
Using Geometry Invariants for Camera Response Function Estimation

Tian-Tsong Ng, Shih-Fu Chang

Department of Electrical Engineering

Columbia University

New York, NY 10027

{ttng,sfchang}@ee.columbia.edu

Mao-Pei Tsui

Department of Mathematics

University of Toledo

Toledo, OH 43606

mao-pei.tsui@utoledo.edu

Abstract

In this paper, we present a new single-image camera re-

sponse function (CRF) estimation method using geometry

invariants (GI). We derive mathematical properties and ge-

ometric interpretation for GI, which lend insight to address-

ing various algorithm implementation issues in a principled

way. In contrast to the previous single-image CRF estima-

tion methods, our method provides a constraint equation

for selecting the potential target data points. Comparing to

the prior work, our experiment is conducted over more ex-

tensive data and our method is flexible in that its estimation

accuracy and stability can be improved whenever more than

one image is available. The geometry invariance theory is

novel and may be of wide interest.

1. Introduction

Camera response function (CRF) maps image irradiance

(light energy incident on image sensors) to image intensity

(output of a camera). In practice, the mapping is a collec-

tive effect of various camera internal operations and noise.

The capability to estimate CRF is important, as various pho-

tometric computer vision algorithms, such as shape from

shading and photometric stereo, require image irradiance. If

CRF can be estimated, image intensity can be transformed

to image irradiance. Furthermore, a CRF can be thought as

a natural watermark and used for image authentication.

Assuming that CRF is spatially uniform in an image,

CRF can be estimated from three types of inputs: a set of

same-scene images with different but known exposures [8,

2, 10], a single RGB color image [6], or a grayscale image

converted from a RGB color image [7]. Estimating CRF

from a single image is an under-constraint problem and re-

quires a physical assumption on image irradiance, e.g., the

distribution of the image irradiance value at a local edge re-

gion is assumed to be uniform [7]. Unfortunately, for all

previous single-image CRF estimation methods, there is no
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Figure 1. The computational steps for our CRF estimation method

and their related implementation issues.

principled mechanism to identify image regions which sat-

isfy their assumptions, as verifying assumptions in the un-

known image irradiance domain is non-trivial.

In this work, we propose a theoretical-based CRF esti-

mation method using geometry invariants (GI), which pro-

vides a constraint equation to identify the potential locally

planar irradiance points (LPIP) used in CRF estimation.

The locally planar region in image irradiance can be found

on the ramp edges in an image. Our method consists

of three main computational steps, i.e., computing image

derivatives, detecting LPIP, and CRF estimation, as shown

in Fig. 1. In Fig. 1, we also show the related implementation

issues. Our experiments are conducted on 5 models of cam-

era (from 4 different manufacturers) compared to three in

[6] and two in [7]. Apart from single-image CRF estima-

tion, our method can achieve a better estimation accuracy

and stability when multiple images from the same camera

are available.

In this paper, we describe the prior work on CRF estima-

tion in Sec. 2. In Sec. 3, we present the theoretical aspect

of the CRF estimation algorithm. In Sec. 4, we describe

a method to overcome an ambiguity in our method, and in

Sec. 5, we describe CRF estimation through curve fitting.

In Sec. 6, we describe the implementation aspect of our al-

gorithm. Finally, we show our experiments in Sec. 7 and

conclude with Sec. 8.

2. Prior Work on CRF Estimation

CRF’s can be manually estimated by photographing a

Macbeth chart with known-reflectance patches, under uni-

form illumination. CRF’s recovered using a Macbeth chart
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are considered reliable and often accepted as a ground truth

for evaluating other CRF estimation techniques [5, 6, 7].

On the other hand, automatic CRF estimation methods

relies on assumptions defined in the irradiance domain. As

CRF transformation of image irradiance results in a devia-

tion of the assumptions, CRF can be estimated as a function

f which best restores the assumptions. For methods that

estimate CRF using multiple same-scene images [8, 2, 10],

the exposure ratio among the images provides a relationship

between the irradiance images and the CRF is estimated by

a function f that restores this relationship from the intensity

image sequence.

