SA is (2 × 4). We

Define S̄A and sA similarly to ḠF and gF .

3. Feature-Driven Parameterization of the TPS
We write hα,λ = Eλα, i.e. as a linear ‘back-projection’

of the target vector α. Matrix Eλ nonlinearly depends on λ.

It is given from equation (2) as a function of Kλ and P̃ by:

Eλ
def=


K−1

λ

(
I − P̃

(
P̃TK−1

λ P̃
)−1

P̃TK−1
λ

)
(
P̃TK−1

λ P̃
)−1

P̃TK−1
λ


 .

This parameterization has the advantages to separate λ and

α and introduces units3. The side-conditions are naturally

enforced by this parameterization.

Incorporating this parameterization into the TPS (1) we

obtain what we call the feature-driven parameterization

τ(q; α, λ) = ω(q;hα,λ) for the TPS:

τ(q; α, λ) def= �T
qEλα. (6)

This is a feature-driven parameterization since α contains

the coordinates of the target centres. In practice, these are

image points. The following important properties hold:

�T
qEλ1 = 1 and q̃Tθ = �T

qEλP̃θ ∀q ∈ R
2 ∀θ ∈ R

3. (7)

2δ is actually the inverse of the depth relative to the first camera. If the

camera is calibrated this is the ‘true’ inverse depth, otherwise this is the

inverse projective depth. The advantages of this 3D point parameterization

are that it is minimal (i.e. it has 3 effective parameters) and handles points

at infinity.
3While hα,λ has no obvious unit, α in general has (e.g. pixels, meters).

This stems from EλP̃ = (0 I)T. The asymptotic regulariza-

tion behaviour of the TPS is an affine transformation:

lim
λ→+∞

τ(q; α, λ) = ζTq̃, ζ
def= P̃†α.

4. Warps with the Affine Camera Model

4.1. DA-Warps – Standard TPS-Warps

Derivation and properties. Standard R
2 → R

2 TPS-

Warps are obtained by stacking two R
2 → R TPS sharing

their centres and regularization parameter. Using (6), this

gives (τ(q;x, λ) τ(q;y, λ)) = �T
qEλ

(
x y

)
. DA-Warps

are thus defined as:

WDA(q; P′, λ) def= MDA�q, MT
DA

def= EλP′. (8)

We call this a Deformable Affine Thin-Plate Spline Warp,

or ‘DA-Warp’ since it models images of deformable sur-

faces and corresponds to an affine camera model. Thanks

to property (7), we write homogeneous DA-Warps as

W̃DA(q; P′, λ) def= M̃DA�q with M̃T
DA

def= EλP̃′.

Figure 1. The DA-Warps are interpreted as relating the projection

of a deforming 3D surface by two affine cameras.

The set of DA-Warps is written SDA. They have 2l de-

grees of freedom through P′ ∈ R
2l. The asymptotic regu-

larization behaviour is as follows:

lim
λ→+∞

WDA(q; P′, λ) = LDAq̃′, LT
DA

def= P̃†P′.

In other words, a DA-Warp tends to a flat affine warp repre-

sented by the (2× 3) matrix LDA. It can be shown that LDA

minimizes the transfer error4.

4The transfer error is the discrepancy between the data points in the

second image and the points transferred by the warp from the first image,

see §7 for more details.



A projected deformable surface interpretation. We

propose a geometrical interpretation of the DA-Warps as

the warps induced by the observation of a deforming sur-

face with two affine cameras, as illustrated in figure 1. In

order to model the surface depth, its motion and deforma-

tion, we introduce an R
2 → R

3 map, parameterizing the

surface in a concise manner by the 3D coordinates C′
k of the

l centres. This map is built by stacking three TPS sharing

their centres and regularization parameter. More formally,

gathering the ‘3D centres’ C′
k in a single (l × 3) matrix

ZT = (C′
1 · · · C′

l), the map is written:

R(q; Z, λ) def= M3D�q, MT
3D

def= EλZ. (9)

Reprojecting a 3D surface point gives q′ = S̄AZTET
λ �q +

sA. Using property (7), we get q′ = SAZ̃TET
λ �q, that we

identify with a DA-Warp (8), giving:

q′ = WDA(q; Z̃ST
A, λ).

