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Abstract

Groupwise shape registration of raw edge sequence is
addressed. Automatically extracted edge maps are treated
as noised input shape of the deformable object and their
registration are considered, results can be used to build
statistical shape models without laborious manual labeling
process. Dealing with raw edges poses several challenges,
to fight against them a novel spatio-temporal generative
model is proposed which joints shape registration and tra-
jectory tracking. Mean shape, consistent correspondences
among edge sequence and associated non-rigid transforma-
tions are jointly inferred under EM framework. Our algo-
rithm is tested on real video sequences of a dancing bal-
lerina, talking face, and walking person. Results achieved
are interesting, promising, and prove the robustness of our
method. Potential applications can be found in statistical
shape analysis, action recognition, object tracking, etc.

1. Introduction

Statistical models of shape have proved powerful tools
for various tasks [1][2], such as segmentation, recognition,
and tracking, where they provide a priori shape informa-
tion of the deformable object. To construct such models,
correspondences among all shapes over a set of training im-
ages are required. In order to meet this requirement two
typical ways are investigated in the literature: use a set of
manually defined landmarks or perform shape registration.
Since manual or semiautomatic landmark labeling is time
consuming, automatic ways were explored, e.g. [3] placed
landmarks via locating and tracking salient features from
image sequences. Nevertheless for objects like human body
or human hand, it is difficult to find sufficient landmarks au-
tomatically. The second way deals with the unknown cor-
respondence of training shapes and considers their regis-
tration in pairwise/groupwise [7]-[17] (details are covered
in section 2). However pre-segmented shapes are still re-
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Figure 1. Input examples and achieved results. (a)-(c): raw edge
maps of a talking face, (d): learned mean shape, (e)-(h): face
images superimposed with obtained correspondence points; (i)-
(k): raw edge maps of a ballet sequence along with estimated de-
formation field, (l): learned mean shape.

quired for practical model building and usually it is again a
time-consuming manual process.

Our interest is to design an automatic way to construct
statistical shape models. We consider the case that builds
the model from a training video sequence. To avoid man-
ual labeling process, an edge sequence is first extracted by
applying edge detection at each frame, and then treated di-
rectly as the noised input shape of the deformable object.
The problem addressed in this paper therefore is the group-
wise shape registration of this raw edge sequence. Figure
1 demonstrates input examples and achieved results. In our
work mean shape (represented by a point set), correspon-
dences and associated non-rigid transformations are jointly
estimated from the raw edge maps. Subsequently, these re-
sults can be used to build the statistical shape model of the
deformable object, and they are also useful in action recog-
nition, object tracking, etc.

Based on our results, a shape model (at edge level) in-
between sparse (feature) level and dense (pixel) level can
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be built. Either the estimated transformation parameters can
be applied to model the deformation fields, or the obtained
correspondence points can be used to learn a Point Distrib-
ution Model (PDM). Our outcome can also give a sufficient
initialization for image based registration. Moreover when
there is a significant non-rigid deformation (like in ballet se-
quence), we can still automatically learn a meaningful mean
shape shared by the cluttered edges, thus enriching related
applications.

For action recognition, the estimated transformation pa-
rameters or correspondence points can be good features to
characterize the action, e.g. both can be used to analyze the
function space of activities [6] and correspondence points
can help in building the action sketch in [5].

For object tracking, we can automatically learn a shape
representation of the non-rigid object from raw edge maps
and this representation further can be used to learn the shape
space of the object [2]. Moreover, our method can even
serve as an offline shape tracker without need of a priori
shape model. For instance, in CAVIAR database [4], by
applying edge detection inside the labeled boxes of moving
people in the recorded video clips, our method can be used
to track the shape of human body and the database can be
re-annotated with detailed shape information automatically.

However, the problem addressed is quite challenging due
to the following tangled difficulties: unknown correspon-
dence, non-rigid deformation, massive loss of data due to
occlusions and edge drop-outs, ambiguity and outliers in
cluttered edges (e.g. stray edges), etc. Under these severe
conditions, it is a tough ask to register raw edge maps and to
learn a meaningful mean shape from them. Fighting against
these challenges, we introduce the view point of trajectory
tracking into shape registration and joint them via a novel
spatio-temporal generative model: mixture of transformed
continuous-state HMMs (MoTcHMMs). Spatial and tem-
poral constraints are considered in MoTcHMMs to regular-
ize the registration process of raw edge sequence.