In an earlier work [3], a CRF estimation method for a

single-channel image is proposed by assuming that non-

linear transformation of image irradiance by a gamma

curve, f(r) = rγ , introduces correlated harmonics, which

can be measured by the magnitude of biocoherence (third-

order moment spectra). However, the method is limited to

the use of the gamma curve CRF model, which is known

to be insufficient for real-world CRF’s. In [6], a CRF esti-

mation method using a single RGB-color image by assum-

ing linearly blended edge pixels (between two homogenous

regions with distinct irradiance values). When the linear

blending assumption holds across the RGB color channels,

it can be shown that the image irradiance values at the edge

and the adjacent homogenous regions will be colinear in

the RGB color space. Additionally, the assumption that

the image irradiance values in an image edge region form

a uniform distribution was employed to estimate CRF from

a grayscale image [7]. However, the method is only demon-

strated on grayscale images converted from RGB color im-

ages instead of single-color channel images [7].

3. Theoretical Aspects of the Algorithm

In this paper, we use r(x, y) and R(x, y) respectively for

image irradiance and image intensity. CRF is denoted either

by R = f(r), or r = g(R). The 1st-order derivatives ∂R
∂x

and
df(r)

dr are respectively denoted as Rx and f ′(r), with

similar convention for higher-order derivatives.

3.1. Geometry Invariants

Given R(x, y) = f(r(x, y)), we take the 1st-order par-

tial derivatives of R(x, y) and by the chain rule we obtain:

DR(x, y) =
(

Rx Ry

)

= f ′(r)
(

rx ry

)

(1)

Note that Rx is the product of two factors; the first factor

f ′(r) is purely related to CRF while the second factor rx is

purely related to the geometry of image irradiance. GI can

be derived if the second factor, the effect of image geometry,

can be removed. Hence, the resulting GI is only dependent

on CRF f but not the geometry of image irradiance.

It is non-trivial to eliminate the geometry effect of an ar-

bitrary function r(x, y). However, a function can be locally

approximated by its Taylor expansion, which decomposes

the local geometry into polynomials. The 1st and 2nd-order

polynomials are respectively planes and quadratic func-

tions. We can define the 1st-order GI (G1) as quantities that

are invariant to the class of planar surfaces:

{r(x, y) : r(x, y) = ax + by + c, a, b, c ∈ R} (2)

For planes, we have rxx = rxy = ryy = 0, and the 2nd-

order partial derivatives of R = f(r) are given by Eq. 3

D2R(x, y) =

(

Rxx Rxy

Ryx Ryy

)

= f ′′(r)

(

r2
x rxry

rxry r2
y

)

(3)

Then, by taking the ratio of Eq. 3 over Eq. 1, we obtain G1:

Rxx

R2
x

=
Ryy

R2
y

=
Rxy

RxRy
=

f ′′(f−1(R))

(f ′(f−1(R)))2
= G1(R) (4)

Note that, G1, as a function over R, depends only on the

derivatives of f , but not the 1st-order geometry of image

irradiance. Such strict dependence relation on f will be

explored in this paper to estimate f . We will refer to the

first two equality relations in Eq. 4 as derivative equality

constraints in the rest of the paper, as they imply certain

important geometric properties.

3.2. General Properties of G1

In this section, we present two general properties of G1,

related to the CRF estimation algorithm. Further properties

will be described in the later sections.

Property 1 (Affine Transformation Invariance). The func-

tional G1 is preserved, as the 3-D graph of a planar irradi-

ance S = [x, y, r = ax + by + c]T undergoes affine trans-

formation:

If AS + B → S′ then G1(f(r)) → G1(f(r′)) (5)

where A is a 3×3 linear transformation matrix, with |A| 6=
0, B is a 3×1 translation vector, and S′ = [x′, y′, r′]T .

Note that, despite the value change from r to r′, the un-

derlying function G1 remains the same in Eq 5. The affine

transformation maps a plane to another plane, but as G1 is

independent of the plane geometry, so it does not change un-

der the transformation. Affine transformation includes rota-

tion, scaling, and translation and is usually imposed on im-

age irradiance when it undergoes white-balancing and con-

trast adjustment [13]. Therefore, with Property 1, G1 is a

natural instrument for CRF estimation.

