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Abstract

Image matting is the problem of determining for each
pixel in an image whether it is foreground, background, or
the mixing parameter, ”alpha”, for those pixels that are a
mixture of foreground and background. Matting is inher-
ently an ill-posed problem. Previous matting approaches
either use naive color sampling methods to estimate fore-
ground and background colors for unknown pixels, or use
propagation-based methods to avoid color sampling under
weak assumptions about image statistics. We argue that nei-
ther method itself is enough to generate good results for
complex natural images.

We analyze the weaknesses of previous matting ap-
proaches, and propose a new robust matting algorithm. In
our approach we also sample foreground and background
colors for unknown pixels, but more importantly, analyze
the confidence of these samples. Only high confidence sam-
ples are chosen to contribute to the matting energy function
which is minimized by a Random Walk. The energy func-
tion we define also contains a neighborhood term to en-
force the smoothness of the matte. To validate the approach,
we present an extensive and quantitative comparison be-
tween our algorithm and a number of previous approaches
in hopes of providing a benchmark for future matting re-
search.

1. Introduction
Matting refers to the problem of soft and accurate fore-

ground extraction from an image. The results play an im-
portant role in image and video editing. Specifically, an
input image C is modelled as a convex combination of a
foreground image F and a background image B as

Cz = αzFz + (1− αz)Bz (1)

where z = (x, y) refers to the image lattice, and αzs are
the pixels’ foreground opacities. The problem is under-
constrained since F , B and α are all unknown.

Although the problem is severely ill-posed, the strong
correlations between nearby image pixels can be leveraged
to alleviate the difficulties. Roughly speaking, previous
matting approaches can be classified into two categories
based on how they make use of natural image statistics:
sampling-based approaches and propagation-based ones.
Sampling-based methods assume that the foreground and
background colors of an unknown pixel can be explicitly
estimated by examining nearby pixels that have been spec-
ified by the user as foreground or background. These color
samples are then used to directly estimate the alpha value.
Propagation-based methods do not explicitly estimate fore-
ground and background colors, instead they assume fore-
ground and background colors are locally smooth, for ex-
ample, that they can be modelled as constant or linearly
varying. In this way foreground and background colors can
be systematically eliminated from the optimization process
and the matte can be solved in a closed form.

Although various successful examples have been shown
for these approaches, their performance rapidly degrades
when foreground and background patterns become com-
plex. The intrinsic reason is that in many images the fore-
ground and background regions contain significant textures
and/or discontinuities; thus direct color sampling may be
erroneous, as well as only fitting low-order models to them.

In this paper we propose a robust matting algorithm to
explicitly avoid these limitations as much as possible. The
kernel of our algorithm contains a robust color sampling
method, which not only estimates foreground and back-
ground colors for unknown pixels, but also self-evaluates
the confidences of the estimates. Combining the optimized
color sampling method with propagation-based approaches,
we propose an iterative optimization process to select truly
mixed pixels from all the unmarked ones, and estimate al-
pha values for them in closed form at each iteration.

Another limitation of previous matting research is the
lack of systematic comparisons of various methods. In this
paper we conduct a quantitative, objective and comprehen-
sive comparison between this algorithm and a number of
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previous approaches. Results show our algorithm performs
the best in terms of both robustness and accuracy.

2. Related Work
2.1. Sampling-based Approaches

Sampling representative foreground and background col-
ors and analyzing their statistics for image matting was
first proposed in [8]. Following this idea, the KnockOut2
system [2] extrapolates known foreground and background
colors into the unknown region to estimate alphas. Ruzon
and Tomasi [10] analyze the statistical distributions of fore-
ground and background samples for alpha estimation. Their
approach is improved by the Bayesian matting system [1],
which formulates the problem in a well-defined Bayesian
framework and solves it using the MAP technique. The
recently proposed Belief Propagation matting system [14]
and easy matting system [6] solve a matte directly from
a few user specified scribbles instead of a carefully speci-
fied trimap. Since the user input is very sparse in this case,
global sampling methods are proposed to assist the local
sampling procedure to generate enough color samples. We
will demonstrate later that all these approaches often suffer
from inaccurate foreground and background estimation.