To encode the temporal information, the whole input
edge sequence is viewed as a spatio-temporal volume and
characterized by a mixture of trajectories, thus leading
to trajectory tracking sub-problem. Each continuous-state
HMM (c-HMM) in MoTcHMMs corresponds to a trajec-
tory. To ensure consistent spatial relationships of the tra-
jectories among frames, a mean shape (i.e. a common spa-
tial structure) is associated with them and mapped to the
states of c-HMMs at each frame through a smooth transfor-
mation function; this leads to groupwise shape registration
sub-problem. Joint inference for these two sub-problems
is carried out under EM framework and analytic Viterbi al-
gorithm is derived for trajectory optimization. Resultantly,
mean shape, consistent correspondences among complete
edge sequence and associated non-rigid transformations are
jointly estimated.

The paper is organized as follows; related work is dis-
cussed in section 2. Problem formulation is given in sec-
tion 3; section 4 explains inference of the model along with
complete algorithm. Section 5 discusses outlier and miss-
ing data handling. Test results on different data sets are
presented in section 6. Finally, conclusion and future work
is elaborated.

2. Related Work
Shape registration works under unknown correspon-

dence are briefly reviewed here with special emphasis on
the aspects of raw edge data handling.

Parameterization is employed in shape modeling works
to deal with unknown correspondence e.g. in [7], corre-
spondence problem is posed as finding the set of parame-
terizations for each shape that builds the best model, and
an objective function is defined based on minimum descrip-
tion length criterion in a rigorous theoretical way. However,
it is hard for these kinds of methods to deal with raw edge
data since they assume single contour as input to enable the
parameterization.

A graph is used in [10]-[12] to regularize the result-
ing correspondence between a template and target shape
by preserving neighborhood structure among shape points.
Loopy belief propagation is applied for efficient inference in
[10][11], and relaxation labeling is used in [12]. Moreover,
[11] assumes the order in shape points to penalize incor-
rect correspondences. However, when applying these graph
based approaches in our problem domain, it is difficult to
define a noiseless template automatically and it is not easy
for them to learn a mean shape from cluttered edges. Be-
sides, shape context [8] and integral invariants [9] assign
a useful discriminative attribute to shape point and can be
embedded in other registration methods [11][12].

A non-rigid registration algorithm is presented in
[13][14] for a pair (set) of unlabeled point sets. The main
strength of their work is the ability to solve chicken-egg
problem by jointly estimating the correspondences as well
as non-rigid transformation using EM algorithm and de-
terministic annealing. The work of [14] extends pairwise
shape registration [13] to groupwise way and mean shape
learning is posed as a density estimation problem. How-
ever, the registration result in [13][14] is not stable under
point sets with outliers, as mentioned in [16][17].

Recently, works in [15]-[17] provide an interesting way
to register shapes without explicitly establishing the corre-
spondence. They define a probability distribution on the
transformed version of each input point set and optimize an
information-theoretic measure between them, yielding the
desired transformations. The probability distribution is cal-
culated based on kernel density estimation in [15][17], and
is characterized explicitly in [16] via mixtures of Gaussians
(MoG). For optimization, a pairwise similarity measure is
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Figure 2. MocHMMs: Trajectory tracking

defined as kernel correlation in [15] and L2 distance be-
tween two MoGs in [16]. It is a nontrivial task to extend
work in [15][16] to groupwise shape registration under raw
edge data since selection of proper reference shape is not
easy. A groupwise way is presented in [17] where input
data sets are registered and pooled at the end of the op-
timization of the CDF-based Jensen-Shannon divergence.
However groupwise shape registration in the presence of
outliers isn’t discussed in the paper.

Our work is inspired by [13] and [14], although they are
sensitive to outliers, we have achieved robustness against
missing data and outliers by joint modeling the spatial and
temporal information presented in the edge sequence.

3. Problem Formulation
The input edge sequence is generated via edge detec-

tion at each frame inside a region of interest (ROI) from
a given video sequence (more specific details will be cov-
ered in section 6). Let input edge sequence consists of
N frames, and the edge points in frame t are denoted by
{Zt : Zt

i , t = 1, 2, ..., N, i = 1, 2, ..., Nt} , where Nt de-
notes the number of the edge points, and Zt

i is a d dimen-
sional coordinate vector of the ith edge point with size of
dx1 (d always equal to 2 in our case). Hereinafter, when
omitting superscript and/or subscript, expression implies
use of whole set instead of a specific term.

In the following subsections, trajectory tracking is first
considered to impose temporal dynamic constraints, later
it is combined with shape registration by a spatio-temporal
generative model, and our registration problem of raw edge
sequence is expressed as the inference of this model.

