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Abstract 
Energy-minimizing active contour models (snakes) have 

been proposed for solving many computer vision problems 
such as object segmentation, surface reconstruction, and 
object tracking. Dynamic programming which allows 
natural enforcement of constraints is an effective method 
for computing the global minima of energy functions. 
However, this method is only limited to snake problems 
with one dimensional (1D) topology (i.e., a contour) and 
cannot handle problems with two-dimensional (2D) 
topology. In this paper, we have extended the dynamic 
programming method to address the snake problems with 
2D topology using a novel graph reduction algorithm. 
Given a 2D snake with first order energy terms, a set of 
reduction operations are defined and used to simplify the 
graph of the 2D snake into one single vertex while 
retaining the minimal energy of the snake. The proposed 
algorithm has a polynomial-time complexity bound and 
the optimality of the solution for a reducible 2D snake is 
guaranteed. However, not all types of 2D snakes can be 
reduced into one single vertex using the proposed 
algorithm. The reduction of general planar snakes is an 
NP-Complete problem.  The proposed method has been 
applied to optimize 2D building topology extracted from 
airborne LIDAR data to examine the effectiveness of the 
algorithm. The results demonstrate that the proposed 
approach successfully found the global optima for over 
98% of building topology in a polynomial time. 
 

1. Introduction 
Significant research effort has been placed on 

developing deformable models to determine a surface or a 
contour having optimal properties in the past decade [1]. 
Applications of deformable models include medical image 
analysis, geometric modeling, and tracking of non-rigid 
objects. The deformable models which are also called 
“snakes” or active contours were first introduced by Kass 
et al. in 1988 [2]. Snakes usually start with an initial one 
dimensional (1D) contour, two dimensional (2D) surface, 
or even three dimensional (3D) volume [3-5] close to a 
target model, and then gradually deform contour/surface 
while minimizing energy functions so that the resulting 
contour/surface best matches the target boundary/topology 
of the object [4, 6]. The solution to the snake problem 
often involves the derivation of an energy function and 
minimization of the energy function.  

Dynamic programming is an optimization approach 
which finds global minima by analyzing a collection of 
admissible solutions. In dynamic programming, 
constraints are often placed on the set of allowable 
solutions, thus reducing the computational complexity. 
For example, in the case of 1D active contours, the set of 
admissible solutions are in fact the set of all allowed 
curves that connect the start point with the end point. 
Unlike the variational method, dynamic programming can 
be directly applied to the discrete grid without 
approximations. Amini et al. [7] devised a time-delayed 
discrete dynamic programming algorithm to minimize the 
energy for 1D active contours.  The discretization of the 
contour energy E(C) is represented by E(C)=E1(v1, v2)+ 
E2(v2, v3)+…+ En-1(vn-1, vn), where C={v1, …, vn}. Each 
contour point vi is allowed to only take on m possible 
values. Instead of using exhaustive enumeration to find the 
minimum of E(C), a discrete dynamic programming 
method computes the global minimum in an efficient way. 
However, the dynamic programming method is inherently 
restricted to problems with 1D topology such as a contour 
[1, 7, 9]. The dynamic programming method outlined for 
1D topology cannot be directly extended to the bipartite 
case [8]. The 2D snake problems, such as the 
reconstruction of surfaces cannot be solved efficiently by 
existing dynamic programming methods. 

This paper presents an algorithm to minimize the energy 
function associated with 2D snakes which represent 2D 
surfaces with connected deformable graphs controlled by 
vertices and edges. The first objective of the paper is to 
develop the algorithm including a set of graph operations 
which is capable of reducing certain types of planar snakes 
to single vertices. The second objective is to apply the 
proposed method to refining building topology extracted 
from airborne light detection and ranging (LIDAR) 
measurements to examine the effectiveness of the 
algorithm. 

