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Abstract

We describe a method for fully automatic object recog-
nition and segmentation using a set of reference images to
specify the appearance of each object. Our method uses
a generative model of image formation that takes into ac-
count occlusions, simple lighting changes, and object de-
formations. We take advantage of local features to identify,
locate, and extract multiple objects in the presence of large
viewpoint changes, nonrigid motions with large numbers of
degrees of freedom, occlusions, and clutter. We simulta-
neously compute an object-level segmentation and a dense
correspondence between the pixels of the appropriate refer-
ence images and the image to be segmented.

1. Introduction

We address the problem of explaining the pixels of a tar-
get image given a set of reference views specifying objects
of interest. Each of these objects may appear in the target
image among significant clutter, partially occluded, under
significant deformation, or not at all. In explaining the tar-
get image, we segment the pixels by reference object and
compute a dense correspondence between the target image
pixels and the pixels in the matching reference views.

Our formal problem statement is as follows (see Figure

1):

Given target image I to be explained and ref-
erence images I?; specifying the object appear-
ances, determine which object (if any) each pixel
in I belongs to, along with its corresponding lo-
cation in one of the reference images.

Our approach places this problem into a generative
model framework, where we assume that [ is generated by
transformations of the ; and a background model B. The
generative model also includes some other components, de-
tailed in Section 3. See Figure 2 for a simplified overview.
We solve for the segmentation and other model variables
by attempting to find the maximum likelihood model state,
which is equivalent to minimizing an energy function.
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Input

two reference images and a
target image to be explained

Output

a segmentation of the target image
along with a dense correspondence

Figure 1. Our system uses a set of reference images to explain the
pixels of a target image.

In the following section, we discuss related work. In Sec-
tion 3, we present the generative image model. In Section 4,
we describe our algorithm in detail. In Section 5, we show
some results and discuss the significance of our work.

2. Related Work

Boykov and Jolly [3] address the problem of segment-
ing a grayscale image into foreground and background with
limited user input. They use intensity histograms to model
the foreground and background appearance distributions,
and binary terms between neighboring pixels to enforce
spatial smoothness. In their work, the object appearance
is not specified in advance, but is dictated by user interac-
tion. Blake et al. [2] extend this model to color images and
produce an interactive matting application. Neither model
takes the spatial properties of the object or background into
account.

Kannan et al. [12] construct a generative model for im-
age formation in which an image is composed of multiple
transformed layers. Given only an input video, they decom-
pose it into layers and represent each frame as an occluded
set of layers, where each layer is transformed spatially and



in appearance. Though their approach does not require that
layer appearances are specified in advance, the transforma-
tion model they use is limited to translation plus a few pix-
els of local warping in order to make inference tractable. By
using local features for initialization, our model is capable
of handling a more extensive set of spatial transformations.

Kumar et al. [14] give an MRF-based generative model
for object class recognition and segmentation using picto-
rial structures ([8]). He er al. [11], Levin and Weiss [15],
and Winn and Shotton [22] all use conditional random fields
to detect and segment object classes in images. Their ap-
proaches, like ours, attempt to merge high-level information
(object appearance) with low-level information (smooth-
ness). As the challenges of object class detection are differ-
ent from those of object instance detection, their appearance
models differ from ours. Also, they require multiple pre-
segmented training images to learn the appearance models,
and do not model the appearance of the object class from
widely separate viewpoints.

Ferrari et al. [9] solve almost the same problem as we do,
but use a different approach. They begin with a set of fea-
ture matches for each object and explicitly expand and con-
tract that set, gradually exploring the image. Our approach
is to construct a generative model of image formation and
infer the values of the variables in our model. This involves
minimizing an energy function that corresponds to the like-
lihood of our model, iteratively updating the segmentation
and dense correspondence to object pixels. Many of the
dependencies and priors in our model capture effects that
Ferrari et al. achieve in a more procedural fashion.

