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Abstract

In this paper, we introduce the Skellam distribution as

a sensor noise model for CCD or CMOS cameras. This is

derived from the Poisson distribution of photons that deter-

mine the sensor response. We show that the Skellam dis-

tribution can be used to measure the intensity difference of

pixels in the spatial domain, as well as in the temporal do-

main. In addition, we show that Skellam parameters are

linearly related to the intensity of the pixels. This property

means that the brighter pixels tolerate greater variation of

intensity than the darker pixels. This enables us to decide

automatically whether two pixels have different colors. We

apply this modeling to detect the edges in color images.

The resulting algorithm requires only a confidence interval

for a hypothesis test, because it uses the distribution of im-

age noise directly. More importantly, we demonstrate that

without conventional Gaussian smoothing the noise model-

based approach can automatically extract the fine details of

image structures, such as edges and corners, independent

of camera setting.

1. Introduction

Noise is inevitable in any image capturing process. In the

computer vision community, various noise modeling meth-

ods have been proposed for two or more images. However,

there are few studies dealing with noise modeling in a sin-

gle image. In general, most low-level processing methods,

which must treat the noise in a single image, try to reduce

the noise instead of modeling it. The conventional strategy

for extracting features, such as corners and edges, is to pre-

process the images with Gaussian kernels so as to suppress

the image noise by smoothing [3, 5]. However, because the

Gaussian smoothing diminishes the details in the image, as

well as the image noise, the result may miss important parts

of the scene structure. In addition, although Gaussian pa-

rameters for smoothing must be determined properly, the

effect of Gaussian smoothing previously has only been con-

sidered in a few studies.

Many methods have been proposed to determine whether

the difference between two pixels is caused by noise or

scene changes between two different images. Rosin [11]

used the Gaussian and the Poisson distribution for noise

modeling in the temporal and the spatial domain, respec-

tively. Ohta [10] assumed that noise in pixels follows the

Gaussian distribution in a temporal domain. A Gaussian

distribution as a noise model is widely used, but there have

been alternative methods using new noise models that in-

clude various distributions [2, 8]. Bazi et al. [2] applied the

generalized Gaussian model to separate changed and un-

changed regions in log-ratio SAR images. Hwang et al.

[8] proposed the generalized exponential model to detect

changes in images captured by common CCD cameras.

On the other hand, there have been studies that endeavor

to estimate the image noise based on camera imaging pro-

cesses. As stated in [6], there are five main noise sources,

including fixed pattern noise, dark current noise, and shot

noise. Healey showed that the intensity and variance of the

noise are statistically linear. Most image noise modeling

requires two or more images because it is difficult to deter-

mine the true brightness. Liu et al. [9] recently proposed a

noise estimation method from a single image. They defined

a noise level function as the variance of the standard devi-

ation of noise with respect to image intensity. After learn-

ing the space of the noise level function, which means how

the noise level changes with brightness, they use Bayesian

MAP estimation to infer the noise level function from a sin-

gle image.

In this paper, we introduce the Skellam distribution as the

sensor noise model. This is derived from the Poisson dis-

tribution of photons, which determine the sensor response.

The noise modeling based on the Skellam distribution has

been used before in the context of PET imaging [14], but
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Figure 1. The histogram of intensity difference between two con-

secutive images

to our knowledge, it has not been used for natural images.

We propose a method for Skellam parameter estimation. It

does not require the complicated prior knowledge, such as

a set of camera response functions and explicit color seg-

mentation, which is mandatory for the previous work [9].

We show that our noise modeling is exactly fit for noise dis-

tributions in images captured by CCD cameras. We find

the important property that intensity is linearly related to

the Skellam parameters. From this, more importantly, we

can determine an exact noise distribution for each pixel ac-

cording to its intensity value, whereas the work of Liu et

al. [9] estimates the upper bounds of the noise levels. We

can apply our noise modeling to detect edges with a given

confidence interval as a hypothesis test. The proposed edge

detector not only suppresses the image noise effectively, but

also detects fine details of image structures.

The remainder of this paper is organized as follows. In

Section 2, we describe our model of image noise using the

Skellam distribution and the properties of the Skellam dis-

tribution. Section 3 describes the noise statistics estimation

strategy using the Skellam parameters. In Section 4, we

apply our noise modeling to color edge detection. We sum-

marize our work in Section 5.