A special case of affine transformation is the rotation of

the graph S = [x, y, r]T in the (x, y) plane at a point p
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Figure 2. The gauge coordinates for computing G1.

where r(p) = rp. In this case, we have rp = r′p and the

value of G1 is preserved:

R2×2

(

x
y

)

→
(

x′

y′

)

⇒ G1(f(rp)) = G1(f(r′p)) (6)

where R2×2 is a 2×2 rotation matrix. As rotation of image

irradiance is equivalent to rotation of the local coordinate

frame, then Property 1 also implies that the value of G1 is

preserved under local coordinate frame rotation.

Property 2 (Integral Solution to CRF). The partial differ-

ential equation (PDE) in Eq. 4 can be solved by an integral

function of G1:

f−1(R) =

∫

exp

(

−
∫

G1(R)dR

)

dR (7)

Despite the above analytical solution for CRF, its feasi-

bility is in practice deterred by detection ambiguity (Sub-

sec. 3.3) and the solution will be approximated by a compu-

tational method described later.

3.3. Detection of Locally Planar Irradiance Points

We have shown that the derivative equality constraint

of Eq.4 is satisfied for every LPIP. Therefore, we may use

this constraint to detect candidate points for LPIP in an im-

age. We will also show later that a more general type of

surface with linear isophote also satisfies the equality con-

straint. We call such inability to uniquely detect LPIP de-

tection ambiguity, which will be addressed in Sec. 4.

Although Property 1 implies in theory that there is not

a preferred Cartesian coordinate frame for computing G1

because rotation in the local coordinate frame does not

change the value of G1. In practice, it is not a good idea

to simply compute the G1 on the original (x, y) coordi-

nate frame of an image. The reason is that, for exam-

ple, when isophote (i.e., constant intensity curve) coincides

with the x-axis, singularity happens for G1(R) = Rxx

R2
x

, as

Rx = 0 along an isophote. For computation, we intro-

duce two first-order gauge coordinate frame, which are lo-

cally dictated by the intrinsic property of the image func-

tion: (ut, ug) and (ut, ug)-coordinate frames (see Fig. 2).

ut and ug are respectively the local tangential and gradient

direction of an image function, and (ut, ug)-frame is rotated

45◦ counter-clockwise from (ut, ug)-frame. Note that, the
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axis of the (ut, ug)-frame stays the farthest possible from

the isophote and computing G1 on (ut, ug)-frame circum-

vents the above-mentioned singularity problem.

In practice, imposing a strict constraint equality as in

Eq.4 is unrealistic in the presence of derivative computa-

tion error due to image noise, quantization, and spatial dis-

cretization of an image. Therefore, an error function in

Eq. 8 is used to choose the candidate points for LPIP. To

simplify notation, we hereforth denote Rut
as Rt, Rug

as

Rg and so on.

E(R) =

∣

∣

∣

∣

∣

Rtt

R2
t

− Rgg

R2
g

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

Rtt

R2
t

−
Rtg

RtRg

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

Rgg

R2
g

−
Rtg

RtRg

∣

∣

∣

∣

∣

(8)

Our detection method using the above error function can

detect LPIP points with small spatial support. In computer

vision, image edge profile is often modeled by a 1D ramp,

step or peak [11]. It is reasonable to find LPIP on a ramp

edge profile, especially at the ramp center, and this hypothe-

sis is empirically validated on an image shown Fig. 3. Fig. 3

(a) shows the points detected by E(R) < 10. Note that,

most of the points lies on image edges. In Fig. 3 (b), we

further classify the detected points into the LPIP set and

the non-LPIP set (formally defined in Sec. 4). Note that,

LPIP’s are mainly found at the middle of the edges and this

supports the above-mentioned hypothesis.

For the work in [7], although the ramp edge profile in

an irradiance image implies a uniform distribution of edge

pixel value which is used as an assumption for their CRF

estimation method. In constrast to our method, their method

requires a larger support of ramp profile for constructing a

reliable histogram and lacks a principled technique to detect

image regions consistent with their physical assumption.

3.4. Geometric Significance of Equality Constraint

The derivative equality constraint specified in Eq.4 has

an intuitive geometric interpretation. We first introduce

three geometric quantities [4] called the isophote curvature

(κ), the normalized 2nd-derivative in the gradient direction
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(λ), and the flow line curvature (µ), all expressed in the

(ut, ug)-frame, as shown in Eq. 9.

