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Abstract

In this paper we derive differential equations for evolv-
ing radial basis functions (RBFs) to solve segmentation
problems. The differential equations result from applying
variational calculus to energy functionals designed for im-
age segmentation. Our methodology supports evolution of
all parameters of each RBF, including its position, weight,
orientation, and anisotropy, if present. Our framework is
general and can be applied to numerous RBF interpolants.
The resulting approach retains some of the ideal features of
implicit active contours, like topological adaptivity, while
requiring low storage overhead due to the sparsity of our
representation, which is an unstructured list of RBFs. We
present the theory behind our technique and demonstrate
its usefulness for image segmentation.

1. Introduction
Active contours have enjoyed copious success in com-

puter vision since their introduction [7], and have since
been the subject of intensive research activity. These meth-
ods have found application in numerous important problems
such as image segmentation, 3D scene reconstruction, and
object tracking. Part of their success is that they provide a
structured approach (via energy minimization) to deform a
contour or surface – a problem that comes up frequently in
computer vision.

In the context of image segmentation, active contours de-
form based on various image-based and internal forces so
that the contour’s edges match object or region boundaries
in the image, while maintaining smoothness. The smooth-
ness, or regularization terms, provide robustness to noise
while providing a measured approach to handling missing
or low-confidence data. A typical application of an active
contour will start with an initial contour, which is then itera-

tively deformed until it converges to a solution that balances
the forces acting on the contour. Typically, these forces re-
sult from analytic expressions that are derived using varia-
tional calculus applied to an energy minimization problem;
however, it is possible to define the forces directly without
using an energy formulation.

In the active contour literature, earlier methods repre-
sented the contour using a topologically fixed paramet-
ric representation, such as a polyline, spline, etc., spec-
ified by a fixed number of control points. Such repre-
sentations are simple and efficient to implement, however,
they lack straightforward mechanisms for topological con-
trol. Often in segmentation problems, the topology of
the problem is unknown a priori, and the contour must
break apart or merge during evolution. While various au-
thors have since presented methods that provide topological
changes [8, 10, 5], the implementation is somewhat compli-
cated and not natural to the parametric representation.

Recently there has been much interest in implicit ac-
tive contours, or level set methods, which represent the sur-
face as a level set of a higher dimensional embedding func-
tion [1, 2, 14, 16]. The primary advantage of this repre-
sentation is that topological changes occur naturally in this
framework; by manipulating the embedding function, the
level set that represents the contour can innately split or
merge without requiring any specialized implementation to
handle topological changes. However, the embedding func-
tion must be updated on a dense set of points, requiring
significant storage, even when using efficient narrowband
techniques [9].

Even more recently, there has been much interest in
combining some of the advantages of explicit and implicit
active contours through the use of radial basis functions
(RBFs) [11, 12] (these papers are the source of inspira-
tion for this work) or unstructured point clouds [6]. These
methods define a set of points (or RBFs), from which the
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embedding function can be computed. These approaches
then, provide a methodology to move the points (and corre-
spondingly, update the embedding function) to deform the
active contour to solve the segmentation problem. Such ap-
proaches have been demonstrated to provide the topological
flexibility of level set methods with the low storage require-
ments of parametric representations, and offer much flexi-
bility in terms of RBF placement and interaction.

This paper is related to such work; however, there are
notable differences. These previous methods start with the
force definition rather than deriving the forces through an
energy formulation. We present this derivation, which pro-
vides a stronger theoretical framework for the technique. In
addition, from this derivation we observe how it is possi-
ble to evolve all attributes of each RBF, whereas previous
work only evolved the RBF positions. For example, in the
case of an anisotropic Gaussian RBF interpolant, we show
how to evolve the position, weight, orientation, and stan-
dard deviations of each RBF, resulting in a set of coupled
differential equations that drive the active contour. In ad-
dition, we derive equations for region-based segmentation
problems in addition to the edge-based segmentation prob-
lems addressed previously. Our methodology is general, al-
lowing other RBF interpolants and curve evolutions to be
utilized in our framework.

