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Abstract

We derive a probabilistic similarity measure between two
observed image intensities that is based on the noise prop-
erties of the camera. In many vision algorithms, the effect of
camera noise is either neglected or reduced in a preprocess-
ing stage. However, noise reduction cannot be performed
with high accuracy due to lack of knowledge about the true
intensity signal. Our similarity metric specifically repre-
sents the likelihood that two intensity observations corre-
spond to the same unknown noise-free scene radiance. By
directly accounting for noise in the evaluation of similarity,
the proposed measure makes noise reduction unnecessary
and enhances many vision algorithms that involve match-
ing of image intensities. Real-world experiments demon-
strate the effectiveness of the proposed similarity measure
in comparison to the standard L2 norm.

1. Introduction

Imaging noise produces random perturbations of inten-
sity values that degrade the visual quality of images and
reduce the reliability of computer vision algorithms. There
has been much work on modeling and removing these vari-
ations; however, even when the noise characteristics of an
image are known, it remains a difficult problem to remove
noise in a manner that preserves the actual scene informa-
tion in the measured intensity signal. Since there in general
does not exist sufficient information in an image to extract
the original scene data, noise reduction cannot be performed
with high accuracy, and often leads to loss of image detail
or introduction of image artifacts.

In this work, we present an alternative approach for deal-
ing with the effects of imaging noise on vision algorithms.
Rather than attempt to remove the noise from an image, we
aim to directly account for its effects on intensity similarity
measurement, which is one of the most fundamental and im-
portant operations in computer vision. Similarity between
intensity observations is used to guide a broad range of algo-
rithms including segmentation, object recognition, and op-
tical flow. Conventionally, the similarity of two observed
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Figure 1. Plot of the proposed similarity measure and the L2 dis-
tance, shown after normalization and with respect to intensity
level 0.5. The displayed similarity measure is computed based
on intensity-dependent Gaussian noise whose variance is propor-
tional to the intensity level. The resulting similarity measure has
an asymmetric profile.

intensities I1 and I2 is measured as a function of their L2

norm ||I1 − I2||2. While such a distance metric provides
a valid comparison in theory, the quality of this measure
lessens in practice due to the presence of noise in real im-
ages.

Noise is introduced into intensity observations at multi-
ple points in the imaging pipeline. Prominent components
of image noise include the random noise associated with
A/D conversion and uneven photon flow from the scene,
fixed pattern noise due to differences in sensitivity among
photon detectors in the imaging array, and dark current
noise that results from measurement of thermal radiation
within the camera. A detailed presentation of the various
noise sources can be found in [6]. Since noise arises from
a series of stochastic processes, it is natural to treat inten-
sity observations as samples from a probability distribution
defined by these imaging fluctuations. Such noise distribu-
tions may vary among pixels in the image, and can also be
dependent on intensity level.

Our proposed method captures the intensity dependent
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noise distribution of a camera in a calibration step, and then
based on these probability distributions, we derive in this
paper a probabilistic measure of the similarity between two
observed intensities. This metric specifically represents the
likelihood that two intensity observations correspond to the
same noise-free scene radiance, with respect to the proba-
bilistic noise distributions.

The effect of considering image noise in similarity mea-
surement is illustrated by the example in Figure 1. While
metrics based on the L2 norm do not account for the partic-
ular imaging fluctuations within a camera, our proposed in-
tensity similarity measure provides statistically meaningful
values with respect to noise characteristics. The likelihood
that two observations have the same noise-free value de-
pends upon these noise characteristics, such that the similar-
ity is high when the two intensities are both well within the
noise distributions of certain true intensities, and becomes
significantly lower otherwise. This is in contrast to conven-
tional metrics which have a fixed structure that is intended
to measure distance between observations rather than their
similarity. These distance measures do not represent the
likelihood that two intensity observations correspond to the
same scene radiance value, since they do not consider how
intensities fluctuate in the imaging system. We contend that
it is the similarity of intensities that is generally important
for many image understanding tasks, and that the use of a
similarity-based measure is especially beneficial in real ap-
plications where intensity perturbations exist.