κ = −Rtt

Rg
, λ =

Rgg

Rg
and µ = −Rtg

Rg
(9)

The basic meaning of a curve curvature is the local curve

deviation from a tangent line. The isophote curvature κ is

the local curve deviation in the isophote direction, where

κ = 0 indicating a linear isophote. The flow line curva-

ture µ is the local change in the gradient vector field along

the isophote, where µ = 0 indicating same-shape isophotes

along the gradient direction (see Fig. 4). Then, κ = µ = 0
if and only if a local region is composed of linear isophotes.

Proposition 1 (Decomposition of G1). The G1 can be de-

composed as below:

Rtt

R2
t

=
λ − κ − 2µ

Rg
,
Rgg

R2
g

=
λ − κ + 2µ

Rg
and

Rtg

RtRg
=

λ + κ

Rg

(10)

Proposition 1 associates G1 with three geometrically

meaningful quantities. The decomposition immediately

leads to Proposition 2 which puts an equivalence relation-

ship between the equality constraint and the vanishing of

the isophote curvature and the flowline curvature. This in-

dicates a local geometric structure with linear isophotes,

which resembles the local image intensity profile shown in

Fig. 3 (c).
Proposition 2 (Geometric Significance of Equality Con-

straint in Eq.4).

{

Rtt

R2
t

=
Rgg

R2
g

=
Rtg

RtRg

}

⇐⇒ {κ = µ = 0} (11)

and locally, R = R(ug), i.e., an arbitrary function depends

only on ug in the gradient axis, with the linear isophote

coincides with the tangent axis.

Proposition 2 indicates detection ambiguity by showing

that the constraint equation detects points in a general re-

gion with linear isophotes, for which the LPIP set is only a

subset. In other words, the constraint detects points on both

regions of f(ax + by + c) and f(h(ax + by + c)), where h

is an arbitrary function, as illustrated in Fig. 4. Hence, we

propose a model-based inferencing method (Sec. 4) to fur-

ther detect LPIP from the candidate set found by the error

function (Eq. 8).

3.5. Model based CRF Estimation

Detection ambiguity motivates model-based CRF esti-

mation method, as a restricted function space imposed by

a CRF model makes CRF estimation more reliable in the

presence of noise. Property 3 leads us to a suitable CRF

model for our method.

Property 3 (Relationship with Gamma Curves). For

gamma curves, R = f(r) = rγ , G1 has a simple relation-

ship with the parameter γ:

G1(R) =

(

γ − 1

γR

)

and γ =
1

1 − G1(R)R

.
= Q(R) (12)

Note that, estimating γ from the G1(R) expression in

Eq. 12 will encounter a singularity at R = 0. However,

Eq. 12 suggests that when G1(R) is transformed to Q(R),
Q(R) is just equal to γ, a constant function independent

of R, which is also bounded for concave gamma curves

(γ ∈ [0, 1]). Hence, Property 3 gives us a compatible pair

of CRF model and an expression Q(R) for estimating CRF.

3.5.1 Generalized Gamma Curve Model

However, gamma curves are limited in representing real-

world CRF’s. Therefore, we propose a generalized gamma

curve model (GGCM) which has a good fit to the real-world

CRF’s in the DoRF database [5]. GGCM provides two

representations of CRF with f : r 7→ R (GGCM f ) and

g : R 7→ r (GGCM g), as shown in Eq. 13.

f(r) = rP (r,α̃) and g(R) = R1/P (R,α̃) (13)

where α̃ = [α1, . . . , αn], P (x, α̃) =
∑n

i=0 αix
i is a n-th

order polynomial, with n+1 parameters. Note that, GGCM

is reduced to the gamma curve model when the polyno-

mial is reduced to a constant term. Additionally, CRF is

commonly represented by a function f with f(0) = 0 and

f(1) = 1. As r can only be recovered with precision up to

a linear scaling and an offset of the actual image irradiance,

it is reasonable to normalize r to [0, 1].
Various CRF model has been proposed for CRF esti-

mation. One of the earliest model, f(r) = α + βrγ , is

borrowed from the photographic emulsion response func-

tion [8], essentially a gamma curve after normalization. A

general polynomial CRF model is then proposed in [10].