3. Generative Image Model

We seek to explain the target image by a set of trans-
formed reference images and a background distribution.
Each pixel in the target image is generated by a transfor-
mation of a pixel in one of the reference images or by the
background distribution. An index mask indicates which
reference image (if any) generates each pixel in the target
image, and there are several model variables describing the
transformation. Instead of specifying the spatial transfor-
mation parametrically, we keep our approach general by us-
ing a smoothly varying non-parametric warp field.

Our model (Figure 3) uses the following components:

I - the image to be segmented

M - the index mask for image

R; - the j*I reference image

K; - the color transformation from I2; to [
S, - the spatial transformation from R; to [

®; - the pixel correspondence from I to R2;

spatial transformation S;

reference image R,

background model B image /

reference image R, R, transformed via S,

spatial transformation S,

Figure 2. An example of the image generation process. The target
image [ is generated by transforming the two reference images
Ry and R, and placing them over a background model. Not all
model components are shown, and the arrows in this figure do
not indicate model dependencies. The background model B is
represented as a mixture of Gaussians over RGBXY, depicted as
an image here.

V¥ - the confidence image for R;
>, - the transformation covariance (a 5-by-5 matrix)
B - the background model for image 1

We use the notation I(p) to refer to the 5-dimensional
RGBXY vector corresponding to pixel p in image /. To
refer to only the color of I(p), we use IRGE(p). To refer to
only the location of (p), we use IXY (p). M(p) = j means
that pixel p comes from reference image R;. M(p) = 0
means that pixel p comes from background model B.

I and the R; are RGB images. M is an image of in-
dices. K; is a function that transforms RESB(q). S; is
a function that transforms RXY (¢). ®; is a function from
p — q, where p is a pixel in I and ¢ is a pixel in R;. VU
is an image the size of I7; that indicates the probability that
each pixel (after transformation) is present in I. 3J; is a 5-
by-5 RGBXY covariance matrix over the pixels of I with
correspondences in [?;. B is a mixture of 5-dimensional
Gaussians over the pixels of I belonging to the background.

The image [ is conditionally distributed as follows:

P(I|M,R,K,S,®,%,B) =

1 PuwIB) | ~

p|M(p)=0

H P(I(p)|ij Kja Sj7 q>j7 EJ)
p|M(p)=j
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Figure 3. The model graph. [ is directly dependent on M, B, and
all R;, S;, Kj, ¥;, and ®;. ®; is directly dependent on W;. The
plate indicates that R;, S}, etc. are duplicated for each reference
image.

P(I(p)|B) is simply the density function for a mixture
of Gaussians. P(I(p)|R;, K;,S;,®;,%;) is a conditional
Gaussian density function over RGBXY, with color mean
defined by K;(R}SP(®;(p))), spatial mean defined by
S; (R?Y (®;(p))), and covariance matrix 3;.

The model therefore consists of two distributions, a
background distribution which is a mixture of Gaussians,
and a foreground distribution which is a single condi-
tional Gaussian whose mean at pixel p depends only on
Rr(p)(@arp) (p)), the corresponding pixel in reference im-
age M (p). Pixels that are explained well using R; are likely
to belong to the j*" object, and pixels that are not explained
well using any I2; are likely to belong to the background.

It still remains to define the transformations K; and 5.
K is a linear transformation on R?’GB, such that each color
channel is transformed to a linear combination of all three
channels plus a constant. Thus, K is represented by a 3-
by-3 matrix and a length 3 vector. S; is a smooth mapping
that transforms RXY into the space of I. How this map-
ping and the other components are computed and updated
will be discussed in the next section. We point out that S
and ®;, the pixel correspondences, are not exact inverses.
S, represents the spatial transformation from R; to I, on
which smoothness is enforced, but color matching is not en-
forced. ®; represents the pixel correspondences from I to
R;, which are chosen to best satisfy both S; and K, but on
which smoothness is computationally difficult to enforce.