The paper is organized as follows: Section 2 describes 
the proposed approach by first giving a formal definition 
of the 2D snake problem and analyzing the discretized 
form of the energy function, then describing the details of 
the proposed graph reduction algorithm, and finally 
proving the polynomial time complexity of the algorithm. 
Section 3 presents the experimental results of applying the 
proposed algorithm to refining building topology from 
LIDAR measurements, and Section 4 concludes the paper. 
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2. The Proposed Graph Reduction Approach 
for 2D Snakes 

The snake-based method to detect a complex graph 
structure (topology) involves minimizing the energy of a 
deformable topology. In this section, a domain-specific 
energy function whose minimum represents the target 
topology is constructed first.  Then, the energy function is 
gradually minimized starting with an approximate 
topology which is usually obtained by low level image 
processing and pattern recognition operations. Finally, the 
topology corresponding to the minimum of the energy 
function is derived to represent the target topology.  The 
core of this procedure is to develop an efficient algorithm 
for graph energy minimization. We present a graph 
reduction algorithm in the following subsections which is 
able to find global minima for certain 2D snakes. 

 

2.1. The Search Constraint and the Cost Function 
We represent the deformable topology (2D snake) with a 

weighted graph G=(V, E). Each vertex v is associated with 
an uncertainty list ULv= {sv

m = (xm, ym) | m=1, 2… |ULv|}, 
which is a list of points whose distance to this vertex is 
less than a pre-specified distance d. The number of points 
in the uncertainty list represents the number of possible 
states of the vertex v.  For each state sv of v (sv∈ULv), there 
is a corresponding energy value, denoted by EV(v, sv). 
Correspondingly, for an edge e= (v, w) connecting two 
vertices v and w, there are |ULv|×|ULw| allowable states and 
each state is associated with a energy value, EE(e=(v, w), 
sv, sw), sv∈ULv and sw∈ULw. For example, if v and w each 
has 3 possible states, the total number of states of the edge 
connecting these two vertices is 9. Note that the energy of 
an edge only depends upon the two vertices to which the 
edge is connected.  Assuming that a list S = {(s1, s2, …, sk, 
…, s|V|), sk∈ULk} represents a state of all vertices in G, we 
define the cost (energy) for the deformable topologies as a 
sum of cost for each vertex and edge in G which is given 
by 
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The formation of the energy functions EV and EE 
depends upon the application need. Minimizing the total 
cost (energy) generates the optimal topology that best fits 
the given object. Without loss of generality, we assume 
that there is only one minimum for EG and the 
corresponding state of all vertices in G is unique.  

 

2.2. A Graph Reduction Based Implementation 
Let us consider the problem of finding the optimal 

topology that has the same graph structure as the given 
initial topology and fits best the target topology. The 
corresponding energy minimization is denoted 

by )(min GEG
S

, where S is a state list for all vertices in 

G. A brute force implementation of finding the minimum 
will try all possible combinations of state lists for vertices 
and edges, which involves ∏

∈Vv
vUL ||  steps, making the 

time complexity exponential. It can be proven that the 
general 2D snake problem is NP-Complete, which means 
no algorithm can resolve general 2D snake problems in 
polynomial time.  However, it is still possible to resolve a 
special subset of 2D problems in polynomial time. This is 
similar to the case of 3SAT (Boolean satisfiability 
problem) in which 3SAT is NP-complete, but its subset 
2SAT is not NP-complete [11].  In this section, a method 
is proposed to derive the global minimization by 
progressively simplifying the graph using the following 
four graph reduction operations.  
 

2.2.1 Type I operation 
Given a vertex C which connects to two other vertices A 

and B via edges E1 and E2 (i.e., the degree of C is two) as 
shown in Figure 1, the vertex C and the two edges E1 and 
E2 can be reduced to a new edge E3 that connects A and B. 
The energy of the new edge E3 is determined by the 
energies of the removed vertex C and the edges E1 and E2 

by the following equation: 
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Equation (2) indicates that the energy of E3, given a pair 
of states sA and sB for the vertices A and B, is determined 
by the minimum sum of energies of E1 and E2 and C. The 
state sC of C that minimizes Equation (2), for a given pair 
of sA and sB, is recorded in a State Retrieval Table as 
shown in Figure 1(c) after a Type I operation is 
performed. For example, the first row in Figure 1(c) 
indicates that the energy EE in Equation (2) reaches its 
minimum when sC equals 3, given sA=1 and sB=1. 
 

 
Figure 1: A Type I operation and its associated state retrieval 

table. 
 