Recently, an empirical EMOR model [5] is obtained from

performing principle component analysis (PCA) on 201

real-world CRF’s. As the empirical model lacks the dif-

ferentiable property of an analytic model, it is not suit-

able for our method. We evaluate GGCM by performing

least square fit of the model to the 201 real-world CRF’s



Table 1. Mean RMSE (×10−2) of the proposed CRF model

Number of model parameters

Model 1 2 3 4

GGCM f 5.18 2.34 1.16 0.60

GGCM g 8.17 1.46 0.97 0.49

EMOR [5] 4.00 1.73 0.63 0.25

polynomial [10] 7.37 3.29 1.71 1.06
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Figure 5. The typical Q-R histogram of LISO from single gamma-

curve simulation images with γ = 0.2, 0.4 and 0.6 for (a) without

LPIP inference and (b) with LPIP inference. The red curve on

the left is the marginal Q distribution. The red line in each graph

indicates the ground truth value of γ

in the DoRF database. The goodness of fit for each CRF

is measured by RMSE and is shown in Table 11. Note

that GGCM performs slightly worse than the empirical

EMOR [5] model but outperforms the polynomial CRF

model [10], which is a commonly used analytic CRF model.

4. Addressing Detection Ambiguity Issues

Due to detection ambiguity, the equality constraint de-

tects locally linear isophote points (LISO), for which LPIP

is a subset. As our algorithm requires LPIP for CRF esti-

mation, we in this section present a data-driven approach to

infer how likely an LISO to be an LPIP, by exploring the

common characteristics of LPIP in terms of their derivative

quantities and their spatial layout shown in Fig. 3.

To study the effect of detection ambiguity, we generate a

set of simulation images by transforming more than 10 irra-

diance images (extracted from RAW format images which

are the direct output from a CCD image sensor) with gamma

curves f(r) = rγ for γ = 0.2, 0.4 and 0.6. We observe that

more than 92% of the real-world digital camera CRF’s in

the DoRF database lie in between r0.2 and r0.6. We define

the LISO set SLISO as:

SLISO = {(x, y) : E(R(x, y)) < 10} (14)

Fig. 5 (a) shows a typical distribution of the detected LISO

points in Q-R space. Note that, from Property 3, the

Q function corresponding to gamma curves is a constant.

From the marginal Q distribution on the left, we see that as

1The mean RMSE for the EMOR and the polynomial CRF model are

extracted from [5].
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Figure 6. The class-dependent feature distributions.

γ increases from 0.2 to 0.6, the Q distribution density con-

sistently shifts to a higher value, as predicted by the theory.

However, the mode of the distribution does not coincide ex-

actly with the ground-truth value of γ and this is an effect

of detection ambiguity, which we will rectify through LPIP

inference.

For LPIP inference, we define two groups of features.

The first group consists geometric quantities related to the

selection of LISO and the computation of Q, i.e., E(R)
value, gradient value, and the value of the normalized 2nd-

derivative in the gradient direction (λ, see Equ. 9). These

features are for capturing the geometric difference between

LPIP and non-LPIP. The second group consists of the mo-

ment features for capturing the specific spatial layout of

LPIP in the binary LISO map b(x, y), where b(x, y) = 1
if (x, y) ∈ SLISO, and b(x, y) = 0 otherwise. Specifically,

we compute the 1st to 3rd moment quantities on b(x, y), i.e.,

the total mass m0 =
∑

W5×5
b(x, y), the centriod m1, and

the radius of gyration m2 (Eq. 16), in 5×5 local windows

W5×5.

(

mx
1 mx

2

my
1 my

2

)

=
1

m0

∑

(x,y)∈W5×5

(

x x2

y y2

)

b(x, y)

(15)

m1 =
√

(mx
1)2 + (my

1)
2 and m2 =

√

mx
2 + my

2 (16)

For the class-dependent feature distributions, we define

the LPIP set SLPIP , and the non-LPIP set Snon−LPIP on

the simulation images as below:

SLPIP = {(x, y) : |Q(x, y) − γ| ≤ 0.1, (x, y) ∈ SLISO}
(17)

Snon−LPIP = {(x, y) : |Q(x, y) − γ| > 0.1, (x, y) ∈ SLISO}
(18)

The former condition chooses the points that satisfy the

derivative equality constraint (thus in SLISO) and their Q
value are close to the ground-truth value of γ. Only LPIP

points meet these conditions simultaneously. The latter con-

dition specifies points in the LISO set but having Q values

distant from the ground-truth γ, thus corresponding to the

non-LPIP points. Fig. 6 shows the class-dependent feature

distribution for SLPIP and Snon−LPIP . Note that, SLPIP

dominates the low E(R) value, as expected by the theory.