The presented intensity similarity measure can be di-
rectly extended to handle color values, and can also be em-
ployed in subpixel and multiresolution applications. With
this proposed metric, we experimentally demonstrate im-
proved performance on the common vision process of block
matching.

1.1. Prior work

How to determine the similarity of a pair of R1 intensity
observations is a problem that has received little attention.
In fact, it has become a convention in computer vision to
compute the dissimilarity between two intensity observa-
tions as a function of their Euclidean distance. While these
metrics are valid measures of distance between two inten-
sity observations, they do not represent their similarity in
the sense of how likely the two observations correspond to
the same scene radiance value. A likelihood measure should
be a function of intensity fluctuations in the imaging system,
which are not accounted for in these fixed distance metrics.

Omer and Werman [8] proposed an approach to model
color distributions in an image as lines. These distributions
are collected from regions that have homogeneous color.
The proposed color model enables comparison of color val-
ues that is invariant to shading, highlights and color dis-
tortions caused by the imaging process. Comaniciu and

Meer [3] also took an image-specific clustering approach
that is based upon the mean shift algorithm. An obtained
affinity measure leads to good segmentation results. A
learning-based approach to modeling pixel affinity was pre-
sented by Fowlkes et al. [4], in which human-segmented
images are used as a training set. A similarity measure
called the bottleneck affinity was presented by Omer and
Werman [10]. The similarity measure is defined as a like-
lihood that two features belong to the same cluster, based
on the histogram profiles along the straight-line path be-
tween the two points. Similar affinity measures based on
geodesic distances [12] or geodesic paths [9] have also been
proposed. These previous affinity-based methods all seek to
determine how likely two observations belong to the same
class, based on modeling of feature distributions for each
class. In contrast, our work aims to measure how likely two
observations correspond to the same scene radiance value,
based on models of intensity distributions due to noise.

Closer to our work, Alter et al. [2] established an inten-
sity similarity measure for low-light conditions, which uses
Maximum Likelihood (ML) estimation to define the sim-
ilarity between two intensity observations. While it more
accurately measures similarity than other basic metrics, it
relies heavily on accurately estimating the true intensity
signal, which is difficult to achieve from only two obser-
vations. In our work, we derive a new intensity similarity
measure that avoids having to estimate the true intensity sig-
nal. Instead, our similarity measure is based on the marginal
density of observations with respect to every possible true
intensity signal.

2. Probabilistic framework
The measured intensity of a pixel can be considered as

a random variable that takes a value I in the space of ob-
servations Ω. Given an observed I , the probability that it
resulted from a true intensity I ′ of scene radiance is given
by the conditional probability density p(I|I ′).

Alter et al. [2] presents a similarity measure based on
ML estimation. From two observations, it first estimates
the true intensity I∗, then derives similarity as the product
of conditional probabilities:

I∗ = argmax
I′

p(I1|I ′)p(I2|I ′), (1)

SML(I1, I2) = p(I1|I∗)p(I2|I∗).

The ML similarity SML is defined as the likelihood of two
intensity observations resulting from the single true inten-
sity I∗ that gives the greatest likelihood.

The ML similarity gives a sound measure in theory if the
estimated true intensity is correct. However, the true inten-
sity generally cannot be estimated accurately from two ob-
servations in practice, especially under noisy imaging con-
ditions. Our approach differs from ML similarity in that it
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Figure 2. Comparison of similarity measures in the case of Gaussian noise. (a) Gaussian similarity measure, which assumes that one of the
two observations (I1 or I2) is free of noise. (b) ML similarity measure, which tries to estimate the true intensity signal I ′ by ML estimation
and then derives the similarity as the product of conditional probabilities p(I1|I ′)p(I2|I ′). (c) Our probabilistic similarity measure, which
sums up the probability of observing I1 and I2 from every possible true intensity I ′. I ′(n) represents the n-th possible true intensity value.