2.2. Propagation-based Approaches

Propagation-based approaches solve the matte without
explicit foreground and background color estimation. The
Poisson matting algorithm [12] assumes the foreground and
background colors are smooth in a narrow band of unknown
pixels. Thus, the gradient of the matte matches with the gra-
dient of the image, which can be calculated by solving Pois-
son equations. A similar method based on Random Walks
is proposed in [5]. The Closed-form matting [7] approach
assumes foreground and background colors can be fit with
linear models in local windows, which leads to a quadratic
cost function in alpha that can be minimized globally.

2.3. Extensions

Instead of a single input image, additional information
can be used for reducing unknowns in matte estimation if
available, such as using multiple backgrounds [11], or flash
and non-flash image pairs [13]. In this paper we only con-
sider the general problem of matte estimation from a single
image with limited user input.

3. Failure Modes for Previous Approaches
Before introducing the proposed robust matting algo-

rithm, we first analyze why previous matting approaches
fail in the context of complex foreground and background
patterns or sparse user input. These insights will motivate
the new algorithm in the following sections.

For an unknown pixel, sampling-based approaches col-
lect a group of nearby foreground and background colors for
alpha estimation. As illustrated in Figure 1a, these samples
form clusters in color space, and the alpha value is estimated
by projecting the pixel under consideration onto the line be-
tween foreground and background cluster centers to fit a
linear model as in Equation 1. In the figure, we can see that
pixel PA fits the linear model very well, thus it has a high
probability of being a true mixed pixel between the fore-
ground and background clusters. On the contrary, pixel PB

is far away from the interpolation line thus it is very unlikely
to be generated by a linear combination of the two clusters.
Such a pixel is more likely to be an unmarked foreground
or background pixel. Unfortunately, previous approaches
ignore this fact and simply estimate an alpha value for PB

based on its projection to the line P ′
B .

For complex foreground and background patterns, sam-
ples collected from local regions do not have a uniform
color distribution, as shown in Figure 1b. In this case,
propagation-based approaches will fail (at least partially)
since the smoothness assumption is violated. For sampling-
based methods which treat each sample equally, such as the
Belief Propagation matting system [14], these samples will
produce erroneous alpha values. Although Bayesian mat-
ting [1] will try to fit multiple Gaussians to color samples,
it is still insufficient to determine the specific color sam-
ples (F ′ and B′ in Figure 1b) that best explain the observed
pixel, and thus should be used for alpha estimation.

Figure 2 demonstrates these limitations on a real image.
Figure 2a shows the original image with the user speci-
fied foreground (red) and unknown region (yellow). Note
that although the foreground color is relatively uniform, the
background contains complex patterns, in which dark re-
gions match well with the foreground color. Figure 2 b, c,
and d show that Bayesian matting, Belief Propagation mat-
ting and closed-form matting will produce noticeable arti-
facts due to color sampling errors or assumption violations.
In contrast, the robust matting approach proposed in this
paper is able to generate a good matte.

4. Robust Matting

We propose a new matting algorithm to counter the sam-
pling problems faced by previous approaches. Our algo-
rithm is based on an optimized color sampling scheme, as
we believe (and shown by experimental results) that this
non-parametric technique is more robust for natural images.
A Random Walk optimizer is employed to solve for the
matte.

4.1. Optimized Color Sampling

Given the input image and a roughly specified trimap,
for a pixel z with unknown α, our algorithm first assem-
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Figure 1. Two failure modes of previous matting approaches. Left: a linear blend of samples does not explain the color observed at PB .
Right: only a particular subset of samples are valid for alpha value estimation.

Figure 2. (a). Original image with user input. Following images show matte extracted by (b). Bayesian matting[1]. (c). Belief Propagation
matting[14]. (d). Closed-form matting[7]. (e). Our algorithm. Green arrows highlight artifacts.

bles a large number of foreground and background samples
as candidates for estimating the true foreground and back-
ground colors at this location. Well discuss how these sam-
ples are drawn later. We make the assumption that for any
mixed pixels, the true foreground and background colors Fz

and Bz are close (in color space) to some samples in this
large sample set.