It can be proven that the reduced graph G’ has the same 

minimal energy as that of G after a type I reduction 
operation is applied. The proof is omitted because of page 
limitation. This conclusion is also true for all reduction 
operations introduced in this section.  
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2.2.2 Type II operation 
A Type II atomic graph reduction operation is shown in 

Figure 2. Given a pair of vertices A and C, if there is more 
than one edge connecting these two vertices in G, those 
edges can be reduced to one single edge between A and C. 
The energy of the new edge is the sum of the energies of 
all edges between A and C, as given in Equation (3). For 
this operation, there is no need to keep a state retrieval 
table because the energy of the new edge E3 is determined 
solely by the vertices A and C. No other vertex is involved 
in this operation. 
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Where k is the total number of edges that connect A and 
C, and k is equal to 2 for the example in Figure 2. 
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Figure 2: Type II operation. 

 

2.2.3 Type III operation 
A Type III atomic graph reduction operation is 

illustrated in Figure 3 where the vertex C connects to one 
single vertex (A) via one edge only (i.e., the degree of C is 
one). In this case, the vertex C and the edge E1 which 
connects C to A can be reduced to A. After reduction, the 
energy of A is updated as follows: 
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By Equation (4), the minimum sum of energies of C and 
E1, for each state of A (sA), will be added to the old EV(A, 
sA). Similar to the situation in Type I operation, the sC that 
minimizes the sum of the energies of C and E1, will be 
recorded in the State Retrieval Table in Figure 3(c). As 
the states of C and E1 in the global minimization are only 
dependent on the state of A, if sA belongs to the list S = 
{(s1, s2, …, sk, …, s|V|), sk∈ULk} that minimizes the total 
energy of G, sC must also in S. Therefore, the minimization 
of the total energy EG(G) can be reduced to minimizing 
the total energy of the reduced graph G’(V’, E’), where 
V’=V-C and E’=E-E1. 

 

 
Figure 3: A Type III operation and its associated retrieval table. 

 

By applying the above three atomic graph reduction 
operations recursively, graphs with simple structures can 
be reduced to one single vertex FG, and the minimum 

energy of the original graph min{EG(G)} becomes 
)},({min

G
GFGF

FULs
sFEV

∈
. In the traditional 1D snake problem, 

the original graph is an opened polygon as shown in 
Figure 4. We can recursively apply the Type III operation 
to remove the leftmost vertex. Denote n = |V| and m = 
|UL|. After n-1 operations, the original graph can be 
reduced to a single vertex. For each removed vertex, the 
state retrieval table has m entries and the complexity is (n-
1)×m. In addition, to determine an entry in the state 
retrieval table, m calculations are needed. Thus, the total 
time complexity is (n-1)×m2, which is the same as reported 
in [7]. 

 
 

 
Figure 4: The topological graph G for a classical active contour 

problem. 
 

However, in many cases, the given graph G cannot be 
reduced to one single vertex by just applying the above 
three atomic operations. For those cases, we proposed 
type IV operation which is described below. 
 
2.2.4 Type IV operation 

For a given pair of vertices A and C, as shown in Figure 
5(a), we first find a connected subgraph GAC = (VGAC

, EGAC
) in 

G, which only connects to the vertices A and C, but not to 
any other vertex in G. For example, the subgraph in an 
oval in Figure 5(a) is such a connected subgraph between 
A and C. Then the three atomic reduction operations 
(Types I, II, and III) are applied to subgraph GAC. If GAC 
can be reduced to a single vertex (e.g., the vertex E in 
Figure 5(c)), a Type IV operation will be applied to 
replace GAC with a new edge connecting A and C directly 
(e.g., the edge EAC in Figure 5(d)). 

 

 
sA sC sB sD sE 
1 1 3 2 1 
1 2 1 3 4 
… … … … … 
2 1 2 3 1 
… … … … … 
n n 1 2 4 

(e) 
Figure 5: A Type IV operation and its associated retrieval table. 