In addition, the model graph contains a dependence of
®,; on ¥;. We use U, to represent the multinomial distribu-
tion from which ®;(p) is drawn:

P(®;(p) = q) = ¥;(q)

That is, the confidence image contains the probability that a

pixel ¢ in R; is the corresponding pixel to some p in I, in-
dependent of the pixel colors and locations. The confidence
image lets us represent which regions of the object in I2;
are likely to be present in 1.

When computing a segmentation and correspondence,
we attempt to maximize the joint density of all model vari-
ables. This is equivalent to minimizing the negative log
joint density, expressed as the following energy function:

E = Z
p|M(p)=0
+ Y (log P(M(p) = j) +log P(®;(p)|¥;)
J p|M(p)=j
+log P(I(p)|R;, K;, S}, ®;,%;))

+ > (log P(S;) +log P(¥;) +log P(%;))

(log P(M(p) = 0) + log P(I(p)|B))

We use the terms in the last row to enforce priors on some
of the model variables. Note that we have ignored P(R;),
as the reference images are observed, and we have left out
P(Kj), as we do not specify a prior over color transforma-
tions.

Though the edge is not drawn in the model graph, ®;
is also implicitly dependent on M, in that we are only ac-
cruing energy from log P(®,(p)|¥,) for pixels p where
M(p) = j. This is reasonable, as it makes little sense to
penalize a tentative correspondence between target image
pixel I(p) and reference image pixel R;(g) when I(p) is
not classified as belonging to the object in reference image
J.

We use the prior terms on all \S; and all ¥; to enforce
smoothness on these variables. We don’t enforce smooth-
ness on the pixel correspondences ®;, but by forcing the
spatial transformation S to be smooth, we encourage ®; to
be smooth as well. X; controls the scale of this effect. By
increasing the color variance or decreasing the spatial vari-
ance, we encourage each pixel p in I to choose its match ¢
in R; such that XY (p) is closer to S; (R?Y (¢)). The de-
tails of the smoothness functions we use are discussed in
Section 4.2.

4. Algorithm

The algorithm consists of two main phases, initialization
and iterative updates. In the iterative updates phase, each
variable is updated in turn until convergence is reached.
Each update causes the global energy to decrease. Since
the algorithm is not guaranteed to find the global energy
minimum, it is important that the initialization phase set the
variables such that a good solution is reachable.

4.1. Initialization

The initialization is done in several steps:



1. First, we compute multiple types of local features in /
and all Z;. We use two different affine invariant fea-
ture detectors: the Hessian-Affine detector [18] and the
MSER detector [17]. We use SIFT [16] as our feature
descriptor.

2. For each feature in I, we find the best match among the
R; using the Euclidean distance metric, using a ratio
test with threshold 0.8 to remove potential outliers.

3. For each reference image R, if at least 4 matches were
found in the image, use RANSAC [10] to robustly fit
a homography to these matches. Throw out all outlier
matches. Note that this may cause only a small re-
gion of the object to be initially detected. Initialize the
spatial transformation S; to be the resulting homogra-
phy. Initialize the pixel correspondence ®; using the
inverse of this transformation (rounding to integer pix-
els).

4. Initialize the segmentation using the inlier feature re-
gions. All pixels belonging to an inlier feature matched
with R; are given the value j in M. All other pixels
are assigned to the background.

5. Initialize the background model B by randomly as-
signing each background pixel to a Gaussian cluster,
and run several iterations of the EM algorithm for mix-
tures of Gaussians. We use 20 clusters in our test, and
run EM for 30 initialization iterations.

6. Initialize all K, all ¥;, and all X; using the ordi-
nary update method for these variables, discussed in
the next subsection.

To achieve greater efficiency, we compute the features
for the reference images beforehand and insert them into a
nearest neighbor data structure ([1]).

4.2. Iterative Updates

After all of the variables are initialized, we update them
in alternating fashion. Each variable is updated to minimize
(or at least decrease) the global energy function with respect
to that variable.

