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Abstract

This paper re-investigates the physical image formation
process leading to a new interpretation of the classic image
restoration problem from a blind source separation (BSS)
perspective. The observed distorted image is considered
as a linear combination of a set of shifted version of the
point spread function (PSF) with the weight coefficients de-
termined by the actual image. The new interpretation brings
two immediate benefits to the practice of image restoration.
First, we can utilize the rich set of BSS methods to solve the
blind image restoration problem. Second, the new formula-
tion in terms of matrix product has the equivalent merit as
the conventional matrix-vector notation in theoretical study
of restoration algorithms. We develop a smoothness and
block-decorrelation constrained nonnegative matrix factor-
ization method (termed CNMF) to blindly recover both the
PSF and the actual image. The experimental results com-
pared to one of the state-of-the-art methods demonstrate the
merit of the proposed approach.

1. Introduction

Image restoration is a process of recovering the origi-
nal image from a degraded observed version. Denote the
image domain by Ω on which the intensity function is de-
fined, and the discrete sampling grid by s = {(x, y);x, y =
0, 1, . . . ,M − 1}, where M is the number of rows and
columns (we assume square images for notation simplicity).
Assuming the imaging system is linear and space-invariant,
the degradation procedure is well described by the follow-
ing model

g(x, y) = f(x, y) ⊗ h(x, y) + n(x, y) (1)

where g(x, y), f(x, y), and n(x, y) denote, respectively, the
observed blurred and noisy image, the actual undistorted
image, and the additive white Gaussian noise. h(x, y) is the
point spread function (PSF) of the imaging system, and ⊗
denotes the convolution operator. Let g, f , and n denote
the M2 × 1 column vectors obtained by lexicographically
stacking g(x, y), f(x, y), and n(x, y) into M2 × 1 vectors,

and let H denote the M2 ×M2 block-circulant matrix with
the bases determined by the elements of h, the observation
model can then be expressed as

g = Hf + n (2)

Although this model has been well investigated from a
mathematical point of view since the seventies [2], its phys-
ical interpretation has not been given much attention.

It is well known that recovering the image f with known
PSF is a mathematically ill-posed inverse problem. A num-
ber of regularization techniques have been studied in the
past decades [9, 16, 17] to tackle this problem. However,
image restoration becomes more difficult if the PSF is un-
known, since the problem is ill-posed with respect to not
only the image but also the blur kernel [4]. To find reli-
able estimates, You and Kaveh [18] introduced the concept
of double regularization and proposed to jointly recover the
image and the blur kernel with H

1 norm regularization of
both. Following the same idea, Chan and Wong [7] investi-
gated the TV regularization to replace the H

1 norm and pro-
posed a fast alternative minimization (AM) algorithm based
on the lagged diffusivity fixed point scheme [17]. The con-
vergence proof of AM algorithm for H

1 norm is given in [8].
This method was then integrated with the Mumford-Shah
segmentation in [4] to perform image segmentation and de-
convolution simultaneously. Latter, Burger and Scherzer [6]
showed the existence of solution for a wide class of func-
tion spaces except for the L

1, L
2, and H

1 space, and in-
troduced the notion of minimum norm (MN) solution. Re-
cently, Justen and Ramlau [11] proved the uniqueness of
solution under a weak smoothness condition as well as the
existence of solution. They also derived an explicit form
of minimum norm solution without any iterative learning
processes and made an important observation that blind de-
convolution is less ill-posed than non-blind deconvolution.

Mathematically, the formulation of Eq. 2 is a blind
source separation (BSS) problem if we regard g as a mixture
of signal f generated by the mixing matrix H. Therefore,
multivariate data analysis, such as independent component
analysis (ICA) [1, 5], might be used to solve a restoration
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problem. However, the multichannel image required by
BSS algorithms is not always available. Therefore, the key
to the single-frame image blind deconvolution using BSS
methods is the creation of multichannel data. One such
approach was proposed in [12], which uses Gabor filters
to produce multichannel filtering and decompose an image
into sparse images. Then, a sparseness constrained nonneg-
ative matrix factorization (NMF) method [10] is used to find
the optimal estimate. Due to the absorption of the blur ker-
nel into the mixing matrix, the algorithm cannot recover the
actual blur kernel. In addition, the multiple filtered images
dramatically increase the computational burden.