2. The Skellam distribution as image noise

Figure 1 shows the histogram of the intensity difference

between two consecutive images in a single channel. Al-

though there is no scene change, the differences have the

distribution shape shown in Figure 1 due to the effect of

noise. In [15], several sources of image noise are listed, but

most of the sources can usually be considerably reduced by

appropriate design of manufacturer. They may also be ig-

nored, because the total SNR of a complete system is typ-

ically dominated by the smallest SNR; the most dominant

noise component is photon noise in CCD or CMOS cam-

eras. The number of photons is governed by the laws of

quantum physics, which means that we cannot know the

true intensity because of the uncertainty in the number of

photons; this is called photon noise. Because it is caused

by the fundamental statistical nature of photons, we cannot

remove or reduce this noise. The photon noise is usually

modeled by a Poisson distribution [15]. We assume that the

noise shown in Figure 1 is caused by the dominant photon

noise.

2.1. The Skellam distribution for noise modeling of
intensity difference

When we assume that the image intensity of each pixel

follows the Poisson distribution, the probability distribution

for p photons in an observation time interval T s is known

to be a Poisson distribution because:

P (p | ρ, T ) =
(ρT )pe−ρT

p!
(1)

where ρ is the rate parameter, measured in photons per sec-

ond. The mean and standard deviation are:

µ = ρT (2)

σ =
√

ρT (3)

Because the number of photons determines the intensity

of a pixel, photon noise is not independent of the signal.

In addition, photon noise is neither Gaussian nor additive.

As shown in (2), µ means the number of photons over an

interval T . It is natural that the number of photons in a

brighter pixel is greater than that in a darker pixel. From

this we can predict that µ will increase as the brightness or

intensity increases. This prediction is verified in the next

section.

If µ is sufficiently large, we can approximate a Poisson

distribution as a Gaussian distribution [7]. Therefore, the

intensity difference distribution also follows a Gaussian dis-

tribution, because it is the difference between two Gaussian

random variables; however, µ differs with intensity. This

means that for darker pixels, the Gaussian approximation

may be invalid.

We use a Poisson distribution to represent the intensity

difference distribution to avoid the erroneous Gaussian ap-

proximation. The difference between two Poisson random

variables is defined as a Skellam distribution [12]. The

probability mass function (pmf) of a Skellam distribution

is a function of k, which means the difference between two

Poisson random variables. It is expressed as:

f(k; µ1, µ2) = e−(µ1+µ2)

(

µ1

µ2

)k/2

Ik(2
√

µ1µ2) (4)

where µ1 and µ2 are the means, or expected values, of the

two Poisson distributions, and Ik(z) is the modified Bessel

function of the first kind. Examples of pmfs for Skellam

distributions are shown in Figure 2.



Figure 2. Examples of the pmf for the Skellam distribution[13]
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Figure 3. Comparison of the Skellam and the Gaussian distribu-

tions

2.2. The properties of the Skellam distribution

For the special case when µ1 = µ2, a Skellam distri-

bution tends to a Gaussian distribution for large µ and k

[1]. Because both µ and k are not sufficiently large for low-

intensity pixels, we cannot approximate the Skellam distri-

bution by a Gaussian distribution. Figure 3 shows the dif-

ference between the Skellam and the Gaussian distributions

as a function of µ1 and µ2.

We can estimate the Skellam parameters of intensity dif-

ference by using the statistics of the Skellam distributions.

The mean µS and variance σ2
S of a Skellam distribution are

given by:

µS = µ1 − µ2 (5)

σ2
S = µ1 + µ2 (6)

From (5) and (6), we calculate the parameters µ1 and µ2

directly as:

µ1 =
µS + σ2

S

2
(7)

µ2 =
−µS + σ2

S

2
(8)

(a) Black patch (24th patch)

(b) Gray patch (21th patch)

(c) Red patch (15th patch)

Figure 4. Skellam parameter estimation using 10,000 static images

µS and σ2
S are obtained from images of a static scene as:

µS =

∑

t(xt(i, j) − xt+1(i, j))

n
(9)

σ2
S =

∑

t(µS − (xt(i, j) − xt+1(i, j))
2

n
(10)

where xt(i, j) denotes the intensity of the (i, j) position for

frame t and n is the number of total images. To estimate

Skellam parameters for various colors, we captured 10,000

images of a static scene of Gretag Macbeth ColorChecker

using a Pointgrey Scorpion camera (image resolution of

1,600 x 1,200 pixels, exposure time of 1/15 s). The esti-

mation results are as shown in Figure 4. The parameters of

the Skellam distribution are different for each patch. In par-

ticular, a black patch has low Skellam parameters and a gray

patch has high Skellam parameters, as expected. These are

expected because µ1 and µ2 are the numbers of photons in

the CCD cells during the capture time.