This shows that the 3D centres C′
k can be replaced by the

2D centres c′k in the second image since P′ = Z̃ST
A.

This geometric interpretation does not only provide a

strong intuition on the fact that the DA-Warps are intrin-

sically affine, but also a setting for naturally deriving the

DP-Warps, their perspective projection extension, in §5.2.

4.2. RA-Warps – Rigid Affine Warps

Derivation and properties. Applying the rigid affine

warp definition (5) to a DA-Warp (8) gives:

�T
qEλP′ı + q̃T = 0 ∀q ∈ R

2.

Using property (7) gives �T
qEλ

(
P′ı + P̃

)
= 0, ∀q ∈ R

2.

This implies P′ı + P̃ = 0(l×1), which is the epipolar con-

straint for all pairs of centres. We call it the rigidity consis-

tency constraint for DA-Warps. This means that if the warp

satifies the epipolar geometry, then the centres also have to.

Each pair of centres ck ↔ c′k satisfies the epipolar

constraint and thus is the projection of a 3D point CT
k =

(cT
k δk) in the canonical basis. Reprojecting all centres in

the second image gives P′ = (P δ 1)ST
A. Substituting into

the DA-Warp formulation (8) gives:

WDA(q; P′, λ) = SA(P δ 1)TET
λ �q,

which can be seen as the projection of some 3D point by the

second camera, thereby satisfying the rigidity constraint,

completing the proof. We thus define:

WRA(q; δ,A, λ)
def
= MRA�q, MT

RA
def
= Eλ(P δ 1)ST

A. (10)

This definition of RA-Warps can be made homogeneous by

replacing the (2×4) camera SA by its (3×4) equivalent GA
in the above equations, giving W̃RA(q; δ,A, λ) def= M̃RA�q

with M̃T
RA

def= Eλ(P δ 1)GT
A.

Figure 2. The RA-Warps are inter-

preted as relating the projection of

a rigid smooth 3D surface by two

affine cameras.

From the above

derivation follows that

the set of RA-Warps,

denoted SRA, is a

subset of SDA. In can

be shown that the set

of flat affine warps

SFA is included into

SRA. The RA-Warps

have l + 4 degrees

of freedom through

(δ,A) ∈ R
l × P

4.

Parameters δ are the

depth of the centres

with respect to the

first camera.

The asymptotic

regularization behaviour of the RA-Warps is derived

directly from the one for the DA-Warps (8):

lim
λ→+∞

WRA(q; δ,A, λ) = LRAq̃, LT
RA

def
= P̃†(P δ 1)ST

A.

In other words, an RA-Warp tends to a flat affine warp rep-

resented by the (2 × 3) matrix LRA. It can be shown to be

rigid and can be written LRA = SA + sAδTP̃†, a plane-

induced affine warp minimizing the transfer error, under the

assumption that the point correspondences satisfy the rigid-

ity constraint.

A projected rigid surface interpretation. A geometric

interpretation of the RA-Warps, illustrated in figure 2, di-

rectly stems from their definition (10). The RA-Warps are

induced by a surface defined as a Monge patch parameter-

ized by a TPS mapping points from the first image to their

depths. This R
2 → R TPS is of the form (6) and has the

same centres as the RA-Warp. This is derived by expanding

the formulation (10) of the RA-Warps and property (7):

WRA(q; δ,A, λ) = S̄Aq̃ + sAτ(q; δ, λ). (11)

5. Warps with the Perspective Camera Model
5.1. RP-Warps – Rigid Perspective Warps

We derive the RP-Warps by introducing perspective pro-

jection in the RA-Warps. Following §4.2, we pick up a 3D

point Q on the scene surface, defined by an R
2 → R TPS

parameterized Monge patch, and reproject it in the second

image, giving from equation (11):

W̌RP(q; δ,F , λ) ∼ ḠF q̃ + gFτ(q; δ, λ).