In this paper, we re-investigate the physical image for-
mation process and interpret the optical blur as a signal
mixing procedure; that is, the observed image is consid-
ered as a linear combination of a set of shifted PSF with
the weight coefficients determined by the actual image. We
create multichannel data based on a block-based interpreta-
tion and formulate the imaging model as a matrix product.
Considering the nonnegative property of image contents,
we adopt the NMF technique to recover both the actual im-
age and the PSF. Smoothness and block-decorrelation con-
straints are imposed to regularize the solution. We refer to
the proposed method as the constrained NMF (CNMF).

The remainder of this paper is organized as follows. In
Section 2, we present the BSS formulation of the image
restoration problem. Section 3 details the constrained NMF
restoration algorithm. The effectiveness of the proposed
method is demonstrated in Section 4 by comparing with one
of the advanced restoration technique. Section 5 concludes
the paper.

2. Problem Formulation

For an ideal imaging system, the response at a point
(x, y) depends only on the value of input at the correspond-
ing point as illustrated in Fig. 1(a), where the left diagram
denotes the source domain, and the right diagram is the ob-
servation. However, due to the quality of optical systems,
the point source will be spreaded to a certain degree repre-
sented by the PSF as demonstrated in Fig. 1(b), where the
PSF is assumed to be circularly symmetric and have finite
support. Thus, the measurement at a single point (e.g. the
center pixel) is a mixture of several points of input. If we
consider the 5 × 5 pixel space shown in the figure as an
image block, the observed image block can then be rep-
resented as a linear combination of a set of shifted PSF
weighted by the actual image values. In an extreme case,
if we treat the entire image as one block, then the mixing
model is exactly the same as the model in Eq. 2, which has
strong and well-established mathematical foundations.

To generate multivariate data, we partition the image do-
main Ω into small rectangular blocks of size B. Then, we
lexicographically stack the columns of each block into a

(a) (b)

Figure 1. Physical interpretation of optical blur (a) Ideal optical
system (b) Practical optical system.

vector, and create a matrix by ordering all the block vec-
tors as its columns, thus the degradation model reduces to

G = HF + N (3)

where G, F, and N ∈ RB2×(�M
B �)2 are the block vec-

tor representations of the degraded image, the actual im-
age, and the additive white Gaussian noise. The matrix
H ∈ RB2×B2

is a block-circulant matrix.
For example, if we have a simple 6 × 6 image g, and

assume the blur kernel h is of size 2× 2, and the block size
is 3 × 3:

g =




g11 g12 . . . g16

g21 g22 . . . g26

...
...

...
...

g61 g62 . . . g66


 , h =

[
h11 h12

h21 h22

]

the degraded image matrix is then given by

G =




g11 g21 g31 g12 g22 g32 g13 g23 g33

g14 g24 g34 g15 g25 g35 g16 g26 g36

g41 g51 g61 g42 g52 g62 g43 g53 g63

g44 g54 g64 g45 g55 g65 g46 g56 g66




T

The actual image F is constructed in the same way, and the
block-circulant matrix has the following structure,

H =


 H1 0 H2

H2 H1 0
0 H2 H1


 , Hi =


 h1i 0 h2i

h2i h1i 0
0 h2i h1i




Each column of H, when reshaped into a square matrix, is
a shifted version of the PSF. Compared with the blur matrix
H ∈ RM2×M2

in Eq. 2, they have the same structure, but H
is more dense with less number of zeros and a much reduced
matrix size (M � B). Fig. 2 illustrates an example of 144
shifted PSFs of size 12×12. Each block corresponds to one
column vector of H.

It can be seen that the multichannel data are obtained
from the observed image alone without any filtering, which
results in a small data volume making fast computation pos-
sible. When written in the matrix product form, the restora-
tion problem has been converted to a problem of blind
source separation; that is, given the observed image G, the
objective is to find the underlying source H and the mixing
matrix F such that G ≈ HF. Both H and F are nonnega-
tive matrices.



Figure 2. Illustration of a 144 × 144 H matrix. Each block, a
reshaped version of the column of H, is a shifted PSF.