Figure 4 shows another important verification. By Skel-

lam modeling, we can estimate the distribution of intensity

difference accurately. This shows that our assumption of

dominant photon noise is appropriate.

We applied our Skellam modeling scheme to a large

number of static images. In many cases, it was not possible

to capture a large number of images from a static camera.

To make our modeling more general, we should be able to

estimate noise from a single image. We assume that each

pixel in a spatial domain is mutually independent, which

means that the noise distribution along the spatial domain is

the same as that along the temporal domain. To verify our

assumption, we compared the noise distribution in the spa-

tial domain with that in the temporal domain. We obtained
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(b) Blue (13th patch)
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(c) Green (14th patch)
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(d) Medium Gray (22th patch)

Figure 5. Comparison of the Skellam parameters in the spatial and

the temporal domain

the modeling results in the temporal domain using (9) and

(10). To estimate the noise in the spatial domain, we cut ho-

mogeneous color patches in a pattern image shown in Fig-

ure 1. Using the patches, we applied our modeling strategy

to the spatial domain based on the following equations:

µS =

∑

(i,j)∈P (xt(i, j) − xt(i + dx, j + dy))

n
(11)

σ2
S =

∑

(i,j)∈P (µS − (xt(i, j) − xt(i + dx, j + dy))2

n
(12)

where (i, j) ∈ P means all points in the patch, dx and dy

are disparities in the horizontal and vertical direction, re-

spectively, and n is the total number of pixels in the patch.

Figure 5 shows the comparison of the modeling results

from the spatial and the temporal domains. We used a Point-

grey Scorpion camera (image resolution of 1,600 x 1,200

pixels, exposure time of 1/7.5 s). From Figure 5, we verified

that the Skellam parameters in the temporal and the spatial

domain are similar. This shows that the difference of inten-

sity is an ergodic process. Note that the Skellam parameters

are smaller than the other estimation results when the dis-

parity is one. We found that derives from the demosaicing

process, which is the reconstruction of three colors at every

pixel from the single-color samples measured by the Bayer

filter array of the CCD. When we tested using a 3CCD cam-

era that does not require demosaicing, such as the HITACHI

HV-F22, there were no such effects. There are slight differ-

ences in the results in the temporal and the spatial domain
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(b) G channel

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

9

10

Sample Mean of the Patch

S
k
e
lla

m
 P

a
ra

m
e
te

r 
(u

1
)

(c) B channel

Figure 6. Linearity between sample means and the Skellam param-

eters

because we selected only one pixel in the patch when we es-

timated the distribution in the temporal domain. Depending

on which pixel is selected in the patch, there will be a small

variation in the Skellam parameters. Although we only in-

creased the horizontal disparity, dx, from one to 10 in this

experiment, the result from the vertical disparity variation

displays a similar result. Because the proposed modeling

scheme satisfies the ergodic requirement, we can apply our

modeling to single image applications.

3. Noise statistics estimation using the Skellam

parameter

In the previous section, we showed that Skellam mod-

eling is applicable in the spatial domain, as well as in the

temporal domain. However, there is another problem in ap-

plying our modeling to a single image, because a sufficient

number of pixels in the homogeneous patch are necessary

to estimate the Skellam parameters. We derive another im-

portant property to expand our modeling scheme to a single

pixel.

3.1. Linearity between intensity and the Skellam
parameters of patches

We assume that there should be a parametric relation

between Skellam parameters and intensity. From a single

pixel, we cannot extract meaningful statistics for a mean or

variance. To show the relationship between the intensity

and the Skellam parameters, we excised 24 color patches

from the image of a pattern shown in Figure 1. We drew a

scatter plot of a Skellam parameter with respect to a sam-

ple mean at each patch in Figure 6. Figure 6 shows the
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linear relationship between the sample means and Skellam

parameters. We call this line an Intensity-Skellam line. We

assume that a pixel value can be approximated by a sam-

ple mean and that we can estimate its Skellam parameters

when we have the Intensity-Skellam lines. The lines in Fig-

ure 6 only change with camera gain, not scene radiance or

illumination. Once the Intensity-Skellam line has been de-

termined, we can use the line without modification provided

the gain is fixed.