 
The minimum energy of GAC, as a portion of the 

minimum energy of the whole graph G, is not only 
determined by the vertices and edges of GAC, but also by 
the pair of sA and sC. In a Type IV operation, the energy of 
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each edge that connects A or C to the subgraph GAC is 
added to that of the connecting vertex in GAC. In the 
example shown in Figure 5(b), EBC, EDC, EEA, and EBA are 
such edges connecting the subgraph with A and C. Given 
a pair of states (sA, sC) for A and C, for each vertex v which 
belongs to the subgraph and connects to A and/or C, we 
change its energy into 
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Let FGAC
 be the single vertex reduced from GAC by Types I 

to III atomic operations for a given pair of states (sA, sC) 
for A and C. The minimum energy of FGAC

 is the same as 
that of GAC, which is transferred to the energy of the new 
edge EAC as follows:  

 

),(min),),,(( , ACGAC
ACGFACGF
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The state list of vertices in GAC that minimizes the 
energy of GAC, given (sA, sC) for A and C, is denoted by SGAC

 
and shown in the table of Figure 5(e). After applying the 
type IV operation to G, the problem of minimizing EG(G) 
can be reduced to the minimization of EG(G’) where G’ is 
the reduced graph. 

 

2.3. Finding A Reducible Connected Subgraph 
Before a Type IV operation can be performed, a 

reducible connected subgraph GAC must be found. We have 
developed the following algorithm which can find such a 
subgaph for a Type IV operation. 
1) Set scope to 1.  Initialize a set Sij as empty for each pair 

of vertices Vji ∈, (V is the set of vertices of G.) 
2) For each pair of vertices i and j 

• If(scope = = 1) 
o Add the set of vertices directly connected to 

vertices i and j to Sij. 
Else 
o Find the vertices directly connected to vertices in 

Sij and add them into set Sij except for i and j. 
• Partition Sij into subsets which form connected 

subgraph and examine whether any subgraph 
connects only to vertices i and j. If such a connected 
subgraph is found and can be reduced to a single 
vertex by the three atomic operations, the subgraph 
is returned and the program terminates. Otherwise, 
continue checking the next pair of vertices.  

3) If all Sij==V-{i,j}, then the program terminates. 
Otherwise,   Increase scope by 1 and go to 2). 

 
This algorithm gradually expands the search scope, 
starting with the vertices directly connected to i and j. If a 
reducible connected subgraph cannot be found, it adds to 
Sij the vertices with indirect connections to i and j, and 
stops whenever a reducible subgraph is found. The 
advantage of this progressive algorithm is its efficiency – 

we start with the smallest search scope and expand it only 
when it is needed. In many cases, we can find the 
connected subgraph by searching only the direct neighbors 
of i and j. However, for i=1 and j=2 in Figure 6, we need 
to search those vertices indirectly connected to i and j in 
order to find G12. In this example, S12 = {3, 4, 7, 8, 9, 10, 
13, 14} after Step 1) and will be partitioned into S1 = {3, 
4}, S2 = {7, 8}, S3 = {9, 10}, and S4 = {13, 14} at Step 2). 
Since S1, S2, S3, S4 connect to vertices other than i=1 and 
j=2, the algorithm will continue searching other pairs of 
vertices.  Because no connected graphs for any pair of 
vertices can be found when scope ==1, the program 
increase scope by 1 and go back to step 2), where S12 is 
expanded to the set {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}. 
Then S12 is partitioned into S1 = {3, 4, 5, 6, 7, 8} and 
S2={9, 10, 11, 12, 13, 14}. Either S1 or S2 can be returned as 
a reducible connected subgraph for i=1 and j=2 because 
they connect to 1 and 2 only and can be reduced to a 
single vertex by Type I-III operations. 

 
 

 
Figure 6: Another example of graph reduction. 

 

2.4. The Algorithm of Graph Reduction 
With Type I-IV operations and the algorithm for finding 

connected subgraphs, we have developed the following 
algorithm to reduce a graph G and derive the state list S = 
{(s1, s2, …, sk, …, s|V|), sk∈ULk} that minimizes the total 
energy of G. 