does not attempt to estimate the true intensity. We define the
similarity of two observed intensities I1 and I2 as the like-
lihood that they each resulted from the same but unknown
true intensity I ′, i.e., p(I1|I ′)p(I2|I ′). Since the true inten-
sity is unknown, all possible true intensities are taken into
account, rather than using a specific true intensity as done
in the ML similarity measure. Our probabilistic similarity
measure is therefore formulated as

S(I1, I2) def= p
(
t(I1) = t(I2)

)
(2)

=
∫

Ω

p(I1|I ′)p(I2|I ′)p(I ′)dI ′,

where t(I) is the true intensity of observation I , and p(I ′)
is the prior density of the true intensity, which is uniform.
With this definition in the form of marginal densities, the
proposed similarity measure is able to naturally avoid the
uncertainty that exists in the estimation of a single true in-
tensity.

The proposed intensity similarity measure is formulated
as a marginal density of the likelihood function over the pa-
rameter I ′ as shown in Equation (2). This formulation is
equivalent to the marginal likelihood in Bayesian estima-
tion [13], in which there is not a single parameter value (in
our case of I ′) that characterizes the entire model, but rather
an entire set of possible likelihood functions is used. In the
Bayesian framework, the marginal likelihood is computed
using the likelihood functions with the associated prior dis-
tributions of the parameters. Our similarity measure also
uses all possible likelihood functions p(I1|I ′)p(I2|I ′) in-
stead of relying upon a specific parameter I∗ as done in ML
similarity.

2.1. Case studies with different noise models

With different models of noise, we examine the proposed
similarity measure and explain its differences from prior
similarity metrics.
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Figure 3. Visualization of different intensity similarity measures
in the case of intensity-independent Gaussian noise (top row :
σ2 = 100, bottom row : σ2 = 250). (a) Gaussian similarity,
(b) ML similarity, and (c) probabilistic similarity. I1 and I2 are
two observations, and brighter values indicate greater similarity of
the two observations. Similarity values are mapped to range [0,1]
for visualization purposes.

Intensity-independent Gaussian noise
Suppose that image noise follows a Gaussian distribution,
and that this Gaussian noise is the same at all intensities.
The most common approach for determining the similarity
of two observations (I1 and I2) in this case is to assume
that either I1 or I2 is the true intensity, and then evaluate a
Gaussian function as follows:

SG(I1, I2) = p(I2|I1) = p(I1|I2) =
1√
2πσ

e−
(I1−I2)2

2σ2 . (3)

A visualization of this metric for various values of I1 and
I2 is shown in Figure 2 (a).

With the ML similarity measure defined in Equation (1),
similarity in this case can be expressed as

SML(I1, I2) = p(I1|I∗)p(I2|I∗) (4)

=
1

2πσ2
e−

(I1−I
∗)2+(I2−I

∗)2

2σ2 ,
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Figure 4. Visualization of different intensity similarity measures
in the case of intensity-dependent Gaussian noise. (a) Noise level
function, (b) ML similarity, and (c) probabilistic similarity. From
top row to bottom row, the noise variances σ2 are respectively a
linear, sinusoidal, and step function with respect to intensity. I1
and I2 are two observations, and brighter values indicate greater
similarity of the two observations. Similarity values are mapped
to range [0,1] for visualization purposes.

where I∗ = argmaxI′ p(I1|I ′)p(I2|I ′). Figure 2 (b) dis-
plays the form of this function. Since the true intensity I∗

is obtained through ML estimation, rather than by assuming
one of the observations to be noise-free, it should provide a
better similarity estimate than the basic Gaussian distance
function. However, it still relies heavily on an accurate esti-
mate of the true intensity value.