3.2. Estimation of the Intensity­Skellam line in a
single image

The estimation of an Intensity-Skellam line requires

patches that have homogeneous colors, as shown in fitting

a line in Figure 6; however, finding a homogeneous patch

is not trivial. Conventional approaches use color segmenta-

tion to locate homogeneous regions, as in [9], but the seg-

mentation is also difficult. Instead, we use the properties of

the Skellam parameters to select appropriate patches. The

Skellam mean is calculated as the mean of the intensity dif-

ference of neighboring pixels in (11). Transitions of colors

between neighboring pixels leads to the movement of the

Skellam mean, as shown in Figure 7. We verified this us-

ing a red-black transition patch. As the patch moves to the

left, the Skellam parameters become larger when the patch

contains a transition part.

When an image is captured under directional illumina-

tion, the Skellam mean at the patch may be shifted slightly

although that patch has a homogeneous scene color. To

accommodate this, we first construct a histogram of Skel-

lam means. By finding a peak of the histogram of Skellam

means, we overcome the mean shift effect. Although the

illumination was located in an upward position, the mean of

the Skellam parameters shifted only slightly in our experi-

ments. Figure 8(b) shows the histogram of Skellam means

for the input image of Figure 8(a).

We easily determine the peak and use patches that have

a Skellam mean close to the peak. The Intensity-Skellam

parameter pair of patches are not on a single line due to

Skellam parameter variation. In addition, some outliers are

not removed by filtering. We apply a simple RANSAC al-

(a) Test image
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Figure 9. Results of the Intensity-Skellam line estimation

gorithm to determine the line because it is certain that the

distribution of patches is dense at the center. As such, we

obtain a good fit for the line. The patches used are randomly

selected to reduce time complexity. We selected 1,000 19 x

19 patches. Figure 9 shows the result of the estimation. For

its evaluation, we drew a line obtained by manual color pat-

tern segmentation. Although we used a small part of the

patches, our estimated lines are accurate in that we cannot

discriminate between the estimated lines and those obtained

by the pattern.

3.3. Determination of an intensity allowance

Because we have Skellam parameters for each intensity

value, we have exact noise distributions based on the Skel-

lam parameters. Based on these distributions, we can deter-

mine an allowance for intensity variation due to the sensor

noise. Our strategy for determining an intensity allowance

is to test a hypothesis given a confidence interval.

In order to test a hypothesis, we must have a cumulative

distribution function (cdf). Because the pmf of a Skellam
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Figure 10. Intensity allowance given the pmf (1 − α = sum of the

length of solid lines, α = sum of the length of dotted lines. Refer

text.)

distribution is defined only at integer values, we can calcu-

late the cdf as:

F (K; µ1, µ2) =

K
∑

k=−∞

e−(µ1+µ2)

(

µ1

µ2

)k/2

Ik(2
√

µ1µ2)

(13)

The acceptance region for a critical value, I , is:

A(I) = {v|v < I} = F (I; µ1, µ2)−F (−I; µ1, µ2). (14)

We determine the intensity allowance IA, that is, the crit-

ical value, as:

IA = argmax
I

A(I) s.t. A(I) ≤ 1 − α (15)

where α is the size of the type I error, shown in Figure 10,

which is a true rejection rate with a (1 − α) ∗ 100% confi-

dence interval [4].

4. Application to edge detection based on the

proposed noise modeling

We apply our noise modeling to edge detection because

we can use the estimated intensity allowance directly. Most

edge detectors smooth the image with Gaussian kernels as

a preprocessing step to suppress the image noise. How-

ever, an edge detector based on our noise modeling does

not smooth images because we know the exact range of in-

tensity variation due to sensor noise. In spite of having no

Gaussian smoothing, the proposed edge detector not only

finds detailed edges, but also suppresses the noise in the im-

age.

4.1. Edge detection and postprocessing

Our edge detection is simple because we have the exact

intensity allowance based on noise estimation using a Skel-

lam distribution. The strategy for our edge detection is very

similar to that of a change detection with two consecutive

images. If the difference between two neighboring pixels is

within the intensity allowance, there is no edge; otherwise,

there must be a real change of scene colors, which means an

edge. The edge measure in both the horizontal and vertical

directions is defined as:

ec
x(i, j) =

|xc(i − 1, j) − xc(i + 1, j)| − IA

IA
(16)

ec
y(i, j) =

|xc(i, j − 1) − xc(i, j + 1)| − IA

IA
(17)

where IA denotes the intensity allowance at the pixel and c

is the color channels, which are r, g, and b in RGB color

space. The edge measure measures the normalized distance

of intensity from the intensity allowance. If all horizontal

and vertical edge measures are negative, that pixel is re-

garded as a nonedge pixel. Otherwise, we sum all the hor-

izontal and vertical edge measures. Consequently, the total

edge measure of a pixel is:

e(i, j)=







0, if

{

ec
x(i, j) < 0

ec
y(i, j) < 0

for all c
∑

c ec
x(i, j) +

∑

c ec
y(i, j), otherwise

(18)

This edge measure preemptively suppresses the edge mea-

sure due to sensor noise.

