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Abstract

In this note, we propose a method to perform segmen-
tation on the tensor manifold, that is, the space of positive
definite matrices of given dimension. In this work, we ex-
plicitly use the Riemannian structure of the tensor space in
designing our algorithm. This structure has already been
utilized in several approaches based on active contour mod-
els which separate the mean and/or variance inside and out-
side the evolving contour. We generalize these methods by
proposing a new technique for performing segmentation by
separating the entire probability distributions of the regions
inside and outside the contour using the Bhattacharyya met-
ric. In particular, this allows for segmenting objects with
multimodal probability distributions (on the space of ten-
sors). We demonstrate the effectiveness of our algorithm by
segmenting various textured images using the structure ten-
sor. A level set based scheme is proposed to implement the
curve flow evolution equation.

1. Introduction

Segmentation is an important aspect in the understand-
ing and analysis of images. It involves separating an image
into N disjoint regions such that each region corresponds to
an object of interest. In many practical situations, one is re-
quired to separate an image into only 2 distinct regions, i.e.,
object and background. This has many applications such
as tracking a given object in a sequence of images or ex-
tracting a medical structure from a 3D volume. Extensive
research has been done (see [30, 17, 18, 21, 23] and the
references therein) to automate the process of segmentation
using various features of the image such as intensity, color
and texture.

Recent advances in medical imaging technology (e.g.,
DT-MRI) has led to the availability of multi-valued image
data. This data is used to compute a tensor that represents
the diffusion of water molecules at each point (pixel) of the
image. Figure 1 shows a color-coded fractional anisotropy
(FA) image. The FA image is computed from the eigenvec-
tor/eigenvalues of the tensor at each pixel of the image. The

Figure 1. Left: Synthetic texture image with same intensity distri-
bution of the object and background. Right: A color coded frac-
tional anisotropy image showing diffusion of water molecules.

need to perform segmentation using such tensor data has led
to a number of segmentation algorithms; see [22, 13, 20]
and the references therein.

Figure 1 shows an image with a “butterfly like” object
whose intensity distribution is the same as that of the back-
ground. For such images, it is not possible to segment the
object based on intensity information alone. Many meth-
ods [25, 10, 7] have been proposed to address this problem.
The authors in [25, 10] have proposed to use the response
of Gabor filters to distinguish between textures, since their
response may be different for different types of textures.
The method however suffers from the drawback of having
to process a high-dimensional feature vector (i.e., the re-
sponse of the filter) making it computationally expensive.
A similar problem exists with wavelet based segmentation
algorithms [7].

The structure tensor [3, 8] on the other hand is a low di-
mensional feature computed from spatial derivatives of the
image. It forms the basis of many segmentation algorithms,
most notably, in the geometric active contour framework.
The authors in [27] assume that the image is composed of
two piecewise constant regions. They propose a variational
framework to segment the image by minimizing an energy
functional that separates the mean tensor inside and out-
side the evolving contour. To compute the tensor statistics
(mean), the Frobenius norm is used assuming that the ten-
sors lie in a vector space (i.e., the positive-definiteness is
not taken into account). Another method proposed in [22]
assumes a Gaussian distribution of the tensors for the object
and the background. The tensor space is again assumed to
be Euclidean for the purpose of computing the mean and
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variance of this distribution. A different method by [13]
uses the symmetrized KL-divergence to compute the dis-
tance between two tensors.

As has been pointed out in [20, 9], the space of posi-
tive definite matrices (tensors) is not a vector space but in-
stead forms a Riemannian manifold. Hence the methods
proposed in [27, 22, 13] do not utilize the true variation
of the tensor field. This drawback has been addressed by
the authors in [14] where they propose a segmentation al-
gorithm that computes the mean and variance of the tensor
field using the intrinsic Riemannian distance on the man-
ifold. The method however assumes that the distribution
of tensors within the object and background each follow a
normal distribution with different mean and variance.