The challenging task is to pick out “good” samples from
this large candidate set. Good sample pairs should explain
any mixed foreground/background pixels as linear combi-
nations of the samples. For example, as shown in Figure
1a, two samples define a line in color space. If this line
passes through (or near) the color of the pixel under consid-
eration, it successfully explains the pixel’s color as a con-
vex combination. Specifically, for a pair of foreground and
background colors F i and Bj , the estimated alpha value is

α̂ =
(C −Bj)(F i −Bj)

‖ F i −Bj ‖2
(2)

We define a distance ratio Rd(F i, Bj), which evaluates this
sample pair by examining the ratio of the distances between
(1) the pixel color, C, and the color it would have, Ĉ, pre-
dicted by the linear model in Equation 1, and (2) the dis-
tance between the foreground/background pair:

Rd(F i, Bj) =
‖ C − (α̂F i + (1− α̂)Bj) ‖

‖ F i −Bj ‖
(3)

In the example shown in Figure 1a, the distance ratio will
be much higher for PB than PA, indicating the samples are
not as good for estimating alpha for PB .

Figure 3. The distance ratio defined in Equation 3 may not define
the best sampling. The proximity of samples should also be taken
into account. For example, for C, because of proximity in color
space, F2 is a better foreground sample even though F1 creates a
better fit for the linear blend model.

The distance ratio alone will favor sample pairs that
are widely spread in color space since the denominator
‖ F i−Bj ‖will be large. Since we expect most pixels to be
fully foreground or background, pixels with colors that lie
nearby in color space to foreground and background sam-
ples are more likely to be fully foreground or background
themselves. Thus, for each individual sample we define two
more weights w(F i) and w(Bj) as

w(F i) = exp
{
− ‖ F i − C ‖2 /D2

F

}
(4)

and

w(Bj) = exp
{
− ‖ Bj − C ‖2 /D2

B

}
(5)

where DF and DB are the minimum distances between
foreground/background sample and the current pixel, i.e.,
mini(‖ F i − C ‖) and minj(‖ Bj − C ‖).

Combining these factors, we calculate a final confidence
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Figure 4. (a). Sorted confidence values for 400 foreground-background sample pairs for green pixel. (b). Estimated alpha values from pairs
with highest confidences. (c). Confidence values. White = higher confidence. (d). Estimated alpha values from lowest confidence pairs.

value f(F i, Bj) for a sample pair as

f(F i, Bj) = exp

{
−Rd(F i, Bj)2 · w(F i) · w(Bj)

σ2

}
(6)

where σ is fixed to be 0.1 in our system.
We examine the confidence of every pair of foreground

and background samples from the large number of candi-
dates. Finally, we select a small number of pairs (3 in
our system) with the highest confidences. The average es-
timated alpha value and confidence of these three sample
pairs are taken as the final values in the color sampling step.
These values are used in the optimization process described
later to generate the final matte for the image.

In Figure 4a, we first selected 20 foreground and 20
background samples corresponding to the highlighted pixel.
This results in 400 foreground/background pairs. Each pair
provides an estimated alpha and confidence. The confi-
dence values are sorted and plotted in the figure.

By selecting those pairs with highest confidence values,
we generate the initial alpha matte shown in Figure 4b,
which will be further improved by the optimization pro-
cess. Figure 4c shows the accompanying confidence map
(i.e., the average of the three highest confidence values).
Note the correlation between pixels whose alpha values are
mis-estimated and the dark (low confidence) regions in the
confidence map. For comparison, Figure 4d shows a much
poorer matte generated by using sample pairs with lowest
confidences.

4.2. Collecting the Sample Set

Finally, one remaining question is how to construct the
initial sample set. Previous approaches such as Bayesian
matting and Belief Propagation matting collect pixels
known to be fully foreground or background that have the
shortest spatial distances to the target pixel as samples. As
shown in Figure 5, in regions with complex structure, the
spatially nearest pixels may not fully span the variation in
foreground and background colors.