When the edge measures for all pixels are calculated, we

apply nonmaximum suppression because real edges do not

correspond to a single line. In [3], two values are required

for a hysteresis thresholding to link edges after nonmaxi-

mum suppression. However, we regard the pixels that have

nonzero edge measures as being edge pixels because the

intensity difference exceeds the intensity allowance deter-

mined from the noise distributions.

4.2. Edge detection results

Figure 11 shows the normalized edge measure in vari-

ous illumination conditions. The normalized edge measure

is the initial step of edge detection followed by further pro-

cessing, such as non-maximum suppression and hysteresis

linking. Therefore, the correctness of the normalized edge

measure is very crucial for edge detection. We compared

the results using the proposed method with 99% confidence

interval and those from the Canny operator with low and

high thresholds, which are fixed for all input images. The

results from the Canny operator not only cannot reduce the

false edges caused by image noise, but also cannot detect

find details as shown in the dark illuminated image (second

input image). Our proposed method outperforms the results

from the Canny operator. Without any parameter changes,

our method reduce the noise correctly and detect edges even

in the very dark environment. In addition, the detection

of the red number 5 is difficult using the Canny operator,



whereas our method detect it with the almost same amount

of edge measures of other numbers because our method

combines the color information effectively.

Figure 12 shows the edge detection results. Our pro-

posed edge detector has only one parameter, which is the

confidence interval. A Canny edge detector [3] has three

parameters: a scale for Gaussian smoothing, and a low and

a high threshold for hysteresis linking. Determining the val-

ues is case-sensitive and critical to the performance. In Fig-

ure 12, we compared the results using the proposed method

and the various outputs from the Canny edge detector in

MATLAB with various scales and thresholds. Our proposed

method outperforms the Canny edge results. It suppresses

most of the false edges shown in Canny’s results with the

medium or the automatic threshold. Furthermore, our result

shows the fine details of the edges. The common problem

of conventional edges is inaccurate localization around the

corner because of smoothing. As shown in the magnifica-

tion view of the corner, the localization of edges around the

corner using our method is well-preserved, whereas it was

inferior for the Canny edge detector with a scale of smooth-

ing sufficiently high to suppress all the unexpected edges

due to image noise. This is possible because our threshold

is determined separately for each pixel from the estimated

noise distribution.

5. Conclusion

Image noise has been conventionally regarded as an ad-

ditive Gaussian random variable. However, the Gaussian

noise model is not applicable in general, especially in re-

gions of low intensity.

In this paper, we introduce a Skellam distribution as a

sensor noise model for CCD or CMOS cameras. The Skel-

lam distribution is defined as the difference between two

Poisson random variables that describe the photon noise in

images. We show that the Skellam model describes the pro-

cess well in all intensity ranges. The Skellam noise model

has two important properties; first, it is applicable in the

spatial domain, as well as in the temporal domain. Us-

ing this property, we can estimate the distribution of noise

from a single image, whereas most noise estimation meth-

ods require multiple images. Furthermore, the Skellam pa-

rameters can be determined from the sample mean and the

sample variance of the image, assuming homogeneity. The

second property is that there is a linear relationship be-

tween intensity and the Skellam parameters represented by

an Intensity-Skellam line, which is only dependent on the

gains of the cameras. Because the Skellam parameters com-

pletely determine the noise distribution of pixel intensity,

the allowance in intensity variation due to the sensor noise

is determined by the intensity of only one pixel.

As an application of the proposed noise model, we pro-

pose a simple color edge detector. Because the intensity

(a) Input images

(b) Canny operator (Low threshold)

(c) Canny operator (High threshold)

(d) Proposed method (99% confidence interval)

Figure 11. Normalized edge measure in various illumination con-

ditions

allowance is known from an image, neighboring pixels that

have intensities greater than the allowance are regarded as

edges, similar to the change detection in the time domain.

Experiments show that the proposed method can detect fine

details in the image structures, as well as suppress the noise

effect without Gaussian smoothing.
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