Our approach differs from these previous two in that
it does not attempt to estimate the true intensity. Rather,
it sums up probabilities that these two observations result
from the same, but unknown, true intensity:

S(I1, I2) =
∫

Ω

p(I1|I ′)p(I2|I ′)p(I ′)dI ′ (5)

=
1

4σ|Ω|
√
π
e
−(I1−I2)2

4σ2

{
erf
(

2Im−(I1+I2)
2σ

)
+ erf

(
I1+I2

2σ

)}
,

where Im
def= max I ′, |Ω| def= p(I ′) = const, and erf(·) is

the error function [1] defined as

erf(x) def=
2√
π

∫ x

0

e−t
2
dt.

Derivation of Equation (5) is detailed in Appendix. Fig-
ure 2 (c) illustrates the form of this measure. Since this

approach takes into account all possible true intensity sig-
nals, it theoretically gives a more accurate similarity esti-
mate than previous approaches.

Intensity-dependent Gaussian noise
As described in [7], noise level or variance is often a func-
tion of intensity in real images. In this case, it is unclear how
to define the Gaussian similarity measure of Equation (3),
since p(I1|I2) 6= p(I2|I1). Variance σ now becomes σI′ ,
which is a function of I ′. For ML similarity and our pro-
posed measure, the similarity metrics become

SML(I1, I2) = p(I1|I∗)p(I2|I∗) (6)

=
1

2πσ2
I∗
e
− (I1−I

∗)2+(I2−I
∗)2

2σ2
I∗ ,

where I∗ = argmaxI′ p(I1|I ′)p(I2|I ′), and

S(I1, I2) =
∫

Ω

p(I1|I ′)p(I2|I ′)p(I ′)dI ′ (7)

=
1

2π|Ω|

∫
Ω

1
σ2
I′
e
− (I1−I

′)2+(I2−I
′)2

2σ2
I′ dI ′.

Visualizations of these similarity measures built upon
intensity-dependent Gaussian noise are shown in Figure 4.
We note that unlike the other similarity measures, our prob-
abilistic metric may take an asymmetric form that arises
from the intensity dependency of noise, as also illustrated
in Figure 1.

Nonparametric noise model
When the noise cannot be modelled analytically, condi-
tional pdfs can be expressed more generally in the form of
discrete histograms. Histograms representing noise distri-
butions can be obtained through real-world measurements,
such as by capturing multiple shots of a static scene from
a fixed viewpoint. In this setup, a histogram is constructed
for each pixel from all of its recorded intensity observations.
To relate a histogram to a conditional pdf p(·|I ′), it is nec-
essary to estimate the true intensity signal I ′ from the his-
togram. Various criteria may be used for this purpose. For
zero-mean noise, the mean value of the distribution can be
used to determine the true intensity signal. For an assump-
tion that the true intensity signal should correspond to most
common value in the distribution, the intensity value at the
mode of the histogram is taken as the true intensity signal.

Once the true intensity signal I ′ of a histogram is es-
tablished, the histogram is normalized such that it sums to
one. In this way, the histogram provides a representation of
the joint probability density p(I, I ′). The conditional pdfs
p(I|I ′) are directly computed from the joint pdfs p(I, I ′) as

p(I|I ′) =
p(I, I ′)∫

Ω
p(I, I ′)dI

. (8)
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Figure 5. Nonparametric case with different gain parameters. (a)
conditional pdf p(I|I ′), (b) ML similarity, and (c) probabilistic
similarity. From top to bottom, the results of gain parameters 0 db,
15 db, and 30 db are shown. The data is obtained from a real-
world scene using the green color channel of a PointGrey Research
Dragonfly camera. For visualization purposes, similarity values
are mapped to range [0, 1] and are shown over the true intensity
range of [1, 254].

Using the obtained conditional pdfs and Equation (2), the
nonparametric probabilistic similarity measure is obtained.

Figures 5 and 6 show the intensity similarity measures
derived from observed pdfs at different camera gain levels,
which can affect noise characteristics. As seen in the fig-
ures, actual conditional pdfs have complex structures that
are hard to model with simple parametric functions, but can
be easily handled in our probabilistic similarity measure.