4.2.1 Updating the Segmentation

Without considering smoothness for the moment, we assign
M(p) =0if

P(M(p) = 0)P(I(p)|B)
is greater than

P(M(p) = j)P(I(p)|R), K;,Sj, ®;,%;)

for all j. Otherwise, we assign M (p) = j in order to maxi-
mize:

P(M(p) = j)P(I(p)|R;, K;, 55, ®;,%5)

This is equivalent to minimizing a unary error function
where:

—log P(M(p) = 0) +

—log P(I(p)|B M(p) =0
E(p) =

—log P(M(p) =j) +

—log P(I(p)|R;, Kj, S, ®;,%;) M(p) =j

To enforce the smoothness of M, we add a binary energy
term F(p, ¢) between each pixel p and all pixels ¢ in its 4-
neighborhood N (p). We use the same ad-hoc function used
by Blake et al. [2]:

0 M(p) = M(q)
—(1RGB(p) - IRGB (g))*
M(p) # M(q)

e 7
Note that this violates our model structure somewhat, as the
smoothness terms are dependent on the pixel values in I.
Most previous MRF approaches to segmentation, including
Blake et al. [2], contain the same violation.

When an object has multiple reference views, we set
E(p,q) = 0if M(p) # M(q) but Ry(,) and Ry (q) are
two views of the same object. We use v = 50 and we set 5
to % of the mean squared color distance between neighbor-
ing pixels. This smoothness function encourages adjacent
pixels with similar colors to be classified as belonging to
the same object.

This type of binary energy function can be approxi-
mately minimized by a multiway graph cut algorithm as
discussed in Boykov and Kolmogorov [4]. In our case, this
is only one step in a larger energy minimization problem,
so we only need to improve the current segmentation rather
than find an optimal one. Therefore, we perform one a-
expansion step per index j instead of iterating until conver-
gence.

After updating the segmentation M, we also update
the class probabilities P(M) using pixel counts. We set
P(M(p) = j) to the number of pixels classified as belong-
ing to object j divided by the total number of pixels.

E(p,q) :{

4.2.2 Updating the Pixel Correspondences

Each set of pixel correspondences ®; (between I and I?;)
is updated by matching each pixel p in I with its nearest
neighbor in R; (transformed by K; and S;) under the Ma-
halanobis distance defined by ', Each pixel in R; also
has a constant penalty associated with it determined by ¥ ;.
The match error we seek to minimize is:

log P(®;(p)|¥;) + log P(I(p)|R;, Kj, S;, ®;,%;))



We set ®;(p) = ¢ to minimize the above quantity. The
best match for each pixel can be quickly computed with a
nearest neighbor data structure ([1]).

4.2.3 Updating the Color Transformations

To update K;, we solve a system of linear equations us-
ing the pixels p for which M(p) = j, along with @, in
R;. Each pixel contributes 3 equations, and there are 12 un-
knowns, the 3-by-3 transformation matrix and the length 3
offset vector. The color transformation that minimizes the
global energy can be recovered using least squares.

For our results, we restrict the 3-by-3 transformation ma-
trix to be diagonal, effectively treating each color channel
separately.

4.2.4 Updating the Spatial Transformations

We represent the spatial transformation S; as an image of
displacements the size of R;. That is, we store S; (R} (q))
for all ¢ in R;. In a slight abuse of notation, let S;[q] be
the displacement for pixel q. The warp we choose is con-
strained in two ways:

1. The warp should transform RfY(é(p)) to I*Y (p), or
close to it.

2. The warp should be smooth.

We set up a system of linear equations to encourage our
warp to have these properties. To encourage the first prop-
erty, for each pixel p where M (p) = j we use the equations:

S;[®(p)] = I (p)

For the second property, we use equations that penalize lo-
cal neighborhoods where the transformation is not affine.
For each triple of horizontally or vertically consecutive pix-
els q1g2qs, we use the equations (where € weights smooth-
ness relative to accuracy):

€ (Sjlq] — 25;(g2] + Sjlgs]) = 0

For each square block of four pixels q}qz , we use the

equations:
€ (Sjla] — Sjlae] + Sjlgs] = Sjlaa]) = 0

These equations encourage the spatial transformation to be
locally affine. We solve the resulting large sparse system of
equations using least squares.