The rest of this paper is organized as follows. In Sec-
tion 2 we present the mathematical details of our frame-
work, deriving the RBF update equations from an energy
functional. Next, in Section 3 we complete the derivation
by considering anisotropic radial basis functions. Then, in
Section 4 we provide some implementation details, includ-
ing how we add and merge RBFs during evolution. In Sec-
tion 5 we show some initial results that demonstrate the use-
fulness of our method, and offer some concluding remarks
in Section 6.

2. Variational RBF Evolution

In this section we derive our RBF evolution equations,
resulting in a set of coupled differential equations that drive
the evolution. We begin by considering region-based image
segmentation.

2.1. Region-based image segmentation

In region-based segmentation methods, the evolution of
the active contour is based on the attributes of entire regions
in the image. These attributes can include intensity, color,
texture, probabilities, etc., but in this paper we focus on
intensity. These methods model the image as being com-
posed of distinct regions, each with its own statistics, which
are used to deform the active contour towards the region
boundaries. This is notably different than boundary-based
segmentation methods, where the evolution depends on lo-

cal image gradients. In this sense, region-based segmenta-
tion methods are more global and more robust to noise than
edge-based methods.

Perhaps the most well-known region-based model is the
Mumford-Shah functional [13], which models the image re-
gions as piece-wise smooth functions. For example, in the
case of two regions R inside the contour C and the region
RC outside the contour,

E(f, C) =
∫

R

(I(x)− fR(x))2dx (1)

+
∫

RC

(I(x)− fRC (x))2dx +
∫

Ω\C
|∇f |2dx + γ

∫
C

ds,

where E(f, C) is the energy of the contour, I(x) is the im-
age intensity at pixel x, and f is a piecewise smooth func-
tion, consisting of regions fR(x) inside C and fRC (x) out-
side C, and the last term is a regularization term weighted
by a constant γ. While there are good active contour meth-
ods to solve the Mumford-Shah functional [17], the piece-
wise constant model of Chan-Vese [2] is a powerful approx-
imation that replaces the piecewise smooth function f with
piecewise constant functions in each region. This simplified
form can be expressed as

E(C) =
∫

R

(I(x)−µin)2dx+
∫

RC

(I(x)−µout)2dx+γ
∫

C

ds,

(2)
where µin is the average intensity inside the C and µout is
the average intensity outside C. Many other variations of
the Chan-Vese functional exist, for example, using various
statistics other than or in addition to the mean.

In both the level set formulation and ours based on RBFs,
the contour C ∈ Ω is represented by the zero level set of a
Lipschitz function φ : Ω → <, such that

C = {x ∈ Ω : φ(x) = 0},
R = {x ∈ Ω : φ(x) < 0},

RC = {x ∈ Ω : φ(x) > 0}

Now in our case, we model the embedding function φ(x)
using N radial basis functions ψ(x, gi1 · · · giM ) [18] as

φ(x) = P (x) +
N∑

i=1

wiψi(x, gi1 · · · giM ), (3)

where ψi(x, gi1 · · · giM ) is the ith RBF parameterized by
M variables gi1 · · · giM , wi is the weight on the ith RBF,
and P (x) is a polynomial term that spans the null space of
the basis function.

Using the Heaviside function,

H(z) =
{

1, z ≥ 0
0, otherwise (4)



and the Dirac delta function δ(z) = d
dzH(z), the energy of

Equation 2 can be reexpressed as

E(φ(w,g)) =
∫

Ω

(I(x)− µin)2H(φ(x))dx (5)

+
∫

Ω

(I(x)− µout)2(1−H(φ(x)))dx + γ

∫
Ω

δ(φ(x))|∇φ(x)|dx,

where w = [w1 . . . wN ]T , and g = [gij ], where i =
1 · · ·N , j = 1 · · ·M .

Under this formulation of the problem, we would like to
derive the variation of the energy with respect to the RBF
parameter gij , as well as the RBF weight, wi. Using the
chain rule, we derive

∂E

∂gij
=

∫
Ω

(I(x)− µin)2δ(φ(x))
∂φ

∂gij
dx

−
∫

Ω

(I(x)− µout)2δ(φ(x))
∂φ

∂gij
dx

+γ
∫

Ω

div
(
∇φ
|∇φ|

)
δ(φ(x))