For the normalized 2nd-derivative feature λ, the high and
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Figure 7. Relation between LPIP posterior and the flatness mea-

surement in an irradiance image. Note the log scale on the y-axis.

low values are dominated by Snon−LPIP , and this is re-

lated to the spatial structure of Snon−LPIP and the higher

computational error for the 2nd-derivatives. For the gradi-

ent feature, Snon−LPIP dominates at the low values, as re-

gions with low gradient (i.e., more horizontal) tend to suffer

more from the quantization noise. On the other hand, the

distribution of the moment features can be explained by the

spatial structure of SLPIP as shown in Fig. 3 (b).

For LPIP inference, we adopt Bayesian approach and en-

force an independence assumption on the features fi:

P (f̃ |c) =

N
∏

i=1

P (fi|c) where f̃ = [f1, . . . , fN ] (19)

where c ∈ {SLPIP ,Snon−LPIP }. Feature independence is

crucial so that the inference does not capture the specificity

of the gamma curves from the geometric features and hence

is generalizable to more complex CRF curves than gamma

curves. The a-posterior probability of an LISO being an

LPIP is given by:

P (c|f̃) =
P (f̃ |c)P (c)

P (f̃)
=

P (f̃ |c)P (c)
∑

c P (f̃ |c)P (c)
(20)

where P (c) is the ratio of points belonging to the class c.

Fig. 5 (b) shows the distribution of LISO in Q-R space,

after incorporating the LPIP posterior as weights. It is ob-

vious from the marginal Q distribution that the mode of

the distributions coincides very closely to the ground-truth

gamma value γ, a sign of overcoming the effect of detection

ambiguity. To further validate the effectiveness of LPIP in-

ference, we measure the local planarity of an irradiance im-

age using a simple metric, mf = (r2
xx + r2

yy)0.5, where for

a plane, mf = 0. Fig. 7 shows that mf decreases (i.e., more

planar) as the LPIP posterior increases, and hence vouches

for the effectiveness of the proposed Bayesian method in

selecting the true LPIP points.

5. CRF Estimation

5.1. Objective Function for CRF Estimation

Eq. 4 expresses G1 as a functional of f . Given r = g(R)
and g = f−1, we can also express G1 in terms of g as

in Eq. 21. In this paper, we estimate CRF using g(R) =
R(1/(α0+α1R)), whose Q(R) is given by Eq. 22.

G1(R) =
f ′′(r)

f ′(r)2
= −g′′(R)

g′(R)
, Q(R) =

g′(R)

1 + g′′(R)R
(21)

Q(R) =
(α0 + α1R)2(α1 ln(R) − α0 + α1R)

T
(22)

T = α2
0 + α0α1R (α0(ln(R) + 1) − 2(1 − ln(R)))+

(α1R)2(1 − 4α0 − 2α1R + (ln(R) − 2)(α1R + ln(R)))
(23)

We fit Q(R) to the computed data {(Qn, Rn)}N
n=1 over N

detected LISO points by minimizing the objective function

in Eq. 24. Note that the best CRF parameter α̃∗ is estimated

by a weighted least-square criterion, where the weight is

the conditional histogram of Q given R. The reason for the

conditional weight is to prevent the optimization from being

dominated by the data on some specific R which happen to

be found abundant on an image.

α̃∗ = arg min
α̃

∑

j,k

P (Qj |Rk) |Qj − Q(Rk, α̃)|2 (24)

where α̃ = (α0, α1), Qj and Rk are respectively the dis-

crete samples on Q and R (representing the histogram bin

centers), P (Qj |Rk) = P (Qj , Rk)/P (Rk), and

P (Qj , Rk) =

N
∑

n=1

p(SLPIP |f̃n)1[Qj ,Rk]{(Qn, Rn)}

(25)

where p(SLPIP |f̃n) is given in Eq. 20, [Qj , Rk] is the bin

corresponding to the bin center (Qj , Rk), and the indicator

function, 1A{a} = 1 if a ∈ A.