2.2. Color similarity measure

This similarity measure for pixel intensity can be di-
rectly extended to handle pixel features represented as vec-
tor quantities, such as color or local texture attributes. Using
RGB color as an example, the similarity between vectors
v1 = [r1, g1, b1] and v2 = [r2, g2, b2] can be expressed as

S(v1,v2) =
∫

Ωv

p(v1|v′)p(v2|v′)dv′ (9)

=
∫

Ωb

∫
Ωg

∫
Ωr

p(r1|r′)p(g1|g′)p(b1|b′)

p(r2|r′)p(g2|g′)p(b2|b′)p(r′)p(g′)p(b′)dr′dg′db′

= S(r1, r2) · S(g1, g2) · S(b1, b2).
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(a) (b) (c)
Figure 6. Nonparametric case with different gain parameters. (a)
conditional pdf p(I|I ′), (b) ML similarity, and (c) probabilistic
similarity. From top to bottom, the results of gain parameters 0 db,
6 db, and 12 db are shown. The data is obtained from a real-world
scene using the green color channel of a Sony DSR-PD190P cam-
era. For visualization purposes, similarity values are mapped to
range [0, 1] and are shown over the true intensity range of [1, 254].

2.3. Subpixel & multi-resolution similarity measure

There are many computer vision algorithms that utilize
subpixel or multi-resolution matching, e.g., image align-
ment and optical flow. The proposed intensity similar-
ity measure can be extended to handle subpixel/multi-
resolution cases.

As shown in Figure 7, a subpixel value and a lower-
resolution pixel value Is can both be expressed using com-
bination weights wi with the original pixels:

Is =
∑
i

wiIi. (10)

Accordingly, the conditional pdf ps(Is|I ′) can be derived
by linear interpolation of the original pdfs:

ps(Is,Θ|I ′) =
∑
i

wip(Ii|I ′), (11)

where parameter Θ indicates the combination of Ii and wi
that is used for interpolation. Inserting the conditional pdfs
ps into Equation (2), we obtain the probabilistic similarity
measure for the subpixel/multiresolution case.
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Figure 7. Subpixel and multi-resolution cases. Similarity is recom-
puted based upon combination weights w, which are determined
by the new pixel’s coverage of the original pixels.

3. Application and Experiments
The proposed similarity metric provides the likelihood

that two observations correspond to the same scene radi-
ance. To evaluate the effectiveness of the proposed simi-
larity measure, we compare it to the conventional L2 dis-
tance in the application of basic block matching [5]. Block
matching is chosen as our example since this fundamental
image matching algorithm is employed in a wide range of
applications.

Application formulation Block matching finds the most
similar image block by minimizing the sum of squared dif-
ferences to a given block:

u = argmin
u

∑
x∈B

(
F1(x)− F0(x− u)

)2
, (12)

where B is the given block, Fi(·) is a function at the i-th
frame that maps the pixel coordinate to its intensity, x is a
2D vector in the image space, and u is a 2D motion vector to
be estimated. By minimizing the distance between blocks in
consecutive frames, a motion vector u is obtained. With the
proposed similarity measure, Equation (12) can be rewritten
as

u = argmax
u

∏
x∈B

S(F1(x), F0(x− u)) (13)

= argmax
u

∏
x∈B

∫
Ω

p(F1(x)|I ′)p(F0(x− u)|I ′)p(I ′)dI ′.

To avoid computational errors caused by tiny numerical
values, the actual computation is performed in the log do-
main:

u = argmin
u

∑
x∈B

− logS(F1(x), F0(x− u)). (14)

Experimental configuration Experiments were per-
formed using a PointGrey DragonFly and a Sony DSR-
PD190P camera. For each camera, the similarity measure
is precomputed using sequences shot of static scenes. At

Scene #1 (0db) Scene #2 (6db)

Scene #3 (18db) Scene #4 (18db)
Figure 8. Scenes used in block matching experiments, with noise
level given in parentheses.