∂φ

∂gij
dx, (6)

which simplifies to the contour integral,

∂gij

∂t
=

∂E

∂gij
=
∫

C

[
(I(x)− µin)2 − (I(x)− µout)2

+γdiv
(
∇φ
|∇φ|

)]
∂φ

∂gij
dC, (7)

and similarly,

∂wi

∂t
=

∂E

∂wi
=
∫

C

[
(I(x)− µin)2 − (I(x)− µout)2

+γdiv
(
∇φ
|∇φ|

)]
∂φ

∂wi
dC. (8)

We note that these expressions take the form∫
C

∂E
∂φ

∂φ
∂pdC, where p is gij or wi. This form results

from the functional composition that resulted in application
of the chain rule. Conceptually, these equations state that
to determine the update of a parameter of an RBF, we must
traverse the contour C, accumulating gradients at each
point. That is, each point on the zero level set contributes
to the update of the RBF parameters, which is intuitive,
given that in general, the RBF influences every point on the
zero level set. Unlike standard level set update equations,
the integral in Equations 7 and 8 combines measurements
from all points along the contour [15], providing increased
robustness to noise. We note that our formulation of the
problem is notably different than [11], where the RBFs are
fixed to the zero level set and the evolution of an RBF does
not consider the influence of the RBF on all other points on
the zero level set. Likewise, this approach differs from [12]
as it is based solely on gradient descent and does not require

solving linear systems of equations for the RBF locations.
Unlike [11, 12, 6], our method provides a generalized
simple way to update all parameters of the basis function,
including the weights, position, orientation, anisotropy, etc.
This of course depends on the functional form of φ, for
which we consider for various basis functions in Section 3.
We note that each iteration of all RBFs is order O(LMN),
where L is the number of pixels on the zero level set, and
M and N are given above.

2.2. Boundary-based image segmentation

From the previous section, we observed that the energy
minimization resulted in the form

∫
C

∂E
∂φ

∂φ
∂pdC. In general,

one can utilize this relationship to transform any level set
flow or curve evolution into an RBF evolution in our frame-
work. For boundary-based image segmentation, we deduce
a similar expression for the geodesic flow [1],

∂gij

∂t
=

∂E

∂gij
=
∫

C

[Fκ|∇φ| − ∇F · ∇φ]
∂φ

∂gij
dC

∂wi

∂t
=

∂E

∂wi
=
∫

C

[Fκ|∇φ| − ∇F · ∇φ]
∂φ

∂wi
dC,

where F (I(x)) is a function of an edge detector response,
such as F = 1

1+|∇I|2 and κ is the curvature of the active
contour at point x. We note often with boundary-based seg-
mentations, it is helpful to run a GVF diffusion [20] on the
vector field ∇F before evolving the active contour.

3. Radial Basis Functions
In the previous section, we derived the basic equations

for evolution of radial basis functions to achieve either a
region-based or boundary-based image segmentation. How-
ever, the complete derivation depends on the RBFs cho-
sen and their derivatives. In this section, we consider the
use of anisotropic Gaussian RBFs. We note however, that
our framework is quite general, and that any RBF with an
analytic derivative can be used. We choose to work with
anisotropic basis functions for two reasons: first, they can
better approximate sharp corners [4], and second, they are
a more general form of the isotropic basis function. Also
note that in the presentation below we consider 2D RBFs,
however, the method straightforwardly generalizes to 3D.

3.1. Anisotropic Gaussian RBFs

The equation for a 2D anisotropic Gaussian centered at
point (cx, cy), standard deviation σx, σy , and orientation
angle θ has the functional form

ψ(x, y) =
1

2πσxσy
exp

[
−1

2σ2
xσ

2
y

(
a1(x− cx)2

−2a2(x− cx)(y − cy) + a3(y − cy)2
)]
,



where

a1 = σ2
x cos2 θ + σ2

y sin2 θ (9)

a2 = (σ2
y − σ2

x) cos θ sin θ (10)

a3 = σ2
x sin2 θ + σ2

y cos2 θ (11)

This RBF is described by the M = 5 five parameters,
gj = [cx, cy, σx, σy, θ]T . To implement our RBF flows, we
must take the derivative of the RBF with respect to these
parameters. Doing so yields the equations,

∂ψ

∂cx
= ψ ·

(
a1X − a2Y

σ2
xσ

2
y

)
(12)

∂ψ

∂cy
= ψ ·

(
−a2X + a3Y

σ2
xσ

2
y

)
(13)