4.2.5 Updating the Transformation Covariances

The transformation covariance X; is updated easily, by
computing the sample covariance of the I(p) for p with
M (p) = j and mean specified by R;, K, S;, and ®;.

We also place a Wishart prior on J;, to prevent it from
growing too large. This is the conjugate prior for the co-
variance matrix of a Gaussian distribution. Without this
prior, pixels in /I may not be sufficiently penalized for be-
ing matched to pixels in R; that are far away or not close in
color.

4.2.6 Updating the Background Distribution

As the background distribution B is a mixture of Gaussians,
we can perform a few steps of the EM algorithm for mix-
tures of Gaussians, using pixels p in I for which M (p) = 0.

4.2.7 Updating the Confidence Images

The confidence image VU is updated using ®; and M. For
each pixel ¢ in I2;, we count the number of pixels p in I for
which M (p) = j and ®;(p) = ¢, and normalize by the total
number of pixels p in I for which M (p) = j.

Unfortunately, this prevents any new regions of the ob-
ject from being discovered, since if no pixel p in I corre-
sponds to some pixel ¢ in R;, then no pixel in I can ever
correspond to g. However, we would like to restrict matches
to lie near regions that have already been discovered. In or-
der to do this, we convolve the confidence image ¥; with
a Gaussian after counting correspondences and before nor-
malizing.

5. Results and Conclusions

We tested our method on the data set courtesy of Fer-
rari et al. [9]. The data set consists of 40 reference images
covering 9 objects (Figure 4), and 22 test images containing
different subsets of the objects.

After computing local features, we resize each image and
reference view to one megapixel for efficiency purposes.
We run our algorithm until the segmentation remains un-
changed after an iteration. This can take anywhere from 5
to 30 iterations, depending on the initial feature coverage.

We show the segmentation extracted by our algorithm
for several of these test images (Figure 5). The segmenta-
tion achieved is very good in most cases. Images (al), (a2),
and (a3) show simpler objects for which our segmentation
is nearly perfect. Note the accurate occlusion boundary be-
tween the two magazines in (a3). A specular highlight was
classified as background in (al), as our color model doesn’t
handle such effects. Images (bl), (b3), and (c2) show more
difficult occlusions that our algorithm still handles pretty
well. Image (b2) shows our result on a scene with eight ob-
jects and multiple occlusions. Images (c1) and (c3) show
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Figure 4. The 9 reference objects. Some objects used up to 7 additional reference images other than the one shown.

Figure 6. The segmentation computed by our algorithm after ini-
tialization (al), several iterations (a2), and convergence (bl), and
and the segmentation given by Ferrari ef al. [9] (b2).

non-rigid transformations. In both cases, our algorithm is
able to cope with the non-rigidity, though our global color
model is unable to handle regions in shadow. One potential
improvement to our model is to change the color representa-
tion to include local filter responses that are more robust to
lighting changes, or to use a different color transformation
model.

In Figure 6 we show the progress of our algorithm after
initialization (al), several iterations (a2), and convergence
(bl). Image (b2) shows the segmentation given by Ferrari et
al. [9]. Using graph cuts with a smoothness term at the pixel
level helps us achieve smooth segmentation boundaries.

In this paper, we have presented a generative model for
image formation based on a set of reference views, along
with an algorithm that uses this model to compute a seg-
mentation and dense correspondences in an unsupervised
fashion. By explicitly representing and solving for multiple

components of the image generation process, we are able
to achieve competitive segmentation results on difficult im-
ages while placing the problem on a sound footing.
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