5.2. Joint Estimation for Multiple­channel Images

Apart from single-channel images, the proposed method

can also be applied to RGB images. Joint estimation of

the RGB CRF’s can be performed by constraining the sim-

ilarity between the RGB CRF’s, as in Eq. 26 with α̃ =
{α̃r, α̃g, α̃b}. In practice, the RGB CRF’s of a camera are

quite similar.

α̃∗ = arg min
α̃







∑

j,k,c

P (Qj |Rk) |Qj − Q(Rk, α̃c)|2

+
∑

c1>c2

(

1

K

K
∑

k=1

(g(Rk, α̃c1
) − g(Rk, α̃c2

))2

)

1

2







(26)

Furthermore, if we have M single-channel images with the

same CRF, we can average up their conditional histograms

to increase the data coverage on R (R-coverage), as in

Eq. 27, and then form an objective function as in Eq. 24.

P (Qj |Rk) =
1

M

M
∑

m=1

Pm(Qj |Rk) (27)

6. Implementation Aspects of the Algorithm

6.1. Computation of Image Derivative

There is a huge literature on techniques for computing

image derivatives, which includes finite difference, Gaus-

sian scale-space derivatives, and many more. These meth-

ods in general work well for common applications (e.g.



Table 2. Overall RMSE (×10−2) for CRF Estimation

Stat. E1 Ergb E2 E3 E4

Mean 2.91 2.66 2.13 1.90 1.76

2nd Mom 3.43 2.95 2.41 2.10 1.94

edge detection). However, our differential method involves

computation of derivative ratios from digital images which

requires specialized techniques to ensure the computational

accuracy and robustness to image noise. There are prior

works that involves computing derivative ratios from digi-

tal images, such as the works on curve invariants [12] and

edge curvatures [11], which use local polynomial fitting

method [11, 9] for computing derivative and achieves good

accuracy in derivative estimation. This method presets the

derivative kernel size, and hence has limited adaptability to

the wide range of scales in an image. In our work, we use

cubic smoothing B-spline [1] with C
2 continuity for com-

puting image derivatives. B-spline is a function consists of

local piecewise polynomials with a global continuity prop-

erty. Cubic smoothing B-spline is obtained by simultane-

ously minimizing a data fitting energy and an L
2 norm on

the second-order partial derivatives (producing smoothing

effort). Comparing to local polynomial fitting, we find that

cubic smoothing B-spline is more adaptive in terms of im-

age scales and therefore producing considerably more accu-

rate image derivatives.

6.2. Error Metric Calibration

Although Q(R) is compatible with GGCM for CRF esti-

mation through curve-fitting, the space of Q(R) is not ‘flat’,

i.e., its metric is dependent on the CRF curve parameter. For

example, RMSE between r0.1 and r0.2 is 0.0465, and that

between r0.5 and r0.6 is 0.0771, almost twice of the former,

while their Q(R) RMSE are the same. Note that, for gamma

curves, RMSE between two Q(R) is simply |γ1 − γ2|. In

a non-flat space, curve-fitting performance biases towards

certain CRF. Interestingly, the error metric calibration can

be formulated as a problem of reparametrizing a space curve

with its arc length and leads to Proposition 3.

Proposition 3 (Error metric calibrated). The error metric

in the Q(R) space can be calibrated with respect to gamma

curves, f(r) = rγ , by a transform on Q:

Q =

√
3√

3 − 1

(

1 −
√

1

2Q + 1

)

(28)

Such calibrated metric can then be used to replace that in

Eq. 24 to improve the estimation accuracy.