3. Constrained NMF for Image Restoration

The solutions to a BSS problem can be found in a num-
ber of ways, such as ICA [1, 5], NMF [14, 15], and in-
dependent factor analysis (IFA) [3]. For ICA and IFA, the
recovered sources are not guaranteed to be nonnegative, and
a critical condition for them to work is that the sources have
to be statistically independent. Moreover, ICA requires the
blur kernel to be non-stationary as the blur caused by the
atmospheric turbulence but not the case for the out-of-focus
blur. NMF is a popular matrix factorization method, which
aims at rendering part-based and nonnegative representa-
tions [13]. It has found a wide range of applications in data
analysis, dimensionality reduction, feature extraction, and
target recognition.

From the aspect of NMF, the columns of H are consid-
ered as the basis vectors, which are the intrinsic structures
of the underlying data, and the columns of F are the cor-
responding weight coefficients to form the blurred image.
To measure the quality of the factorization approximation
G ≈ HF, a cost function between G and HF needs to be
optimized subject to the nonnegative constraint. Besides the
widely used Euclidean distance, another popular measure is
the divergence between G and HF [14] defined as

D(G||HF) =
∑
ij

(
gij log

gij∑
k hikfkj

− gij +
∑

k

hikfkj

)

(4)
A standard NMF problem is to minimize the above cost
function under the nonnegative constraint.

3.1. Regularization

One hurdle of solving the NMF problem is the existence
of local minima due to the non-convexity of the objective
function. To stabilize the solution, extra constraints need to
be imposed, which could wrap the original objective func-
tion to approach a convex function so that the solution con-
verges to the global optimum. As in most restoration algo-
rithms, a roughness penalty will be added to the recovered
image to achieve local smoothness. In this paper, we con-
sider a nonlinear constraint based on the negative Gaussian
distribution. The energy function is defined as

U1(F) = −
∑
ij

exp(− [CF]2ij
2τ2

) (5)

where C is also a block-circulant matrix constructed from a
high pass filter in the same way as the blur matrix H. In our
implementation, a Laplace filter is adopted. The parameter
τ is the variance of the Gaussian model. The superiority
of this nonlinear constraint is that it treats high frequency
information differently based on their magnitudes. While
small τ penalizes only small variations and considers most
variations as edge details, large τ penalizes most variations
and only keeps strong edge transitions. In other words, we
implicitly make the assumption that a large value of the vari-
ation corresponds to a true edge while a small value of the
variation is an effect of noise. This assumption is not nec-
essarily satisfied in some real world applications.

Besides the local smoothness, another regularization we
investigate is the correlation between image blocks, which
is a direct benefit brought by the block-based formulation.
We assume that different image blocks are uncorrelated es-
pecially for images corrupted by strong noise, then the cor-
relation matrix FFT should be diagonal dominant. For
this purpose, we choose to minimize the block correlation,
which is formulated as

U2(F) =
1

B2

B2∑
i,j �=i

[FFT ]ij − 1

B2

B2∑
i=1

[FFT ]ii (6)

To provide a reliably recovered PSF, additional con-
straints on H need to be imposed besides the nonnegativity.
Considering the block-circulant structure of H and the unit
L

1 norm property of PSF, we know that the sum of columns
and the sum of rows of H equal 1, that is∑

j

hij = 1,
∑

i

hij = 1, i, j = 1, 2, . . . , B2 (7)

Moreover, the block-circulant structure needs to be incor-
porated into the learning process. For this purpose, we start
from a B2 × B2 block-circulant matrix constructed based
on a kernel estimator, then we develop a multiplicative rule
to update H so that the block circulant nature can be pre-
served.

3.2. Learning Algorithms

Combining the objective of minimizing the fitness error
to the observation and incorporating the local smoothness
and block-decorrelation constraint, we arrive at the follow-
ing optimization problem

min. L(H,F) = D(G||HF) + λ1U1(F) + λ2U2(F)

s.t. H1 = 1,HT 1 = 1

H � 0,F � 0

(8)

where the energy function U1(F) and U2(F) are given by
Eq. 5 and Eq. 6, and λ1, λ2 are the corresponding regu-
larization parameters, which control the tradeoff between
the confidence on the observation and the regularity of so-
lutions. The automatic selection of these parameters has



been an active research area. In this paper, an empiri-
cal constant will be used. The symbol � denotes com-
ponentwise inequality, e.g., H � 0 means hij ≥ 0 for
i = 1, 2, . . . , B2 , j = 1, 2, . . . , B2.