Replacing τ by its expression (6), and applying property (7)

to each of the three rows of ḠF , we get W̌RP(q; δ,F , λ) ∼



(ḠF P̃T + gFδT)ET
λ �q and thus:

W̌RP(q; δ,F , λ)
def∼ M̌RP�q, M̌T

RP
def∼ Eλ(P δ 1)GT

F . (12)

This is the homogeneous Rigid Perspective Thin-Plate

Spline Warp. The homogeneous coordinates of the trans-

ferred point are linear functions of �q. The affine coor-

dinates are obtained as ratios of linear functions through

WRP(q; δ,F , λ) def= ψ(W̌RP(q; δ,F , λ)).
The set of RP-Warps, denoted SRP is a superset of SRA.

This is shown easily by choosing for F an affine fundamen-

tal matrix. It can be shown that SRP is also a superset of

SFP. An RP-Warp is guaranteed to be rigid since it implic-

itly projects 3D points, giving image points satisfying the

epipolar geometry constraint. It has l + 7 degrees of free-

dom through (δ,F) ∈ R
l × F.

The asymptotic regularization behaviour is:

lim
λ→+∞

W̌RP(q; δ,F , λ) ∼ ĽRPq̃, ĽT
RP

def∼ P̃†(P δ 1)GT
F .

An RP-Warp thus tends to a flat perspective warp repre-

sented by the (3 × 3) homogeneous homography matrix

ĽRP. It can be shown to be the plane-induced rigid warp

ĽRP ∼ GF + gFδTP̃† minimizing an algebraic transfer

error, under the assumption that the point correspondences

satisfy the rigidity constraint.

5.2. DP-Warps – Deformable Perspective Warps

The DP-Warps form a superset of all other warps derived

so far in this paper, including the standard DA-Warps. The

RP-Warps are derived by introducing perspective projec-

tion in the RA-Warps. We derive the DP-Warps from the

DA-Warps in the same spirit. Consider the deformable sur-

face geometric interpretation shown in figure 1. The surface

seen by the second camera is defined by an R
2 → R

3 map

R(q; Z, λ). Projecting a point on this surface to the second

image gives q̌′ ∼ ḠFR(q; Z, λ)+gF . Substituting the map

(9) defining the 3D surface gives:

q̌′ ∼ ḠFZTET
λ �q + gF .

Using property (7), we get q̌′ ∼ ḠF Z̃TET
λ �q. The centres

in the second image are the reprojection of the ‘3D centres’

in matrix Z. The weights of the homogeneous coordinates

in P̌′ are important: they model the perspective part of the

DP-Warps. We thus define the DP-Warps as:

W̌DP(q; P̌′, λ) def∼ M̌DP�q, M̌T
DP

def∼ EλP̌′. (13)

The affine coordinates are obtained as ratios of linear func-

tions through WDP(q; P̌′, λ) def= ψ(W̌DP(q; P̌′, λ)).
The set of DP-Warps, denoted SDP, forms a superset of

SRP and a superset of SDA. The DP-Warps have parameters

P̌′ and thus 3l − 1 degrees of freedom. Consequently, they

can not be estimated by choosing as centres all data points:

each point correspondence giving two contraints, we end up

with 2l contraints, which is less than the 3l − 1 unknowns.

Methods for estimating DP-Warps are reported in §7.