∂ψ

∂θ
= ψ ·

(
−
X2 ∂a1

∂θ − 2XY ∂a2
∂θ + Y 2 ∂a3

∂θ

2σ2
xσ

2
y

)
(14)

∂ψ

∂σx
= − ψ

σx
+ ψ ·

[
a1X

2 − 2a2XY + a3Y
2

σ3
xσ

2
y

− 1
2σ2

xσ
2
y

(
X2 ∂a1

∂σx
− 2XY

∂a2

∂σx
+ Y 2 ∂a3

∂σx

)]
(15)

∂ψ

∂σy
= − ψ

σy
+ ψ ·

[
a1X

2 − 2a2XY + a3Y
2

σ2
xσ

3
y

− 1
2σ2

xσ
2
y

(
X2 ∂a1

∂σy
− 2XY

∂a2

∂σy
+ Y 2 ∂a3

∂σy

)]
, (16)

where

X = (x− cx) (17)
Y = (x− cy) (18)

∂a1

∂θ
= −2(σ2

x − σ2
y) cos θ sin θ (19)

∂a2

∂θ
= −(σ2

x − σ2
y)(cos2 θ − sin2 θ) (20)

∂a3

∂θ
= 2(σ2

x − σ2
y) cos θ sin θ (21)

∂a1

∂σx
= 2σx cos2 θ (22)

∂a2

∂σx
= −2σx cos θ sin θ (23)

∂a3

∂σx
= 2σx sin2 θ (24)

∂a1

∂σy
= 2σy sin2 θ (25)

∂a2

∂σy
= 2σy cos θ sin θ (26)

∂a3

∂σy
= 2σy cos2 θ (27)

(28)

Putting it all together gives the following set of cou-
pled ordinary differential equations (ODEs) that drive the
ith RBF:

dcix
dt

=
∫

C

Dwiψi ·

(
ai1Xi − ai2Yi

σ2
ixσ

2
iy

)
dC (29)

dciy
dt

=
∫

C

Dwiψi ·

(
−ai2Xi + ai3Yi

σ2
ixσ

2
iy

)
dC (30)

dwi

dt
=

∫
C

DψidC (31)

dθi

dt
=

∫
C

Dwi ·

ψi ·

(
−
X2

i
∂ai1
∂θi

− 2XiYi
∂ai2
∂θi

+ Y 2
i

∂ai3
∂θi

2σ2
ixσ

2
iy

)
dC (32)

dσix

dt
=

∫
C

Dwi ·{
− ψi

σix
+ ψi ·

[
ai1Xi − 2ai2XiYi + ai3Y

2
i

σ3
ixσ

2
iy

− 1
2σ2

ixσ
2
iy

(
X2

i

∂ai1

∂σix
− 2XiYi

∂ai2

∂σix
+ Y 2

i

∂ai3

∂σix

)]}
dC (33)

dσiy

dt
=

∫
C

Dwi ·{
− ψi

σiy
+ ψi ·

[
ai1X

2
i − 2ai2XiYi + ai3Y

2
i

σ2
ixσ

3
iy

− 1
2σ2

ixσ
2
iy

(
X2

i

∂ai1

∂σiy
− 2XiYi

∂ai2

∂σiy
+ Y 2

i

∂ai3

∂σiy

)]}
dC (34)

where

Xi = (x− cix) (35)
Yi = (y − ciy) (36)

and for region-based segmentation,

D =
[
(I(x)− µin)2 − (I(x)− µout)2 + γdiv

(
∇φ
|∇φ|

)]
(37)

while for boundary-based segmentation,

D = [Fκ|∇φ| − ∇F · ∇φ] (38)

While these systems of equations may look complex,
they contain many repeated terms and are easily imple-
mented on a computer.