Scene #1 #2 #3 #4
Similarity 57.12 % 57.84 % 20.38 % 52.56 %
L2 norm 56.78 % 57.53 % 19.35 % 48.47 %

Mean dev. 0.34 % 0.31 % 1.03 % 4.09 %
Max dev. 0.59 % 3.64 % 1.60 % 6.06 %
Min dev. -0.09 % -1.69 % 0.51 % 2.05 %

Table 1. Results of block matching. The top two rows show the
correct matching rate using the proposed similarity measure and
the standard L2 norm. Mean dev. is the mean performance im-
provement of the probabilistic similarity measure in comparison
to the L2 norm. Max dev. and Min dev. represent the maximum
and minimum performance improvement, respectively.

each gain setting, 300 frames are recorded for the 708×564-
resolution DSR-PD190P and the 640×480-resolution Drag-
onFly. Observed noise distributions that have the same true
intensity value are merged together, since more observa-
tions per intensity level bring greater statistical reliability
to the similarity measure. This results in roughly 450000
samples per intensity level for the DSR-PD190P and 36000
samples per intensity level for the DragonFly. Once the
probabilistic intensity similarity measure is computed, the
result is stored in a symmetric matrix (look-up table) of size
n× n, where n is the number of intensity levels.

To obtain datasets for block matching, we mounted a
video camera at a fixed position and simply captured an im-
age sequence of a static scene. Since there do not exist in-
tensity changes except for noise, the correct matching score
can be computed by counting the number of times blocks
stay at their original positions, as done in [2]. The exper-
imental datasets are of the four scenes shown in Figure 8.
Scene #1 was captured using the DragonFly, and Scenes
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Figure 9. Variations in block matching scores. Top row: 5 × 5 block size, 15 × 15 search window size. Bottom row: 10 × 10 block
size, 30 × 30 search window size. (a) shows the scene, one block and its search range. (b) shows a plot of sorted matching scores using
the proposed similarity measure in comparison to the L2 norm. (c) and (d) show the distribution of matching scores at different block
positions in the neighbouring frames. Matching scores using the similarity measure are expressed in the negative log domain as described
in Equation (14). Matching scores are mapped into the range [0, 1], with lower scores indicating better matches.

#2, 3, and 4 are from the DSR-PD190P.
For performance evaluation, the captured image se-

quences are cropped to a 320 × 240 spatial resolution. We
use a 3× 3 block size and a 21× 21 search range centered
at the original block position. Block matching is evaluated
using each of the non-boundary pixels, and 100 frames of
each scene are used to statistically evaluate performance.

Results The results of block matching are summarized in
Table 1. The top two rows list the percentage of correct
matches using the proposed similarity measure and the stan-
dard L2 norm. The third row shows the performance differ-
ence of the proposed similarity measure in comparison to
the L2 norm. Max dev. and Min dev. indicate the maximum
and minimum performance difference of the proposed sim-
ilarity measure over the L2 norm. As we can see from the
table, the probabilistic similarity measure leads to better re-
sults under noisy conditions (Scenes #3 and 4) in which the
standard L2 norm breaks down. At low noise levels (Scenes
#1 and 2), the performance of the proposed similarity mea-
sure is similar to the L2 norm.

While the probabilistic similarity measure does not devi-
ate substantially from the L2 norm in low-noise conditions,
it is nevertheless useful in evaluating the reliability of esti-
mated matches [11]. Since our proposed metric represents a
measure of similarity rather than distance, it can better indi-
cate the confidence of a match than the L2 norm, and does
so in a statistically meaningful way. Such a confidence mea-
sure can provide useful information to subsequent processes

Mean of RMSD
Similarity 0.547

L2 0.262

Table 2. Mean of root mean squared distance (RMSD) of the cor-
rect matching score to the set of incorrect matching scores. This
value is computed after scaling the matching scores into the range
[0,1]. A larger RMSD indicates greater discrimination power. The
left figure shows a frame from the test image sequence.