The asymptotic regularization behaviour is formulated

below for all data points chosen as centres. A conse-

quence is that the limiting warp we get is undetermined, i.e.
has some free parameters. Unsurprisingly, it actually has

(3l − 1) − 2l = l − 1 free parameters, i.e. the difference

between the number of free parameters of the DP-Warps

and the number of constraints given by interpolating the l
centres:

lim
λ→+∞

W̌DP(q; P̌′, λ) ∼ ĽDPq̃, ĽT
DP

def∼ P̃†diag(d)P̃′.

The (l × 1) vector d, defined up to scale, represents the

l − 1 free parameters of the limiting flat perspective warp,

represented by matrix ĽDP, minimizing an algebraic trans-

fer error, different from the one we use in §7.

6. A Hierarchy of Warps
The aim of this section is to define a hierarchy between

the sets of standard DA-Warps SDA, of flat affine and per-

spective warps SFA and SFP, and of the three types of warps

we introduced, SRA, SRP and SDP. The whole hierarchy is il-

lustrated in figure 3. So far, we have established SRA ⊂ SDA

and SRA ⊂ SRP. Intuitively, the common warps to SDA and

SRP must be rigid and affine. More precisly, we have SRA =
SDA ∩ SRP. We also established that SDP is a superset of all

the other warps, i.e. SRP ⊂ SDP and SDA ⊂ SDP, and thus

SRA ⊂ SDP. The set of DA-Warps SDA does not contain any

flat perspective warp. More formally, (SFP−SFA)∩SDA = ∅,

implying (SFP − SFA) ∩ SRA = ∅.

SDA, 2lSDA, 2l SDP, 3l 1SDP, 3l 1

SFA, 6SFA, 6 SFP, 8SFP, 8

SRA, l + 4SRA, l + 4 SRP, l + 7SRP, l + 7

Figure 3. Hierarchical representation for the three proposed types

of warps – RA, RP and DP – along with the standard TPS warps,

dubbed DA-Warps, and the flat warps FA-Warps and FP-Warps. D

stands for Deformable, R for rigid, F for flat, A for Affine and P

for Perspective. The number of degrees of freedom for l centres is

indicated for each set of warps.

7. Estimation of the Warps
We propose warp estimation methods from m point cor-

respondences qj ↔ q′
j . We examine two cases for the cen-

tres in the first image. (i): ‘centre-on-data’ – the centres

in the first image coincide with the data points, i.e. m = l.



(ii): ‘arbitrary-centres’ – the centres in the first image may

not coincide with the data points. They are typically chosen

on a regular grid or as interest points. We assume m ≥ l,
i.e. we have sufficiently many point correspondences to es-

timate the warp without having to regularize it.

All warps are estimated by minimizing the transfer er-

ror, i.e. the discrepancy, measured by the Euclidean dis-

tance, between the data points in the second image, and the

corresponding points transferred by the sought after warp

from the first image. Criteria based on a 3D depth error

for the rigid warps are avoided since they are not physically

meaningful for uncalibrated cameras. For most warps, the

transfer error is nonlinear. Two-step methods and algebraic

approximations are used to get an initial estimate through

Linear Least Squares minimization (LLS), solved using the

pseudo-inverse technique or Singular Value Decomposition

(SVD) of the design matrix, if the system is homogeneous,

enforcing unit two-norm on the unknown vector. The initial

estimate is refined by iteratively minimizing the transfer er-

ror through Nonlinear Least Squares minimization (NLS)

with the Levenberg-Marquardt algorithm, see e.g. [4, §A].

For a warp W with parameters U , the minimization problem

is generically written:

ϑ(W,U) def= min
U

n∑
j=1

‖W(qj ;U , λ) − q′
j‖2.

DA-Warps. The minimal number of point correspon-

dences is m ≥ 3. In the centre-on-data case, this is the clas-

sical problem solved by Bookstein [1]. With our feature-

driven parameterization (8), the transformation is readily

expressed in terms of the centre coordinates P′. Note that

the data points are interpolated, which nullifies the trans-

fer error. In the arbitrary-centre case, we solve ϑ(WDA,P′).
Writing �qj

as �j , and replacing WDA by its expression (8),

we get an LLS problem:

min
P′

m∑
j=1

∥∥∥�T
j EλP′ − q′

j
T
∥∥∥2

.