A simple example demonstrating RBF evolutions using
these ODEs is provided for a synthetic image in Figure 1.
In this example, a white square, containing sharp corners, is
to be segmented from the black background. In (a) of the



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1. RBF evolution for segmentation of a white square on a black background. Top row: Chan-Vese region-based flow. Bottom row:
geodesic boundary-based flow. The evolution is shown starting at initialization ((a) and (e)), at an intermediate stage ((b) and (f)), and
at convergence ((c) and (g)) for the evolution of all RBF parameters, including anisotropy. For comparison, in (d) and (h) we show the
isotropic RBF evolution result of evolving just the weights and RBF centers. The isotropic RBFs are unable to capture the sharp corners of
the object.

figure, we show the initialization, which consists of a con-
tour, shown in green, which is the zero level set of the im-
plicit function φ(x, y). The implicit function is represented
as a summation of RBFs. Negative weighted RBFs are ren-
dered in blue, while positive weighted RBFs are rendered
in red. The ellipse around each RBF is a visualization of
the anisotropy. Initially, the RBFs are all isotropic and are
rendered as circles. In (b), we show the result at an inter-
mediate stage of the segmentation after 10 iterations of the
ODEs and in (c), we show the final result after convergence
after 25 iterations. Note the RBFs changed their positions,
weights, and anisotropy to produce the result in (c), which
provides an excellent segmentation of the data. For compar-
ison, in (d) we show the evolution of just the RBF weights
and center positions. In this case, the isotropic RBFs are un-
able to capture the sharp corners of the object. The bottom
row of the figure reruns this experiment using the geodesic
boundary based flow, which provides similar results.

3.2. Other Basis Functions

We note any RBF interpolant that has an analytic deriva-
tive can be used in our framework, including multi-order [3]
and Wendland’s [19] RBFs. Experimentally, we have ob-
served best results using RBFs that decay from their cen-
ter location. However, due to page constraints we do not
present derivations or results for these other RBFs.

4. Implementation

In this section, we provide some implementation details
regarding our RBF evolution approach to image segmenta-
tion.

4.1. Overall approach

Our approach requires an initialization, which consists of
a set of RBFs that define an initial contour for segmentation.
The positions of these RBFs can be placed manually by the
user, or automatically by placing positive-weighted RBFs
on the image border or in a large ring around the image cen-
ter, and negative-weighted RBFs in the center of the image,
resulting in an initial contour on the image. The initializa-
tion is flexible, as the initial contour can be inside, outside,
or both inside and outside the object being segmented, as
we will show in the examples of Section 5. Given this ini-
tial contour, we then evolve the RBFs using Equations 29
to 34. These ODEs update the RBF parameters, and conse-
quently update the curve as well to solve the segmentation
problem. One can check for convergence of the ODEs by
monitoring the energy of E.

4.2. Merging and adding RBFs

We additionally include a mechanism to merge or add
RBFs, which we execute periodically during the RBF evo-
lution. In the case of a merge, let the ith RBF be pa-
rameterized by [cix, ciy, σix, σiy, θi] and weight wi, and



(a) (b) (c)

Figure 2. Adding and removing RBFs.

(a) (b) (c)

Figure 3. An example demonstrating a topological change of the contour.

the jth RBF by [cjx, cjy, σjx, σjy, θj ] and weight wj ,
i 6= j. If the distance between two RBFs, dij =√

(cix − cjx)2 + (ciy − cjy)2 becomes less than a thresh-
old TM (typically 7 pixels in our experiments), then the
RBFs are combined by deleting them and replacing them
with a new RBF, [ 12 (cix+cjx), 1

2 (ciy+cjy), σix+σjx, σiy+
σjy, θi +θj ] and weight wi +wj . This new RBF is a sum of
the two RBFs being merged and centered halfway between.

We add RBFs at locations where the gradient of the im-
plicit function is high. However, we do not want to add an
RBF too close to an already existing RBF. To satisfy these
constraints, we form a function A(x, y) = ∇φ(x,y)

max(∇φ(x,y)) ·
S(x, y), where ∇φ(x,y)

max(∇φ(x,y)) is the normalized gradient of
the implicit function and S(x, y) is a splat buffer formed as

S(x, y) =
∏

i

(
1− e−[(cix−x)2+(ciy−y)2]/(2σ2)

)
(39)

where σ is a standard deviation of a 2D Gaussian function
(set to 15 for our experiments). The splat buffer is close
to one where there are no RBFs, and decreases to zero near
RBF centers. Therefore, the functionA(x, y) is large where
there are no RBFs and the gradient of the implicit function
is high. We scan A(x, y), and add an RBF at the position
(x, y) whereA(x, y) has a value above a threshold, TA (typ-
ically 0.65 in our experiments). This gives us a new RBF
that is not too close to an existing RBF, yet is located at a
point of high gradient in the implicit function. The thresh-
old TA prevents us from adding too many constraints where
they are not really needed. The weight of this newly added

isotropic RBF is initially zero; subsequent iterations of the
ODEs will update its weight and anisotropy.