To consider the row-sum-to-one constraint, we augment
the observed and the actual image by a column of constant
denoted by

G+ =
[

G θ1
]
, F+ =

[
F θ1

]
(9)

where 1 is a B2 × 1 column vector with all elements be-
ing 1s. θ is a positive number to control the effect of the
sum-to-one constraint. The learning of H takes these two
augmented matrices as inputs. Then, the columns of H are
normalized to satisfy the column-sum-to-one constraint.

To find the optimal solution, we resort to the technique
of auxiliary function [14] to derive the learning rules. For
a given objective function L(X), its auxiliary function is
defined as a function Φ(X,X′) which satisfies Φ(X,X) =
L(X) and Φ(X,X′) ≥ L(X), where X′ is a variable differ-
ent from X. The auxiliary function Φ(X,X′) is very help-
ful when minimizing the corresponding objective L(X) in
the sense that L(X) is non-increasing under the update

Xk+1 = arg min
X

Φ(X,Xk) (10)

The proof is easy to see, as L(Xk+1) ≤ Φ(Xk+1,Xk) ≤
Φ(Xk,Xk) = L(Xk) [14].

We employ the popular alternating minimization (AM)
scheme to update H and F to minimize the objective func-
tion. AM is an iterative scheme, which updates one matrix
while holding the other one fixed; that is, starting from an
initial guess F0, the optimal H1 is calculated by minimiz-
ing L with fixed F0. Then F1 is obtained by minimizing L
with fixed H1,

Hk+1 = arg min
H�0

L(H,Fk),Fk+1 = arg min
F�0

L(Hk+1,F)

This process is continued until the desired stop conditions
are satisfied. By employing the auxiliary function tech-
nique, we derive the iterative update rules given in the fol-
lowing theorem.

Theorem 1 Given a small positive λ2, the regularized cost
function in Eq. 8 is monotonically nonincreasing under the
following update rules:

fst =
−b +

√
b2 − 4ac

2a

hst = hst

∑
i f+

ti g
+
si/[HF+]si∑
i f+

ti

, hst =
hst∑
s hst

(11)

where

a = − λ2

B2
, c = −

∑
i

git
hisfst∑
r hirfrt

b =
∑

i

(
his +

λ1

τ2
cis[CF]it exp(− [CF]2it

2τ2
)

)
+

λ2

B

B2∑
i=1,i�=s

fit

f+
ti and g+

ti are the elements of the augmented matrices G+

and F+ given in Eq. 9.

Proof To find the update of F, we construct an auxiliary
function for L(H,F) with fixed H (denoted as L(F) in the
following description),

Φ(F,F′) =
∑
ij

gij log gij −
∑
ij

gij +
∑
ijk

hikfkj

−
∑
ijk

gij

hikf ′
kj∑

r hirf ′
rj

(
log(hikfkj) − log

hikf ′
kj∑

r hirf ′
rj

)

+ λ1U1(F) + λ2U2(F)

(12)

It is easy to verify that Φ(F,F) = L(F). To show
Φ(F,F′) ≥ L(F), we note that log(

∑
k hikfkj) is a convex

function, then there exists a set of coefficient µijk satisfying∑
k µijk = 1 for all i, j, such that

log(
∑

k

hikfkj) ≥
∑

k

µijk log
hikfkj

µijk
(13)

Setting µijk = hikf ′
kj∑

r hirf ′
rj

, we immediately obtain

log(
∑

k

hikfkj)

≥
∑

k

hikf ′
kj∑

r hirf ′
rj

(
log(hikfkj) − log

hikf ′
kj∑

r hirf ′
rj

) (14)

From this inequality and the definition of L(F), it follows
that Φ(F,F′) ≥ L(F).

Based on Eq. 10, the update of F can be obtained by
setting ∂Φ(F,F′)

∂fst
= 0, that is,

∑
i

his−
∑

i

git
hisf

′
st∑

r hirf ′
rt

1

fst
+λ1

∂U1(F)

∂fst
+λ2

∂U2(F)

∂fst
= 0

(15)
where

∂U1(F)

fst
=

1

τ2

∑
i

cis[CF]it exp

(
− [CF]2it

2τ2

)

∂U2(F)

fst
=

1

B2

B2∑
i=1,i�=s

fit − 1

B2
fst

(16)

Multiplying both sides of Eq. 15 by fst and rearranging the
terms, we arrive at

− λ2

B2
f2

st +

(∑
i

his +
λ1

τ2

∑
i

cis[CF]it exp

(
− [CF]2it

2τ2

)

+
λ2

B2

B2∑
i=1,i�=s

fit

)
fst −

∑
i

git
hisf

′
st∑

r hirf ′
rt

= 0

(17)

Solving the above quadratic function of fst, we immedi-
ately achieve the update rule in (11).