Figure 5. (a). Original image. (b). Sampling methods: nearest
spatial (square) vs. sparse samples (round). (c). Matte generated
with square samples. (d). Matte generated with round samples.

We thus spread the sampling of foreground and back-
ground samples along the boundaries of known foreground
and background regions. In this way the sample set can
better capture the variation of foreground and background
colors. The higher variation benefits the robust sampling
method outlined above but may be problematic for previ-
ous approaches that simply average over the full sample set.
Figure 5 shows that a sample set we collect performs better
at least for this example.

4.3. Matte Optimization

As we have seen, the sampling process leads to a good
initial alpha estimate and a confidence value for each pixel.
This initial estimate can be further improved by leveraging
a priori expectations about more global aspects of the alpha
matte. In particular, we expect the matte to exhibit local
smoothness. We also expect alpha values of one or zero
(fully foreground or background) to be much more com-
mon than mixed pixels. As we can see in Figure 4b and c,
the pixels with low confidence values are those unmarked
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foreground and background pixels.
Our expectation for the matte is thus two fold: firstly, it

should respect the alphas chosen for each individual pixel
(data constraint) especially when the confidence value is
high; secondly, the matte should be locally smooth and ro-
bust to image noise (neighborhood constraint). As shown
in previous graph-based image labelling approaches [14, 9],
this expectation can be satisfied by solving a graph labelling
problem shown in Figure 6, where ΩF and ΩB are virtual
nodes representing pure foreground and pure background,
white nodes represent unknown pixels on the image lattice,
and light red and light blue nodes are known pixels marked
by the user. A data weight is defined between each pixel
and a virtual node to enforce the data constraint, and an
edge weight is defined between two neighboring pixels to
enforce the neighborhood constraint.

The data weights correspond to relative probabilities of a
node being foreground or background. For nodes for which
we have high confidence values, f̂i, we rely on the alpha
that fits the linear model from the selected samples. When
the confidence is low, we have a higher expectation that the
node is fully foreground or background (i.e., alpha is either
1 or 0). Which one to bias alpha towards is determined by
the initial alpha estimate.

Specifically, as shown in Figure 6, for an unknown pixel
i, two data weights W (i, F ) and W (i, B) are assigned to
the links between pixel i and each virtual node. They are
defined as

W (i, F ) = γ · [f̂iα̂i + (1− f̂i)δ(α̂i > 0.5)]

and

W (i, B) = γ · [f̂i(1− α̂i) + (1− f̂i)δ(α̂i < 0.5)] (7)

where α̂i and f̂i are estimated alpha and confidence values,
and δ is boolean function returning 0 or 1.

γ is a free parameter in our system which balances the
data weight and the edge weight. In general, setting the
weight to be too low will result in an over-smoothed matte,
while setting it to be too high will generate a noisy one. We
set γ = 0.1 in our system for all examples.

We also need to specify the weights, Wi,j , between
nodes to encourage alpha to have local smoothness. The
closed-form matting system [7] sets the weights between
neighboring pixels based on their color difference computed
from local color distributions. In this work, we also choose
to use this formulation for edge costs Wij due to its sim-
plicity and efficiency.

Formally, the neighborhood term, Wij , is defined by a
sum over all 3× 3 windows that contain pixels i and j.

Wij =
(i,j)∈wk∑

k

1
9
(1 + (Ci − µk)(Σk +

ε

9
I)−1(Cj − µk))

(8)

Figure 6. Our system estimates the matte by using a Random Walk
to solve a graph labelling problem.

where wk represents the set of 3 × 3 1 windows containing
pixels i and j, and k iterates over those windows. µk and
Σk are the color mean and variance in each window. ε is
a regularization coefficient which is set to be 10−5 in our
system. More details and justifications of this neighborhood
term can be found in [7].

4.3.1 Solving for Optimal αs

Given the fact that alpha values are continuous, we avoid
discrete labelling optimizations such as graph cut. Instead,
we solve the graph labelling problem as a Random Walk
[3, 4], which has been shown to minimize the total graph
energy over real values. Although a detailed description of
Random Walk theory is beyond the scope of this paper, it
essentially works as follows.