In this work, we propose to extend the method in [14] to
any arbitrary distribution. In particular, the separation be-
tween object and background is obtained using the level set
framework for contour evolution by minimizing the Bhat-
tacharyya distance between the probability distribution in-
side and outside the evolving contour taking into account
explicitly the Riemannian geometry of the tensor space. We
also demonstrate the utility of our proposed method on sev-
eral textured images.

The rest of the paper is organized as follows. First, in
Section 2 we provide a brief overview of basic Riemannian
geometry as applied to the tensor manifold. We then de-
scribe the variational framework for separating two distrib-
utions using the Bhattacharyya distance in Section 3. Next
in Section 4, we present some experimental results and pro-
vide some of the numerical implementation details. We
conclude with future research directions in Section 5.

2. The Tensor Manifold

Positive definite symmetric matrices (tensors) are widely
used in image processing. These are all n × n symmetric
matrices A such that xT Ax > 0, for all nonzero x ∈ R

n.
They can either reveal structural information of an image
(structure tensor) [3] or characterize the diffusion of water
molecules as in diffusion tensor imaging (DTI) [2]. A struc-
ture tensor is used to extract important features (e.g., edges,
corners, texture informational, etc.) from an image. The
structure tensor is classically obtained by Gaussian smooth-
ing of the tensor product of the image gradient, i.e.,

T = Kρ ∗ (∇I ∇IT
)

=
(

Kρ ∗ I2
x Kρ ∗ IxIy

Kρ ∗ IxIy Kρ ∗ I2
y

)
(1)

where I is a scalar valued image, Kρ is a Gaussian ker-
nel with standard deviation ρ, and subscripts denote partial
derivatives. For vector valued images (e.g., color images)
the structure tensor is given by

T = Kρ ∗
(

N∑
i=1

∇Ii ∇IT
i

)
. (2)

Figure 2. Left: A 2D cone, Right: Distribution of structure tensor
in R

3 for a typical image.

Recently, a nonlinear structure tensor was proposed in
[5], where nonlinear smoothing is performed (instead of
Gaussian smoothing) so that edges are better preserved and
do not get dislocated. One can use any such method to ob-
tain a structure tensor that can be used for the purpose of
segmentation as described in the remainder of this paper.

It is well known that the space of tensors is not a vector
space, but instead forms a Riemannian manifold M. More
specifically, M forms a convex cone, endowed with a Rie-
mannian metric g. Figure 2 shows the manifold (cone) of
structure tensors for a typical image. Using this metric, it is
possible to define the geodesic distance between two points
(tensors) on the manifold. Many past works such as [27, 22]
have used the Euclidean metric or Frobenius norm to com-
pute distances between two tensors. This can produce erro-
neous results as can be seen from Figure 2.

For the sake of simplicity, let us consider a 2D cone
with points A, B and C (see Figure 2). Furthermore, as-
sume that the Euclidean distance is given by d(A, B) =
d(A, C) = d(B, C) = d1. Then, the Riemannian distance
between A and B is given by d(A, C) + d(B, C) = 2d1.
Thus, under the Euclidean space structure, points B and C
are equidistant from A, but not quite so if one considers
the geodesic distance on the manifold. Hence, using the
Euclidean metric can produce erroneous estimates of the
tensor statistics (e.g., mean, variance, probability distrib-
ution, etc.) which form the basis of many active contour
based segmentation algorithms. In this work, we propose
to account for the Riemannian geometry of the tensor man-
ifold for computing probability distributions which is then
used in the segmentation algorithm.