RA-Warps. A single algorithm solves both the centre-on-

data and arbitrary-centre cases for m ≥ 4 point correspon-

dences. RA-Warps depend on the affine fundamental matrix

A and a depth vector δ. Contrarily to the DA-Warp case,

ϑ(WRA, {δ,A}) is an NLS problem due to the coupling be-

tween δ and A in the expression (10) of the warp. In order

to find an initial estimate, we use a two-step procedure. We

compute A using e.g. the Gold Standard algorithm in [4,

§14.3]. Given A, finding δ by minimizing the transfer er-

ror, i.e. solving ϑ(WRA, δ) turns out to be an LLS problem:

min
δ

m∑
j=1

∥∥∥sA�T
j ET

λ δ + �T
j EλP̃ST

A − q′T
j

∥∥∥2

.

RP-Warps. For both the centre-on-data and the arbitrary-

centre cases, the minimal number of point correspondences

is m ≥ 7. RP-Warps depend on the fundamental matrix F
and a depth vector δ. ϑ(WRP, {δ,F}) is an NLS problem,

for several reasons: (i) δ and F are coupled in the homo-

geneous expression (12) of the warp, (ii) finding the affine

coordinates of the transferred point requires a division and

(iii) the fundamental matrix must fulfill a nonlinear rank-

deficiency constraint5. Similarly to the algorithm for the

RA-Warps, we use a two-step initialization procedure. We

compute F using e.g. the Gold Standard algorithm in [4,

§11.4]. Given F , we estimate δ by minimizing an algebraic

approximation to the transfer error:

min
δ

m∑
j=1

d2
a(W̌RP(qj ; δ,F , λ), q̃′

j),

with d2
a(q̌, q̌′) = ‖S[q̌]×q̌′‖2 an algebraic distance be-

tween points q and q′, and S = (I 0) simply selects the

first two rows of the cross-product. The algebraic approxi-

mation yields an LLS minimization problem since the al-

gebraic distance directly compares homogeneous coordi-

nate vectors, thereby avoiding the need for the perspec-

tive division. Normalizing the image coordinates is cru-

cial to make the algebraic distance ‘similar to’ the Eu-

clidean one [4]. Substituting da by its expression, and

the RP-Warp by its homogeneous formulation (12), we get

minδ

∑m
j=1 ‖S[q̃′

j ]×GF (P δ 1)TET
λ �j‖

2
and as sought,

after minor algebraic manipulations, an LLS problem:

min
δ

m∑
j=1

∥∥∥S[q̃′
j ]×gF�T

j Eλδ + S[q̃′
j ]×ḠF P̃TET

λ �j

∥∥∥2

.

DP-Warps. The minimum number of data points is

m ≥ 4. In the arbitrary-centre case, ϑ(WDP, P̌
′) is an

NLS problem, due to the division required for finding

the affine coordinates of the transferred point. An ini-

tial estimate is found, as for the RP-Warps, by minimiz-

ing an algebraic approximation to the transfer error, i.e.
minP̌′

∑m
j=1 d2

a(W̌DP(qj ; P̌′, λ), q̃′
j). The arbitrary scale of

P̌′ is fixed by enforcing its norm to unity, i.e. ‖P̌′‖ = 1. Re-

placing da by its expression, and W̌DP by its homogeneous

expression (13), we obtain, after some minor algebraic ma-

nipulations, an LLS problem:

min
P̌′,‖P̌′‖=1

m∑
j=1

∥∥∥S[q̃′
j ]×diag3(�

T
j Eλ)vect(P̌′)

∥∥∥2

,

with diagr(x) an r block diagonal matrix with x the re-

peated block, and with vect the row-wise matrix vectoriza-

tion.