First, we construct a Laplacian matrix for the graph as

Lij =

 Wii : if i = j,
−Wij : if i and j are neighbors,
0 : otherwise,

(9)

where Wii =
∑

j Wij . L is thus a sparse, symmetric,
positive-definite matrix with dimension N ×N , where N is
the number of all nodes in the graph, including all pixels in
the image plus two virtual nodes ΩB and ΩF .

We then decompose L into blocks corresponding to un-
known nodes Pu, and known nodes Pk including user la-
belled pixels and virtual nodes, as

L =
[

Lk R
RT Lu

]
(10)

It has been shown [4] that the probabilities of unknown pix-
els belonging to a certain label (for example, foreground) is
the solution to

LuAu = −RT Ak (11)

where Au is the vector of unknown alphas we wish to solve
for, and Ak is the vector encoding the boundary conditions,

1The window size can be potentially varied but 3×3 window generated
the best results in our tests.
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Figure 7. Top: test images. Bottom: ground-truth mattes.

Figure 8. Left: same foreground against two known backgrounds.
Middle: extracted matte and new composite. Right: fine-to-coarse
trimaps.

(i.e., 1’s and 0’s for the known alpha values of the virtual
and user specified nodes). Lu is guaranteed to be nonsingu-
lar for a connected graph, thus the solution Au is guaranteed
to exist and be unique with values guaranteed to lie between
0 and 1. We use Conjugate Gradient (CG) to solve the linear
system.

5. A Quantitative Evaluation
Previous matting papers only show a few successful mat-

tes to verify their methods. Although limited quantitative
comparisons have been shown in [7], there is no objective
and quantitative evaluation on how robust these methods to
various user inputs. In this paper we present such an evalu-
ation and comparison.

5.1. Materials and Methods

Our test set includes 8 test images along with ground-
truth2 mattes, as shown in Figure 7. Images T1 to T3
are generated using the blue screen matting technique de-
scribed in [11]. As shown in Figure 8, a fuzzy foreground is
shot against two known backgrounds, which enables us to
use triangulation matting techniques to pull out an accurate
matte. The matte is then used composited over a new image
which serves as the test image. Images T4 to T6 use real
people and animals as foregrounds. Only one of each of

2We use the term ground-truth to indicate the best matte we could ex-
tract using both analytic and extensive user input as described.

these images were available, however over a simple solid-
color background, thus an easy matting problem. In this
case, we used the Bayesian matting technique to extract the
initial matte and create a synthetic composite for the test.

To evaluate how the algorithms perform on real natural
images in addition to synthetic ones, we have included two
natural images T7 and T8. Since the ground-truth mattes
are harder to derive in this case, we generate the best pos-
sible approximations using a variety of methods along with
extensive user assistance. We first manually create a very
accurate trimap for each image. We then apply previous
matting algorithms to get the best matte from each individ-
ual algorithm. We then manually combine these mattes by
using the best matte regions of all candidates. Finally, a
manual correction process which is similar to the one pro-
posed in Poisson Matting system [12] is employed for fur-
ther improvement.

To evaluate the accuracy and robustness of different al-
gorithms, we first create a fairly accurate trimap T0 for each
test image, then dilate the unknown region gradually to cre-
ate a series of less accurate trimaps T1, T2, ..T8. We apply a
number of previous algorithms on each test image and each
trimap, and calculate the Mean Squared Error (MSE) of the
estimated mattes against the ground-truth. In this way we
can quantitatively compare different methods.

We compare the performances of 7 algorithms: Bayesian
matting [1], Belief Propagation matting [14], Global Pois-
son matting [12], Random Walk matting [5], KnockOut 2
[2], closed-form matting [7], and the robust algorithm pro-
posed in this paper. Note that some approaches such as Be-
lief Propagation matting and closed-form matting have the
added ability to work with user defined scribbles. However,
as shown in their examples, the scribbles must be carefully
placed in order to get good mattes. A roughly specified
trimap, which can be drawn with a single fat stroke, cre-
ates a similar burden for the user as creating scribbles and
thus stands in for user scribbles. This allows us to test all
algorithms in a uniform way.