The theory of symmetric spaces has been extensively
studied since the seminal work of Nomizu [15]. A compre-
hensive work on tensor manifolds can be found in [20, 9]. In
this work, we briefly describe the concepts of geodesic dis-
tance, the exponential map and the logarithmic map which
will be required in the sequel. For the sake of brevity, our
treatment will not be completely rigorous or complete, but
we want to at least outline some of the key ideas. A Rie-
mannian metric on a manifold M smoothly assigns to each
point x ∈ M an inner product on TxM, the tangent space
to M at x. For our case, the tangent space TxM at x
can be identified with the space of n × n symmetric ma-
trices, Sym(n), which is isomorphic to the vector space



R
n(n+1)/2.
The function that maps to each vector −→xy ∈ TxM the

point y of the manifold that is reached after a unit time by
the geodesic starting at x with this tangent vector is called
the exponential map. This map, expx : TxM → M is
defined on the whole tangent space TxM and for the space
of tensors, this map is also one-to-one. There also exists a
unique inverse map called the Riemannian log map Logp :
M → TpM that maps a point x ∈ M to the unique tangent
vector at p that is the initial velocity of the unique geodesic
γ with γ(0) = p and γ(1) = x.

Given a point x ∈ M and a tangent vector W ∈
Sym(n) = TxM, the exponential map is given by the fol-
lowing expression:

expx(W ) = x
1
2 exp

(
x− 1

2 Wx− 1
2

)
x

1
2 . (3)

Similarly, given points p, Λ ∈ M, the log map at p can be
computed as follows:

Logp(Λ) = p
1
2 log(Σ)p

1
2 , Σ = p−

1
2 Λp−

1
2 . (4)

The geodesic distance between points p, Λ ∈ M can be
computed using the following expression:

d2(p, Λ) =
N∑

i=1

(log(σi))2, (5)

where σi are the eigenvalues of Σ defined in (4) above.
The intrinsic mean of a random variable in an arbi-

trary metric space is the point that minimizes the expected
value of the sum-of-squared distance function. As has been
pointed out in [20, 9], there is no closed form expression
for computing the mean of n points lying on the manifold
M. There, however, exists a unique intrinsic mean µ of a
set of points {p1, p2, ..., pn} and it can be computed using a
gradient descent algorithm as follows:

µt+1 = µ
1
2
t exp

(
−dt

n

n∑
i=1

log
(
µ
− 1

2
t piµ

− 1
2

t

))
µ

1
2
t . (6)

Details about computing the variance (or principal geodesic
analysis) can be obtained from [20, 9].

3. Segmentation Algorithm

Region-based geometric active contours have been suc-
cessfully used for segmentation of images (see [6, 29, 19]
and the references therein). In these methods, a contour
is evolved so as to minimize an image based energy func-
tional resulting in the required segmentation. Most algo-
rithms employ an energy functional that depends only on
the first two moments of a feature vector. In this work, we
perform segmentation by separating regions with different
probability density functions (pdf’s). As such, we propose
to minimize the Bhattacharyya distance, which gives a mea-
sure of similarity between two pdf’s.

3.1. The Bhattacharyya Flow

An object can be represented by a closed curve enclos-
ing its boundary. Many possible parameterizations of pla-
nar shapes described as closed contours have been proposed
(see [26, 4] and the references therein). Recently, level set
methods, which use an implicit representation of contours,
have become very popular [16, 24]. The curve C is repre-
sented as the zero level set of a higher dimensional function,
typically a signed distance function φ : R

2 → R, such that
φ < 0 inside C and φ > 0 outside C. This representation
allows for natural breaking and merging of curve topolo-
gies, hence we have decided to use it in the present work.

The Bhattacharyya distance [12] gives a measure of sim-
ilarity between two pdf’s, i.e.,

B =
∫
Z

√
Pin(z)Pout(z) dz, (7)

where z ∈ Z is a photometric variable such as intensity,
a color vector or a texture vector, and lives in the space
Z , while Pin and Pout are pdf’s defined on the variable z
for the region inside and outside C respectively. This mea-
sure varies between 0 and 1, where 0 indicates a complete
mismatch and 1 indicates complete agreement between the
pdf’s. Note that, B can also be thought of as the direction
cosine between two functionals Pin and Pout. Hence, min-
imizing B is equivalent to separating the distributions Pin

and Pout.
Let x ∈ R

2 specify the coordinates in the image plane,
and let I : Ω ⊂ R

2 → Z be a mapping from the image
plane to the space of the photometric variable (in our case,
the space of structure tensor). The pdf Pin (or Pout) is as-
sumed to be defined by