An example showing the adding and merging of RBFs
is provided in Figure 2. Here, the method automatically
places the RBFs where they will help the most in modeling
the curve geometry, and ODEs update the RBFs to solve
the segmentation problem. Using these mechanisms, topo-
logical changes of the contour also come naturally in our
framework. An example of this is provided in Figure 3.

5. Results

In this section we present some results demonstrating the
effectiveness of our proposed method in segmentation of
various images.

In Figure 4, we repeat the experiment of Figure 2, this
time on a very noisy image corrupted by Gaussian white
noise. Here the image was formed by setting the back-
ground pixels to 0, the foreground pixels to 200, and adding
in Gaussian white noise of unit standard deviation, where
the noise was then multiplied by 200. The resulting image
was clipped to [0, 255], and has a very noisy appearance.
The evolution of our anisotropic RBFs are shown from the
initialization (a), at an intermediate stage (b), and upon con-
vergence (c). The region-based active contour does an ex-
cellent job of segmenting the object despite the low signal
to noise ratio. In each of these examples, we set γ = 0 as
the basis functions themselves are already quite smooth.

In Figure 5, we apply our RBF segmentation method to
an ultrasound fetal image. The brighter structure is part of



(a) (b) (c)

Figure 4. Segmentation of a noisy image. In (a) through (c), we show the evolution of anisotropic RBFs at different time steps until
convergence (c). Despite the noise, the RBF active contour is able to adequately segment the image.

the fetal anatomy. From the initialization shown in (a) of
the figure, we evolve our active contour for 10 iterations
(b), 20 iterations (c), and show the result upon convergence
(25 iterations), shown in (d). The segmentation successfully
delineates the anatomic fetal structure.

Figure 6 demonstrates our method with numerous im-
ages. Starting with the upper left part of the figure, we show
the segmentation of a CT image, where we would like to
segment the bone in the center of the image. Placing some
negative weighted constraints inside the bone, and positive
constraints outside, we get an initial contour shown in (a).
Using our method, we evolve the RBFs until convergence,
producing the result shown in (b). In (c) we perform a sim-
ilar experiment using a T1-weighted MR image of a lymph
node, which appears as a darkish object in the center of the
image. The converged result is shown in (d), which pro-
vides an excellent segmentation of this object.

In (e) and (f) we present an example of a photographic
image taken of a highway. Starting with an initial contour as
depicted in (e), we evolve the RBFs until convergence, pro-
ducing the result in (f). The segmentation is successful as it
depicts the two cars; however, the result is not perfect as the
Chan-Vese model we employ assumes that the image has a
bimodal histogram with piece-wise constant regions, which
is not the case for this image. A different image model, such
as one based on non-parametric density estimation, would
likely produce better results for this image. Any such curve
evolution can be incorporated into our framework; however,
this is left for future work. Also note that this example also
demonstrates a topological split of the contour, which is
needed to model the two separate objects. Finally, in (g)
and (h) we show an example segmentation of a blood vessel
from an angiography image. Starting with a small contour
in the center, the contour grows outward along the vessel
boundaries, providing an excellent segmentation result.

6. Conclusion
In this paper we presented a variational framework for

evolving radial basis functions for active contour image seg-
mentation. From an energy formulation, we derived differ-

ential equations for updating the RBF constraints so that
they deform an active contour to achieve the segmenta-
tion. From our derivation, we presented a simple way to
evolve all of the parameters associated with the RBF, in-
cluding the constraint centers, weights and anisotropy. The
RBFs are not constrained to the contour location and only
require minimal storage for evolution. We demonstrated the
method’s effectiveness by segmenting several images.

For future work we are interested in implementing the
method in 3D and comparing results obtained with differ-
ent radial basis functions as well as different functionals for
image segmentation. Furthermore, we believe the theory
underlying this paper will be useful in other applications,
such as filtering, tracking, and registration; we plan on in-
vestigating these topics in the future.
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