5In practice, we directly optimize over the 12 entries of the second

projection matrix to avoid parameterizing the nontrivial variety of funda-

mental matrices.



The simple centre-on-data setting in not possible for this

type of warps. Indeed, as already discussed, the 2l con-

straints provided in general by l centre correspondences are

not enough to constrain the 3l − 1 degrees of freedom of

the warp. In other words, there is no solution to estimate

the warp parameters by taking as centres the whole set of

point correspondences: l − 1 other point correspondences

are needed. We thus consider a weak centre-on-data case:

we pick a subset of l out of the m data points as centres,

with l ≤ � 2m+1
3 
. In case where 3l = 2m+1 holds, there is

a unique solution, which obviously depends on which data

points are chosen as centres. The general minimal case is

m = 3k + 1 and l = 2k + 1 with k ∈ R
+∗. Both the

minimal and redundent cases are solved by writing an alge-

braic approximation to the transfer error. Given the centre

coordinates P and P′ in both images, we are looking for

the parameters P̌′ of the DP-Warp. A simple way of pa-

rameterizing the problem is to use P̌′ = diag(d)P̃′, and

compute the ‘scale vector’ d only. This enforces interpola-

tion of the centres and leaves only the remaining l − 1 un-

knowns since d is an l-vector defined up to scale, leading

to mind

∑m
j=1 d2

a(W̌DP(qj ; diag(d)P̃′, λ), q̃′
j) such that

‖d‖ = 1. Substituting da by its expression, as well as the

DP-Warp from equation (13), gives an LLS problem:

min
d,‖d‖=1

m∑
j=1

∥∥∥S[q̃′
j ]×P̃′Tdiag(ET

λ �j)d
∥∥∥2

.

8. Experimental Evaluation
8.1. Simulated Data

We synthetically generated training and test data sets by

projecting 3D points into two cameras with focal length f .

The 3D points lie on paper-like 3D surfaces, i.e. with van-

ishing Gaussian curvature. We believe that it is represen-

tative of the kind of real images one may use the proposed

warps on. The 50, Gaussian noise corrupted training data

points are used as centres to estimate the warps. The er-

rors reported below are means over 500 trials of the transfer

error estimated over the 200 points of the test set, so as to

reflect the quality of the estimated warps.

Figure 4 (left) shows the results we obtained. We must

not compare the affine and perspective warps with these re-

sults, since in order to assess the influence of noise only,

we use affine cameras for the affine warps, and perspective

cameras with f = 300 pixels for the perspective warps. We

observe that the quality of the warps linearly degrades with

the noise level, and is actually around twice the noise stan-

dard deviation. This is a satisfying behaviour, holding true

for all warps.

We gradually increase the focal length of the cameras,

which has the effect of making the images more affine and

keep the scene rigid. In order to preserve the transfer er-

ror scale, we keep invariant the size of the imaged object

by translating each camera along its optical axis. Figure 4

(right) shows the result, with a 2 pixel noise level. As ex-
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Figure 4. Influence of the noise level (left) and the focal length

(right) onto the quality of the warps.