Pin(z) =

∫
ω

K(z − I(x)) dx∫
ω

dx
(8)

which is the nonparametric kernel density estimate of the
pdf of z for a given kernel K . Typical choices for K
are the Dirac delta function δ(.) and the multi-dimensional
Gaussian kernel given by

K(y) =
1

(2π | C |)n/2
exp

(
−yT C−1y

2

)
, (9)

where | C | is the determinant of the covariance matrix
(bandwidth) of the kernel and n is dimension of y. Ex-
tensive research has been done on choosing the optimal C.
A detailed analysis can be found in [11]. The rest of the
derivation is independent of the choice of the kernel K . For
the case of curve evolution, Pin is the density of the region
inside the curve C. Thus, ω is the region enclosed by C
with area denoted by Ain. Writing (8) in terms of the level
set function φ, we get

Pin(z) =

∫
Ω

K(z − I(x)) H(−φ(x)) dx∫
Ω

H(−φ(x)) dx
, (10)



where H is the Heaviside step function given by:

H(φ) =




1 φ > ε ,

0 φ < −ε ,
1
2{1 + φ

ε + 1
π sin

(
πφ
ε

)
} else,

and Ω is the whole image domain. Similarly, Pout(z) can
be written as

Pout(z) =

∫
Ω K(z − I(x)) H(φ(x)) dx∫

Ω H(φ(x)) dx
. (11)

Denoting by Aout the area outside the curve C, and com-
puting the first variation of (7), we get the following:

∂Pin(z)
∂φ

=
δε(φ)
Ain

(Pin(z) − K(z − I(x))) ,

∂Pout(z)
∂φ

=
δε(φ)
Aout

(K(z − I(x)) − Pout(z)) ,

∇φB =
1
2

∫
Z

(Pin(z) Pout(z))−1/2×(
∂Pin(z)

∂φ
Pout(z) + Pin(z)

∂Pout(z)
∂φ

)
dz.

Combining all of the equations above, we obtain the follow-
ing PDE:

∂φ(x, t)
∂t

= −Bδε(φ)
2

(
1

Ain
− 1

Aout

)
− δε(φ)

2
×

∫
Z

K(z − I(x))

(
1

Aout

√
Pin(z)
Pout(z)

− 1
Ain

√
Pout(z)
Pin(z)

)
dz.

(12)

The first term in the latter equation determines the
“global” direction in which the entire curve moves, whereas
the second term determines the “local” evolution direction.
Thus, the initial motion of the curve is influenced by the
“global” term, while its contribution is minimal when B is
close to zero indicating convergence of the curve evolution.
In numerical experiments, a regularizing term is added to
the above flow equation penalizing the curve length so that
the contour is smooth, and the final expression for the level
set evolution becomes

∂φ

∂t
= δε(φ) (V + α κ) (13)

where κ is the curvature, α is a user defined weight and V
is the speed term from equation (12).

3.2. Application to Tensors

In this work, the space of photometric variable Z is ob-
tained by mapping each point (tensor) of the image lying
on the manifold M onto the tangent space TxM at point
x ∈ M using the Riemannian log map Logx defined in (4).
As stated earlier, TxM is isomorphic to R

n(n+1)/2. Thus,
for structure tensors of dimension 2 × 2, Z = R

3, whereas
for diffusion tensors Z = R

6. The log map allows us to
go from the tensor cone to Euclidean space where one can
use standard techniques to compute the tensor statistics like
mean, variance and probability distributions.

One can choose the tangent space corresponding at any
given point x ∈ M of the manifold. A natural choice for
x is the intrinsic mean tensor µ of the image, which can
be computed using (6). The probability distribution Pin

and Pout can be approximated using kernel density estimate
[28] on a set of bins or “target points” as follows:

P (z) =
1
n

n∑
i=1

K (z − xi) , (14)

where n is the number of points, xi are points in the tangent
space TµM and K is a multivariate Gaussian kernel de-
fined in (9). Note that, for computing Pin (Pout), xi are all
points lying inside (outside) the curve C. The bins should
be chosen in such a manner that each point “belongs” to at
least one bin. The contour evolution can now be performed
using (13).