 
Step 1: Reduce the graph by Types I to III operations 

Without loss of generality, we scan the vertices in their 
numerical order, starting from vertex 1.  First, each vertex 
in the current graph G is checked to see whether any of the 
three atomic reduction operations can be applied to that 
vertex. Then proper atomic reduction operations are 
applied to qualified vertices to reduce the current graph G. 
These operations are recorded in an array 
AppliedOperations. If the current graph G can be 
reduced to a single vertex FG, the procedure goes to Step 3 
and constructs the state retrieval table. Otherwise, it goes 
to Step 2 to further reduce the graph by Type IV 
operations. 
 
Step 2: Reduce the graph by Type IV operations 

At this step, attempts are made to find one reducible 
connected subgraph Gij by using the algorithm introduced 
in Section 2.3. If one is found, a Type IV operation will be 
performed to reduce the graph. The information related to 
this operation will be recorded and added to 
AppliedOperations. Then the procedure goes back to 
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Step 1 to reduce the current G by the three atomic 
operations again. If no reducible subgraphs can be found, 
the program will exit and report a message “This graph is 
irreducible.” 
 
Step 3: Construct the state retrieval table 

Scan the operations recorded in array 
AppliedOperations from its start and apply each 
reduction operation to G as follows.  

For each Type I/II/III atomic operation, the energy of 
edges and/or vertices involved will be updated according 
to Equations (2)-(4). The state retrieval table for each 
operation is constructed as well.  

For each Type IV operation, we store the atomic 
operations used to reduce the subgraph Gij into a 
temporary array. Given each pair of si and sj, the energy of 
internal vertices in Gij will be first updated according to 
Equation (5). Then we scan the atomic operations in the 
temporary array from the start forward, and update the 
energy of edges and/or vertices involved in each operation 
and construct the state retrieval table if applicable. After 
all the operations in the temporary array are performed, go 
to Step 4 to calculate the minimum energy of the subgraph 
Gij and retrieve the state list minimizing the energy of Gij. 
This state list, together with si and sj, are stored as one row 
in the state retrieval table for that Type IV operation. 

After all the operations in the array AppliedOperations 
are performed, go to Step 4 to calculate the minimum 
energy of G and retrieve the state list that minimizes the 
energy of G.  
 
Step 4: Determine the minimum energy and the state list 
minimizing the energy of graph G or a subgraph Gij 

For a subgraph Gij, we first determine the minimum 
energy of the vertex FGij

 reduced from Gij and the 
corresponding state that minimizes the energy of FGij

. 
Then, the corresponding states of other vertices in Gij are 
retrieved by scanning the temporary array backward from 
the end which contains all the reduction operations 
associated with Gij. For each atomic operation, its state 
retrieval table is looked up and the states of the 
participating vertices can be determined in a retrospective 
way. The state list that minimizes the energy of Gij is 
returned and the procedure goes back to Step 3.  

For a graph G, we first determine the minimum energy 
of the single vertex FG reduced from G and the 

corresponding state 
GFs  that minimizes the energy of FG. 

Then the corresponding states of all the other vertices are 
retrieved by scanning the array AppliedOperations from 
its end. For each reduction operation, its state retrieval 
table is looked up and the states of the participating 
vertices can be determined in a retrospective way. Finally, 
the minimum energy value together with the state list and 
the AppliedOperations are returned as the result and the 
program stops. 

2.5. Complexity Analysis  
Let n = |V| and m’ = |E|. In Step 1, each vertex is checked 

to see if any atomic reduction operation (Type I/II/III 
operation) can be applied to it. After each atomic 
reduction operation, the graph shrinks by at least one 
vertex (operations I & III) or one edge (operation I & II).  
In Step 2, C(n, 2) pairs of i and j may be  searched to find 
subgraph for type IV reduction operation in the worst 
situation.  The reduced graph can also be proven to shrink 
by at least one vertex or one edge.  Therefore, with at most 
(n+m’) times of reduction operations, the given (reducible) 
graph can be reduced to one single vertex.  Since each 
operation costs polynomial time, the whole algorithm also 
takes polynomial time to complete.  