pected, the transfer error for the RP-Warps appears to be in-

variant to the focal length (the slight variations are due to the

image scale). We make the same observation for the DA-

Warps. This is due to the fact that the DA-Warps have extra

degree of freedom compared to the rigid warps approximat-

ing the perspective projection of the rigid surface. The RA-

Warps have the highest error for short focal lengths, which

dramatically decreases as the focal length increases. It even-

tually converges to the same error as for the RP-Warps when

the affine camera model becomes numerically equivalent to

the perspective one. We see that beyond fDA = 2000 pix-

els, the RA-Warps do better than the DA-Warps. This is the

breakdown focal length for the DA-Warps, above which the

lack of rigidity, and the fact that the affine approximation

is better fulfilled, makes the RA-Warps better capture the

underlying true warp. We note that 2000 pixels is the order

of magnitude one may have with real images. We experi-

mentally measured fDA ≈ {∞, 4000, 2000, 500, 300} pix-

els for {0, 1, 2, 5, 10} pixel noise levels. This shows that en-

forcing the rigidity constraint is very important to capture a

warp as close as possible to the true one from limited image

measurements. Another conclusion is due to the significant

difference between the RA-Warps and the RP-Warps. The

latter achieves consistently lower test transfer errors, much

lower for short to medium focal lengths. This shows that

much more accurate warps are captured by modeling per-

spective projection. Experimental results with a deforming

surface, not shown here, allow us to draw similar conclu-

sions for the DA-Warps and the DP-Warps. It also shows

that the DP-Warps overfit the data and usually have large

variance. Another experiment shows that gradually merg-

ing the test and the training sets decreases the error to zero

for the deformable warps and to the epipolar geometry fit-

ting error for the rigid warps, as expected.

8.2. Real Data

We took a set of images of a manually handled poster

with short and long focal lengths and various deformations.
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Figure 5. One of the perspective images (left) and closeup on trans-

ferred points in another image for the deformable warps (right).

Figure 6. Negative difference image for an RA-Warp (left) and

an RP-Warp (right). Bright colors indicate low discrepancy. The

RMS errors are respectively 33.66 and 19.01.

Figure 7. The cameras and 3D

surface reconstructed through

an RP-Warp.

We then manually clicked

206 point correspon-

dences into all the images

and estimated the warps.

One of the experiments

consisted in comparing

the RA-Warps and the

RP-Warps in the presence

of significant perspec-

tive projection effects,

see one of the images,

overlaid with the point

correspondences, on

figure 5 (left) but without
surface deformations. We

selected 52 points to serve

as centres (approximately

25% of the data points),

and minimized the transfer error over all data points to

fit the warps. The transfer error we obtained is 19.01

pixels and 12.53 pixels for the RA-Warp and the RP-Warp

respectively. We used the two computed warps to warp

the second image onto the first one, and computed their

difference, shown on figure 6. These ideally are black,

zero value images. Non-zero values are to be interpreted

as unmodeled physical phenomena, mainly the extent

to which the warp models the image deformation. The

difference image clearly reflects the quality of the warp. We

see that the RP-Warps do much better than the RA-Warps.

The mean color alignment error in pixel value units is 33.66

and 19.01 for the RA-Warp and the RP-Warp respectively.

We observed in particular that there is no data points in

the top-right hand corner of the poster. This is were the

difference is the highest for the RA-Warp, showing that

the deformation, and thus the surface, is not very well

captured by this model. The 3D surface reconstructed by

the RP-Warp is shown in figure 7.

Similar comparison results for the DA-Warps and the

DP-Warps were obtained by using two images of the poster

with different deformations, giving a transfer error of 6.66

and 5.83 pixels respectively. Figure 5 (right) shows a rep-

resentative closeup on transferred points. We observe that

the data points are better predicted by the DP-Warp, mean-

ing that it effectively models perspective projection but has

however a high variance, i.e. is very dependent on which

data points are used.

9. Discussion
Three types of R

2 → R
2 image warps are proposed, us-

ing the R
2 → R Thin-Plate Spline as a building block. They

are designed to overcome some limitations of the standard

Thin-Plate Spline warps, and derived based on a feature-

driven parameterization we introduce. These warps have

direct practical impacts since they better model image de-

formations than the standard DA-Warps in several cases,

e.g. for rigid smooth surfaces and images with perspec-

tive projection effects. The DP-Warps are unstable because

they overfit the data and tend to have high variance since

they actually depend on the depth of the centres. One rem-

edy may be to regularize their denominator. The warps es-

sentially use two view visual geometry and the Thin-Plate

Spline. Since they are given geometric interpretations, they

can probably be extended to multiple views.
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