3.1. Trajectory Tracking: MocHMMs

In order to fully explain our idea we use the concept of
a spatio-temporal volume (STV) [5] which is formed by
stacking all input edge frames. Intuitively, this STV can
be characterized by a number of trajectories, say L tra-
jectories without loss of generalization (it can be viewed
as trajectory-set representation of a 3D volume, bearing
an analogy to point-set representation of 2D shape). For-
mally, in the view point of generative model, this STV can
be explained (or generated) by a mixture of continuous-
state HMMs (MocHMMs), where each c-HMM with single
Gaussian observation corresponds to a trajectory (model is
shown in figure 2). When each c-HMM is inferred, subse-
quently its corresponding trajectory is also tracked.

Based on the MocHMMs shown in figure 2, a sample
Zt

i can be generated by sampling from it. At frame t,
discrete random variable (RV) mt

i denote the index of c-
HMM which generates the current sample Zt

i , and mt
i ∈

{1, 2, ..., L}; continuous RV Xt
j is the state of jth c-HMM

at current frame, j = 1, 2, ..., L.
To achieve tractable inference of c-HMM, idea of

Kalman filter [18] is borrowed here to model the dynam-
ics and observation, i.e. linear dynamic model with additive
Gaussian noise is considered in-between Xt

j and Xt−1
j ; lin-

ear observation model with additive Gaussian noise is con-
sidered in-between Xt

j and Zt
i when given (mt

i = j) :

p(Xt
j |Xt−1

j ) = N(Xt
j , X

t−1
j A, Ψt

j), (1)

p(Zt
i |mt

i = j, Xt) = N(Zt
i , X

t
jB,Φt

j), (2)

where N(X, µ, Φ) denote the normal density function on X
with mean µ and variance Φ. The size of Xt

j , A, Ψt
j , B and

Φt
j are d ∗ D, D ∗ D, D ∗ D, D ∗ 1 and d ∗ d, respectively.

D is the order of the linear dynamic model. The state Xt
j of

c-HMM is augmented with derivative of shape w.r.t. time.
For example, in constant velocity model used here, Xt

j is
formed by stacking a position vector p and a velocity vector
v into one vector (D = 2, see [18] for more examples), i.e.

Xt
j = �pt

j vt
j�, (3)

its associated dynamic matrix A and measurement matrix
B are A = [1 0; 1 1], B = [1 0]T .

So far, temporal information is modeled in MocHMMs,
in next section, we will explain why and how to model the
spatial information as well, and give our ultimate problem
formulation.

3.2. Joint Shape Registration and Trajectory
Tracking: MoTcHMMs

MocHMMs proposed in section 3.1 doesn’t model the
relationship among c-HMMs, therefore it can’t preserve
local neighborhood structures of trajectories {Xt

j , j =
1, 2, ..., L}, i.e. two c-HMMs (trajectories) might tangle
each other. Consequently, spatial constraint needs to be en-
forced to prevent this effect. Inspired by [14], a mean shape
is introduced into MocHMMs as a common spatial struc-
ture, and spatial constraints associated to c-HMMs are im-
posed by registering the mean shape to them in each frame.

Mean shape Y is represented by a point set with the same
number of c-HMMs, i.e.{Y : Yj , j = 1, 2, ..., L} where Yj

is the 2D coordinate vector of the jth point in mean shape,
and L is the number of c-HMMs. In order to enforce the
spatial constraint, a transform function f t : R

2 → R
2 is

introduced at frame t to associate Y with the current states
of c-HMMs by defining a new state vector:

Xt
j = [f t(Yj) X̃t

j ]. (4)



Comparing eqn. 4 with eqn. 3, pt
j is replaced by f t(Yj),

and X̃t
j denotes the rest parts in eqn. 3 (X̃t

j ≡ vt
j here).

It is worth noting that Xt
j isn’t an actual variable here, it

consists of X̃t
j , f t and Yj based on eqn. 4, and just used

for easy explanation. Now Y is a common factor connected
with all c-HMMs under f t and smoothness constraint of f t

is used to help preserve local neighborhood structures of
the trajectories {Xt

j , j = 1, 2, ..., L}, i.e. with a smooth
transformation f t , two trajectories are hard to be tangled.