3. Experiment 
The proposed algorithm has been applied to refining 

building topology from airborne LIDAR measurements to 
examine its effectiveness. The LIDAR technology 
provides an effective way to derive 2D footprints and 3D 
shapes of buildings by measuring building elevation 
directly [10].  The test data site is located at the university 
campus, covering 6 km2 of low relief topography. The 
LIDAR data for building extraction with an average point 
spacing about 1 m were collected in August 2003.  The 
buildings in the test site include residential houses, 
commercial buildings, and institutional buildings.  

A building topology is represented by a set of connected 
roof plane surfaces (polygons) projected onto a 2D space, 
which matches our proposed “2D snake” very well. Initial 
footprints and internal topology of buildings are extracted 
from LIDAR measurements through a plane-fitting 
technique and regional growing algorithm. The boundaries 
(edges) between different roof planes are noisy, and the 
positions of critical corner vertices could not be located 
correctly in the initial footprints due to the influence of 
irregularly spaced point LIDAR measurements. The 
process for refining building topology involves adjusting 
the initial topology by changing the admissible states of 
vertices through minimizing a defined energy function. 
The allowable states of vertices are determined by the 
spatial resolution and errors of LIDAR measurements.  
Therefore, the refinement of building topologies from 
LIDAR measurements provides an excellent case to test 
the proposed algorithm. 

The energy function for building topology refinement 
can be defined in any format as long as it does not violate 
the search constraints in Section 2.1. The energy function 
for this test depends upon the length of an edge and the 
angle between the edge and the dominant building 
direction. The detailed discussion about the energy 
function is beyond the scope of this paper since the 
purpose of the experiment is to investigate the 
effectiveness of the proposed graph reduction algorithm.  
The focus of the experiment is to examine whether 
connected building topology can be reduced by the 
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algorithm. The percentage of building topologies that are 
successfully reduced by the algorithm is used to measure 
the effectiveness of the algorithm. A successful reduction 
of a building topology means that the raw topology of that 
building can be reduced into a single vertex using the 
proposed algorithm. 

One data set including 67 institutional buildings in the 
university campus and another data set including 211 
residential and commercial buildings next to the university 
campus have been used to test the algorithm. Our test 
results indicates that 210 buildings from the data set next 
to the university campus and 66 buildings from the data 
set at the university campus can be successfully reduced 
by the proposed algorithm. The reduction rate is over 98% 
in both cases. The algorithm is capable of reducing the 
topology of a building with a complicated shape. For 
example, the topology of a building in the university 
campus with a total of 46 vertices and 67 edges (Figure 
7(a)) is successfully refined (Figure 7(b)) by the graph 
proposed reduction algorithm. In addition, during the 
graph reduction, the connected subgraphs for almost all 
buildings (209 of 210) are identified by only searching 
direct neighbors of vertex pairs using the algorithm in 
Section 2.3. This expedites the process of graph reduction. 
In our experiment, each vertex is allowed to move in a 
5×5 window centered at the vertex, thus each vertex has 
25 possible states. It took about 2 and 3 minutes for a PC 
with a 2.8 GHz processor and 2 GB RAM to complete the 
entire reduction process for the dataset for university 
campus and the dataset next to university campus, 
respectively. 

 

(a) (b)  
Figure 7: The raw (a) and the refined (b) topology of a 
complicated building at the university campus.  
 

4. Conclusion 
Discrete dynamic programming has been widely used to 

resolve snake problems. However, it is limited to snake 
problems with 1D topology and cannot handle 2D snake 
problems. In this research, we have demonstrated that a 
subset of 2D snake problems can be resolved in 
polynomial time. The topology of such a 2D snake 
problem can be reduced to a single vertex by applying the 
set of proposed graph reduction operations. The proposed 
algorithm was applied to refining 2D building topology 
extracted from airborne LIDAR data. Various topologies 
for institutional, commercial, and residential buildings 
have been used in the experiment. Over 98% of building 

topologies have been successfully reduced and their global 
optima have been found in polynomial time.  

For those irreducible 2D snake problems, the domain–
specific knowledge could be used to derive the 
approximate optimal solutions. For example, we can 
remove the least important edges in a 2D snake gradually 
till the remained graph is reducible.  The minimum energy 
of the remained reducible graph plus the energies of those 
removed edges should be close to the global minimum 
energy of the original graph. This remains as our most 
immediate goal for future work. 
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