Following the similar procedure, we can prove that

hst = h′
st

∑
i ftigsi/[H′F]si∑

i fti
(18)

In order to consider the row-sum-to-one constraint, the aug-
mented matrices G+ and F+ are used. The columns are
then normalized to have unit L

1 norm. These operations to-
gether with the update in Eq. 18 result in the learning rule
for H in (11). �

From the above analyses, we conclude that the learning
steps in (11) result in a sequence of non-increasing values
of L(H,F), therefore, it converges to a local minimum.
However, the convergence to the global minimum cannot
be guaranteed. Another important issue is that we have not
explicitly imposed the nonnegative constraint during the al-
gorithm derivation. However, the nonnegativity of solution
has been guaranteed by the derived learning rules. It is obvi-
ous that the learning of H follows the multiplicative update
rule with a positive factor and a nonnegative initial H0, thus
its elements will never become negative. F is calculated by
solving a quadratic function. As can be seen, a < 0, c < 0,
and b > 0. For small parameter λ2, we have b2 − 4ac > 0
and

√
b2 − 4ac < b since ac > 0. Therefore, fst > 0 is

guaranteed.

4. Algorithm Implementation and Results

In this section, we illustrate the performance of the pro-
posed CNMF restoration method. We compare the results
obtained by CNMF to the minimum norm blind deconvo-
lution (MNBD) method [11], which deterministically cal-
culates the image and kernel pair without iterative process.
The algorithm involves two free parameters that need to be
selected for a specific experiment, the regularization param-
eter γ and the smoothness parameter s; see [11] for more
details.

4.1. Practical Implementation Issues

There are several implementation issues that need to be
clarified. First, we partition the image domain into partially
overlapped instead of discrete non-overlap blocks. The rea-
son for doing this is because the independent deconvolution
of individual block has a couple of shortcomings: first, the
deconvolution operation induces boundary effects, which
result in a blocking artifact; second, the algorithm is sen-
sitive to the target position in the image with respect to the
block position. The use of overlapping blocks is able to al-
leviate these drawbacks, but it unfortunately increases the
computational burden due to large data size. To achieve
fast computation and still be able to reduce the boundary
artifacts, we choose blocks with the minimum amount of
overlap needed, which is determined by the kernel size K.
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Figure 3. The original image f (left), the actual blur kernel h with
κ = 0.4 (middle) and the degraded image with 2% noise (right).

The size of overlap between blocks is K−1. Then, only the
center part of the restored block is kept. If we increase the
size of overlapping, we would have more than one estimate
for each pixel, and the mean of these values can be used as
the final estimate.

Another issue is also related to the block-based formula-
tion. It is apparent that we have made the assumption of a
limited finite kernel support. In the experiment, two types
of blurs will be investigated, i.e., the atmospheric turbulence
blur and the uniform out-of-focus blur. The atmospheric
turbulence blur is caused by long-term exposure through
the atmosphere commonly occurred in remote sensing and
aerial imaging. The analytical model is given by a Gaus-

sian distribution h(x, y) = ρ exp
(
−κ
√

x2 + y2
)

, where ρ

is a normalizing constant ensuring that h has unit L
1 norm,

and x, y vary from -1 to 1. The parameter κ determines the
severity of the blur. The uniform out-of-focus blur is a sim-
ple approximation of optical defocus, which has a uniform
distribution within a circular disk

h(x, y) =

{
1

πR2 , if
√

x2 + y2 ≤ R;
0, otherwise.

(19)

For a Gaussian kernel estimator ĥ = ρ exp
(
−κ̂
√

x2 + y2
)

with small κ̂, its nonzero support is too large for block for-
mulation. Therefore, we only keep 80% of the kernel en-
ergy and set small values to zero. The remaining elements
of ĥ is then normalized so that

∑
x,y ĥ(x, y) = 1. The

kernel size K is referred to as the support of the truncated
kernel. After the determination of the kernel size, the block
size B can be selected to reduce the boundary artifacts.