The entire algorithm can be summarized as follows :

Algorithm 1 : Segmentation Algorithm
1: Compute structure tensor at each point of the image us-

ing (1).
2: Use (6) to compute the mean tensor µ of the image.
3: Use the Riemannian log map Logµ (4) to map each

point (tensor) of the image to the tangent plane TµM.
4: Construct bins so that each point falls in atleast one bin.
5: Use a multi-variate Gaussian kernel (or any other ker-

nel) to compute the initial pdf’s Pin and Pout based on
the initialization of the starting contour.

6: Evolve the curve using (13) until convergence.

Notice that steps (1) to (5) above are preprocessing steps
and can be computed off-line before executing the contour
evolution of step (6).

4. Experiments

We tested the proposed method to perform segmentation
of several textured images. We certainly do not claim that
the method proposed in this work is optimal in all cases, but
it did give good results on the set of images on which it was
tested. In this section, we show comparative results with the



method in [14] where the authors assume a Gaussian distri-
bution for the object and background. We also compare the
results obtained if one assumes a Euclidean metric instead
of the Riemannian metric. The latter comparison was per-
formed using the Bhattacharyya flow without assuming any
prior knowledge about the distribution of the object or back-
ground.

To the best of our knowledge, this is the first time a
method has been proposed that performs segmentation tak-
ing into account the Riemannian structure of the tensor
manifold and without any prior assumption on the distri-
bution of tensor field of the object and background. Thus,
the proposed method generalizes the algorithm of [14] to
any arbitrary and non-analytic distribution.

4.1. Numerical Implementation

In this work, the structure tensors were computed using
(1) for gray level images and (2) for color images. Comput-
ing the intrinsic mean µ of the image is quite fast and the
gradient descent algorithm (6) usually converges in a few
iterations [20]. The tangent plane at the mean is a good
choice for mapping the points from the tensor manifold.
This fact was also used in [9] for performing principal geo-
desic analysis (PCA on manifolds). We have tested our seg-
mentation algorithm by mapping points from the manifold
onto several different tangent planes and each time we ob-
tained similar results. A particular case to note is that if one
uses the tangent plane at the identity tensor, the Riemannian
metric is equivalent to using the Log-Euclidean metric pro-
posed in [1].

Bins (“target points”) can be computed by creating a
multi-dimensional grid (3D in the case of structure tensor)
that spans the whole data set. Alternatively, one can use
fast algorithms like the improved fast Gauss transform [28]
to find a reasonable set of target points.

Once the initial pdf’s Pin and Pout are computed, one
can recursively update them as the contour evolves. This
can be achieved as follows:

Algorithm 2 : Updating Probability distributions
1: Compute the histograms pin and pout.
2: Find the points in the image that have moved from “out-

side C” to “inside C” or vice-versa after one iteration
of contour evolution.

3: Compute the contribution of these points at each of the
target points.

4: Add/subtract this contribution appropriately from pin

and pout.
5: Divide this histogram with the new area to obtain the

updated pdf’s Pin and Pout.

Note that this process is quite fast. However, a further
speed improvement can be achieved by pre-computing the

contribution of each point at each of the target points. This
is in contrast to the method in [14] where the mean and
variance (for the inside and outside) have to be computed
after every iteration. This whole process is computation-
ally very expensive (all the points in the image have to be
mapped from the manifold to the tangent plane at each iter-
ation) compared to the simple probability update methodol-
ogy proposed in this work. Also note that in our proposed
framework, all the points are mapped from the manifold to
the tangent plane only once, during the preprocessing step
(see Algorithm 1). This is another advantage of the pro-
posed method. We now discuss the results obtained on 4
test images.