in which the estimated motion is used, e.g., eliminating un-
reliable estimates. In addition, the proposed similarity mea-
sure offers greater discrimination power than the standard
L2 norm. Figure 9 shows the variation of block matching
scores. In the figure, matching scores obtained within the
search range are plotted in (b), (c), and (d). The match-
ing scores using the similarity measure are computed in the
− log domain as described in Equation (14), and all the ob-
tained matching scores are scaled into the range [0, 1], with
smaller matching scores corresponding to better matches.
In these examples, the best matches all correspond to cor-
rect matches. As we can see in the sorted matching scores
in Figure 9 (b), the proposed measure provides a steeper
distribution than the L2 norm. This sharper discrimination
between correct and incorrect matches brings greater con-
fidence in matching results. Figure 9 (c) and (d) exemplify
the variations in matching scores using the proposed sim-
ilarity measure and the L2 norm, respectively. It can be
observed that the proposed similarity measure more clearly



differentiates correct from incorrect matches.
The same experiment is conducted using a sequence of

100 images at 320 × 240-resolution to measure statistical
performance. To characterize the discrimination power, the
root mean squared distance (RMSD) is computed, which
measures the distance from the correct-matching score to
each of the incorrect-matching scores, defined as:

RMSD =
(

1
ns

∑
s

(s∗ − s)2)
) 1

2

, (15)

where s∗ is the matching score of the correct match, s is a
matching score at any position in the search range, and ns
is the number of matches tested in the search range. Table 2
shows the mean of the RMSD scores obtained from all cor-
rect matching results in the sequence. The larger RMSD
of the proposed similarity measure in comparison to the L2

norm indicates its greater power in discriminating between
correct and incorrect matches.

4. Conclusion
Intensity similarity is a quantity that is difficult to define;

however, the consideration of imaging noise distributions
enables a statistical approach to this problem. In this paper,
we propose a new intensity similarity measure in a proba-
bilistic form that directly embeds the effect of noise. The
similarity measure is formulated as the likelihood of two
intensity observations having the same scene radiance. For
the cases of intensity-independent and intensity-dependent
Gaussian noise, we derive analytic expressions of the simi-
larity measure. We also describe a method to compute the
similarity measure for a data-driven noise model. It is also
shown that the intensity similarity measure can be directly
extended to handle color values, subpixel shifts, and mul-
tiresolution applications.

The proposed similarity measure is evaluated on a basic
block matching technique in comparison to the standard L2

norm. Better performance is demonstrated, particularly un-
der noisy conditions. Moreover, we show that the proposed
similarity measure naturally indicates the confidence of a
match, and provides greater discrimination power between
correct and incorrect matches.
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Appendix
When the noise variance σ2 is constant for all intensity

values, the similarity of two observations I1 and I2 is de-
rived as follows:

S(I1, I2) =
∫

Ω

p(I1|I ′)p(I2|I ′)p(I ′)dI ′

=
∫

Ω

1
2πσ2|Ω|

e−(I1−I′)2/2σ2
e−(I2−I′)2/2σ2

dI ′

=
1

2πσ2|Ω|
e−(I21+I22 )/2σ2

︸ ︷︷ ︸
Independent of I′

∫
Ω

e(I1+I2−I′)I′/σ2
dI ′

=
1

4σ|Ω|
√
π
e−

(I1−I2)2

4σ2
{

erf
(

2I′−(I1+I2)
2σ

)∣∣
Ω

}
=

1
4σ|Ω|

√
π
e−

(I1−I2)2

4σ2
{

erf
(

2Imax−(I1+I2)
2σ

)
+ erf

(
I1+I2

2σ

)}
,

where |Ω| def= p(I ′) = const, Imax
def= max I ′, and erf(·) is

an error function [1] defined as

erf(x) def=
2√
π

∫ x

0

e−t
2
dt.