6



Figure 9. Left: MSE curves for test image T2. Right: Partial mattes computed at two trimap levels (indicated by colored triangular marks).

Figure 10. Left: MSE curves for test image T8. Right: Mattes computed at two trimap levels

5.2. Results and Discussion

Figure 9 shows the MSE curves of different algorithms
for one test image. As expected, most algorithms achieve
their best performance with the finest trimap. As the trimaps
becomes coarser, their performances generally degrade, but
at different rates. We also show partial mattes at two trimap
levels (2 and 8) since MSE values do not always correlate
exactly with visual quality. Our algorithm gives the best
result at all trimap levels, both quantitatively and visually.
Figure 10 shows the result on another test image.

We define two numerical indicators Ia and Ir to measure
the accuracy and robustness of different algorithms, respec-
tively. For an algorithm and a test image, we compute a
series of MSE values using different trimaps, and define Ia

as the minimal MSE value, and Ir as the difference between
the maximal and minimal values. Table 1 shows the Ia and
Ir values for all algorithms on all the test images along with
their ranks. It demonstrates that our algorithm consistently
ranks the top in terms of both accuracy and robustness.

This study reveals that pure sampling-based approaches,
such as Bayesian matting, can generate fairly good mattes
with tightly defined trimaps. However, when the trimap be-
comes coarser, the performance rapidly degrades since their

assumptions on color samples are violated. Although our
approach cannot fully avoid the performance degradation,
the robust color sampling method we propose helps our sys-
tem generate more accurate result with fine trimaps, and be
more robust to the variance of user input.

On the other hand, propagation-based methods, such as
the closed-form matting, can generate stable results across
all trimap levels. It is not a surprise that for some examples,
at coarser trimap levels, the closed-form approach estimates
mattes with lower MSEs than our algorithm does, which
means the color samples are no longer reliable when known
pixels are far away from unknown ones. However, the major
limitation of this approach is that it cannot generate very
accurate matte with fine trimaps. As shown in Figure 10,
some fine details of the foreground is always missing in its
estimation. This fact demonstrates the contribution of the
color sampling method in our approach to the accuracy of
the extracted mattes. In practice we can potentially lower
the data weight γ in Equation 7 for coarse trimaps where
samples are not reliable.

Figure 11 shows the best mattes we extracted for a few
other test images. Note that some backgrounds are very
complex.
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Figure 11. Best mattes extracted by our algorithm for other examples.

Poisson Rand. Walk Knockout2 Bayesian Iterative BP Closed-form Our
T1 7177:19597 2865:3435 1554:3214 4536:11986 612:1823 793:972 461:851

T2 4776:15776 4827:7485 3264:6784 4155:20067 1183:3373 1052:2342 441:1011

T3 8437:17367 2186 :2785 1133:1803 1375:10056 1304:2054 612:802 381:671

T4 3407:13307 1986:3073 1545:5965 824:7246 693:3564 592:1372 411:951

T5 4517:28917 1516:3935 335:3364 284:6876 273:2272 232:3563 101:1551

T6 8797:31747 2795:6383 3386:13876 1943:9385 2074:9034 1572:2371 691:3812

T7 3597:18307 2746:4014 1505:5166 692:4065 784:3623 773:1431 311:1652

T8 8326:24426 17327 :17955 4354:8884 1202:49947 2143:5532 5035:5823 1141:3941

Rank 6.9:6.8 6.0:4.4 4.5:4.5 3.9:6.0 3.3:3.1 2.6:2.0 1.0:1.3

Table 1. Ia and Ir values for different algorithms on different test images and their ranks(Format: Irank
a : Irank

r ). Bottom line shows the
average ranks.

6. Conclusion

We have proposed a robust matting approach that com-
bines the advantages of sampling-based approaches and
propagation-based approaches. Specifically, we propose an
optimized color sampling method, which explicitly avoids
the weak assumptions of previous approaches, thus enable
our algorithm to generate accurate mattes in a robust way
for complex images. A quantitative and objective evalua-
tion is also presented to demonstrate the efficiency of the
proposed algorithm.
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