4.2. Lizard example

Figure 5 shows the starting contour on the lizard image.
The objective is to separate the lizard from the background.
We ran the algorithm in [14] on this image. Figure 3 shows
the variance (Gaussian assumption) of the distribution in-
side and outside at initialization. Clearly, the variance of
the lizard (in the tensor space) is about an order of magni-
tude larger than the background. Figure 3 also shows the
distribution of the tensor field in the image, with each ar-
row representing the major eigenvector of the tensor. As
can be seen, the tensor distribution of lizard is multi-modal.
Thus, the Gaussian assumption of object and background as
in [14], is not valid and hence the method fails to segment
the lizard (see Figure 4). Figure 5 shows evolution of the
contour and final segmentation using the proposed method
with the same initialization as shown in Figure 4. This ex-
ample demonstrates the usefulness of the proposed method
when the object to be segmented has a multi-modal distrib-
ution.

4.3. Tiger example

In in this image, the tiger and the background have very
similar textural features. Figure 6 shows the segmentation
result assuming the tensors lie in a vector space, and by us-
ing the Bhattacharyya flow for contour evolution. As can be
seen, the method fails to capture the neck region of the tiger.
Figure 7 shows the result of the segmentation using the pro-
posed method. The contour in this case properly encloses
the tiger. This example clearly demonstrates that using the
Riemannian geometry of the manifold (instead of Euclidean
metric) in the segmentation framework can lead to better re-
sults.

4.4. Duck example

In this example, the duck is difficult to segment based on
intensity information alone due to the texture of water in the
background. Figure 8 shows the segmentation assuming a
Euclidean metric for the tensors. The contour evolution was



(a) (b)
Figure 3. Lizard example: (a) variance of the Gaussian distribution inside and outside the contour at initialization, (b) Tensor field distrib-
ution using major eigenvectors.

Figure 6. Tiger example: Segmentation using Euclidean metric

done using the Bhattacharyya flow described earlier in this
paper. Figure 9 shows the result of the segmentation using
the Riemannian metric as proposed in this work. Once again
it becomes clear that the Euclidean metric captures incorrect
information in computing the probability distribution.

4.5. Butterfly example

In this case, we demonstrate segmentation using color
texture information. The color structure tensor was com-
puted as described earlier in Section 2. Figure 10 shows
segmentation assuming a Euclidean metric while Figure 11
shows segmentation using the Riemannian metric. Both
segmentation results were obtained using the Bhattacharyya
flow. Once again, the proposed method gives better results.
Notice, however, that the final contour in Figure 11 does not
converge at the actual edges. This is due to the dislocation
of edges that occurs when computing the classical structure
tensor using (1). Better results can be obtained if one uses
the nonlinear structure tensor of [5].

5. Discussion

In this note, we proposed a novel method to perform seg-
mentation of tensor valued images taking into account the
natural Riemannian structure of the tensor manifold. Seg-
mentation was performed in a variational setting by mini-
mizing the Bhattacharyya distance which gives a measure
of similarity between two pdf’s. This region-based statisti-
cal segmentation approach on the space of tensors seemed
to give encouraging results for several nontrivial examples.
In particular, we believe that by exploiting the intrinsic met-
ric on the space of tensors in the Bhattacharyya flow con-
text, we were able to employ more of the available textural
information in deriving our segmentations as compared to
using a strictly linear vector space structure in which the
positive-definiteness of the symmetric matrices is essen-
tially ignored.

Some of the future work will entail performing segmen-
tation on medical tensor data, especially diffusion tensor
brain imagery for studying the white matter tracts. We
would also like to use other optimization techniques like
graph cuts which give a global minimum of the energy that
is being minimized.
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Figure 7. Tiger example: Segmentation with the proposed method (intermediate and final result)

Figure 8. Duck example: Segmentation assuming Euclidean metric

Figure 9. Duck example: Segmentation with the proposed method (intermediate and final result)

Figure 10. Butterfly example: Segmentation assuming Euclidean metric

Figure 11. Butterfly example: Segmentation with the proposed method (intermediate and final result)