4.2. Experimental Results

In the following experiments, we shall first evaluate
CNMF performance for images degraded by the Gaussian
blur. In the last experiment, different sizes of out-of-focus
blur will be studied. To simulate possible noise corrup-
tions, we add white Gaussian noise to the blurred image.
Following [11], the noise level is measured according to
nl = ‖g − Hf‖/‖Hf‖. In the experiments, four levels of
noisy data with nl = 1%, 2%, 5% and 10% will be tested.
The test image, a Gaussian blur kernel with κ = 0.4, and
the degraded image with 2% noise are shown in Fig. 3.

The reconstructed images using MNBD and CNMF with
different kernel estimators are demonstrated in Fig. 4. The



κ̂ = 0.2 κ̂ = 0.4 κ̂ = 0.6
Figure 4. Reconstructed images by MNBD (top row) and CNMF
(bottom row) using different kernel estimators κ̂. The degraded
image and the actual blur kernel are shown in Fig. 3.

top-row images are results of MNBD with parameters set to
s = 1.3 and γ = 1−10 based on the guide in [11]. Note that
as the kernel parameter κ̂ increases, the reconstructed im-
ages are getting closer to the blurred version. For the CNMF
reconstructions, all the images show a significant quality
improvement compared to the degraded images. The best
performance is obtained when the actual blur kernel is used.
Note the detail information around the eye has been recov-
ered.

We then investigate how the algorithm performs for dif-
ferent degrees of blur. For this purpose, we blur the orig-
inal image using the kernels with κ equal to 0.2, 0.3, and
0.5. The corresponding kernel estimators are κ̂ = 0.1,
0.2, and 0.4. We again add 2% noise to the blurred im-
ages. Fig. 5 elaborates the experimental results, where the
first row shows the degraded images. The second and third
row correspond to the restorations of MNBD and CNMF,
respectively. Both methods have the capability of recon-
structing image details and exhibit comparable visual per-
formance. The quantitative measurements in terms of im-
proved signal-to-noise ratio (ISNR) are illustrated in Fig. 6.
As can be seen, CNMF yields higher ISNR than MNBD for
various blurs.

To demonstrate the effect of noise, we change the noise
level to 1%, 5% and 10%. The actual blur kernel is given by
κ = 0.4 and its estimator is chosen to be κ̂ = 0.3. The opti-
mal scaling factor for MNBD is selected as γ = 1.5, 1.2, 1
and the smoothing parameter is s = 1−10 for all three cases.
The degraded images and the reconstructions for the three
noise levels are demonstrated in Fig. 7. Both MNBD and
CNMF show enhanced image quality, and CNMF performs
better in recovering more details along the eyelids.

The last experiment is designed to investigate the algo-
rithm performance for the out-of-focus blur. The kernel ra-
dius R is varied to be 4, 6 and 8, and the corresponding
kernel estimator changes from 6, 8, to 10. The blurred im-

Figure 5. Degraded (top row) and reconstructed images by MNBD
(middle row) and CNMF (bottom row) for different blur kernels,
κ = 0.2, κ̂ = 0.1 (first column), κ = 0.3, κ̂ = 0.2 (second
column), and κ = 0.5, κ̂ = 0.4 (third column).
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Figure 6. ISNR comparison of reconstructed images by MNBD
and CNMF for different blur kernels.

ages and the reconstructions are shown in Fig. 8, where the
noise level is again set to nl = 2%. It can be seen that the
MNBD reconstructions display obvious artifacts. The rea-
son for this bad performance has been addressed in [11].
While, the CNMF method demonstrates improved image
quality by extracting more details.

5. Conclusion

In this paper, we have re-investigated the physical im-
age formation process and formulated the classic image
restoration as a BSS problem. The new interpretation re-
gards the degraded image as a linear combination of a set of
shifted version of PSF weighted by the actual image values.
A constrained NMF approach with local smoothness and
block-decorrelation regularization is developed to recover
the source image. The comparative analysis with one of the
state-of-the-art methods is conducted, which demonstrates
the merit of the proposed approach.



Figure 7. Degraded (top row) and reconstructed images by MNBD
(middle row) and CNMF (bottom row) for three different noise
levels, nl = 1% (first column), nl = 5% (second column), and
nl = 10% (third column).

Figure 8. Degraded (top row) and reconstructed images by MNBD
(middle row) and CNMF (bottom row) for different sizes of out-
of-focus blur, R = 4, R̂ = 6 (first column), R = 6, R̂ = 8
(second column) and R = 8, R̂ = 10 (third column).
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