7. Experiments

We test our CRF estimation method using 20 uncom-

pressed RGB-color images (i.e., 60 single-channel images
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Figure 8. The plot of RMSE mean (Left) and RMSE 2nd-moment

(Right) for different cameras and different CRF estimation strate-

gies E1 to E4 and Ergb.

cropped to the size of 1500×2000 pixel without filtering or

subsampling) from each of the five models of camera, i.e.,

Canon G3, Canon RebelXT, Nikon D70, Kodak DC290,

Sony DSCV1 (a total of 100 RGB-images from four ma-

jor camera manufacturers). We select images with at least

80% data coverage in R (R-coverage) so that a proper curve

fitting is possible in the R-Q space.

We estimate the ground-truth CRF for the cameras using

Macbeth chart (using multiple images with different expo-

sures). For each camera, the ground-truth CRF’s are indeed

similar over RGB channels, with the averaged inter-color-

channel CRF difference measured in RMSE being 0.0161.

We test our methods using single-color-channel images (de-

noted as E1), RGB images (denoted as Ergb), and also com-

binations of 2 to 4 single-color-channel images from the

same camera (denoted by E2 to E4). The discrepancy be-

tween the estimated and the ground-truth CRF is measured

by RMSE. The mean RMSE (measuring accuracy) and the

2nd-moment of RMSE (measuring stability) for the five

cameras over RGB color channels and all images of a cam-

era is shown in Fig. 8. The overall RMSE mean and RMSE

2nd-moment (over all cameras) are shown in Table 2. Note

that, both estimation accuracy and stability improve as more

images are available, which verifies the importance of R-

coverage as combining conditional histograms strictly in-

creases R-coverage.

Fig. 8 shows that the estimated CRF’s for Canon Re-

belXT have the least accuracy and stability. As shown in

Fig. 9, the estimated CRF’s for Canon RebelXT deviate

slightly from the knee of the groundtruth curve. Note that,

the knee of the Canon RebelXT CRF is very close to linear,

and our method does not perform well on linear CRF (due

to the basic principle of our method which relies on locally

planar regions in an irradiance image). Fig. 9 (a) and (b)

respectively show the estimated blue-color channel CRF’s

for the five models of camera with E1, and E4. The esti-

mation results for other color channels are similar. Among

all, the CRF of Canon RebelXT and Nikon D70 have the

largest difference with a RMSE of 0.0781 (averaged over

RGB). For a side-by-side comparision, the estimated blue-

color channel CRF’s for Canon RebelXT and Nikon D70

with E1 and E4 are shown in the lower-right plot in Fig. 9.
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(a) Nikon D70, RMSE = 0.027, R-coverage = 94%

0 0.2 0.4 0.6 0.8 1
0

0.5

1

ground truth

estimated
0.5

1

1.5

2

R

(b) Nikon D70, RMSE = 0.068, R-coverage = 72%

0 0.2 0.4 0.6 0.8 1
0

0.5

1

ground truth

estimated
0.5

1

1.5

2

R

P
(Q

|R
)

l

Figure 10. Curve-fitting in Q × R space with data of (a) high R-

coverage, (b) Low R-coverage. The thick blue line represents the

ground-truth Q(R) curve.

Note that, a slight confusion of the estimated CRF’s of the

two cameras is observed for E1, which is gradually cleared

for E4.

Two examples of curve-fitting respectively on data of

high and low R-coverage are shown in Fig. 10. Note the

importance of the end-point data in R ∈ [0, 1] which can be

seen as the boundary condition for accurate CRF estimation.

As experiments in [7] are only conducted on two cameras

(different from ours) and the test grayscale images of the

digital camera are converted from RGB images (instead of

using single-color-channel images), rigorous performance

comparison is not possible.

8. Conclusions

In this paper, we presented a geometry invariant-based

method for estimating CRF. In contrast to the single-image

CRF estimation methods in the prior works which lack a

principled technique to select data consistent to their inher-

ent assumption, our method provides a constraint equation

for selecting the potential locally planar irradiance points.

Comparing to the prior works [7], our experiment was con-

ducted over more extensive data and our method is flexible

in that we can increase its estimation accuracy and stability

when more than one image is available. The geometry in-

variance theory is novel and may be of wide interest. Tech-

niques in our implementation such as smoothing B-spline

for computing image derivatives and the procedure for cal-

ibrating the error metric may be useful for other applica-

tions. Currently, the algorithm is for the 1st-order geometry

invariants, the next step would be to develop an algorithm

for the 2nd-order geometry invariants.
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