This new model is a transformed version of MocHMMs,
i.e. mixture of transformed continuous-state HMMs
(MoTcHMMs), and it is a generative model explaining the
spatio-temporal information presented in edge sequence. It
is hard to express current model via Bayesian network, as
the conditional probabilities among f t, Y and X̃t

j are not
easy to describe. A factor graph representation for MoTcH-
MMs is presented and shown in figure 3. Factor graph is
”a bipartite graph that expresses which variables are argu-
ments of which local functions” [20], where a global objec-
tive function factors into a product of these local functions.
Our objective is the joint distribution of X̃ , Y , f , m and Z,
given by the product of all local functions in figure 3:

p(X̃, Y, f, m,Z) =
1

Zpartition

L∏
j=1

gy(Yj)
N∏

t=1

gf (f t)

N∏
t=1

( L∏
j=1

gx(Xt
j , X

t−1
j )

N∏
i=1

gm(mt
i)gz(Zt

i ,m
t
i, X

t)
) (5)

where constant Zpartition (w.r.t. X̃, Y, f, and m) ensures
the distribution is normalized. Local functions are

gy(Yj) = p(Yj), gm(mt
i) = p(mt

i), (6)

gx(Xt
j , X

t−1
j ) = N(Xt

j , X
t−1
j A, Ψt

j), (7)

gz(Zt
i ,m

t
i = j, Xt) = N(Zt

i , X
t
jB,Φt

j), (8)

gf (f t) = exp−λ
2 ‖Lft‖2

. (9)

p(Yj) and p(mt
i) are priors (uniform priors are used), and

gx(Xt
j , X

t−1
j ) is dynamics, gz(Zt

i ,m
t
i = j, Xt) is data

measurement term. It should be pointed that, by substitut-
ing eqn. 4 into gx and gz , gx will have 5 arguments, and gz

will have 4 arguments, matched with figure 3. For simplic-
ity and easy explanation, we will assume a simple form of
Φt

j ,Ψt
j : Φt

j = (σt
j)

2Id, and Ψt
j = (τ t)2Σ. λ in eqn. 9 is

the regularization parameter [19] and controls the smooth-
ness of transform function f , and differential operator in
eqn. 9 is defined as

‖Lf‖2 =
∫∫ [(

∂2f

∂x2

)2

+2
(

∂2f

∂x∂y

)2

+
(

∂2f

∂y2

)2]
(10)
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Figure 3. Factor Graph (FG) for MoTcHMMs

Actually, when optimizing the functional related to eqn. 10,
the optimal f will be the well known thin-plate spline (TPS)
[19]; more details will be given in section 4.

Finally our ultimate registration problem of raw edge se-
quence is formulated as the inference of MoTcHMMs, i.e.
given the input edges Z, inferring X̃ , Y , f and m based on
eqn. 5, resulting Y will be the learned mean shape, f will
be the associated non-rigid transformations, and m imply
the correspondences. Details are be given in next section.

4. Inference and Optimization
Using the notions in [21], denote the hidden RVs by h

and the visible RVs by v, where in MoTcHMMs they are
defined as

h = {(Yj , X̃
t
j , f

t,mt
i), j = 1, 2, ..., L;

t = 1, 2, ..., N ; i = 1, 2, ..., Nt}, (11)
v = {(Zt

i ), t = 1, 2, ..., N ; i = 1, 2, ..., Nt}. (12)

The inference of MoTcHMMs is to find a setting of h that
generated the input edges v.

4.1. Inference under EM Framework

For a generative model, there might be many settings of
hidden RVs h which can explain the input v well, so if pos-
sible, it is better to compute a distribution over h rather than
a point estimation (maximum a posteriori) [21].

In MoTcHMMs, for the discrete RVs m, posteriori dis-
tribution is considered, however for the continuous RVs X̃ ,
Y and f , it is hard to parameterize and compute its posteri-
ori distribution (they are coupled together by eqn. 7-8), so
we use point estimation as per the spirit of EM [21]. We
follow the free energy formulation of EM and borrow the
notations in [21] to derive the EM updating equations of
MoTcHMMs.

To approximate the true posterior distribution p(h|v) of
MoTcHMMs, a distribution Q(h) for EM is defined as

Q(h) =
L∏

j=1

δ(Yj − Ŷj)
N∏

t=1

(
δ(f t − f̂ t)

L∏
j=1

δ(X̃t
j −

ˆ̃
Xt

j |Xt−1
j )

Nt∏
i=1

Q(mt
i)

) (13)



where δ is Dirac delta function and related to point esti-

mation, Ŷj , f̂
t and ˆ̃

Xt
j are corresponding optimal values,

Q(mt
i) is a distribution, i.e.

L∑
j=1

Q(mt
i = j) = 1. (14)

In order to measure the accuracy of Q(h), a ”free energy”
with annealing is written as

F (Q, p, Ta) =
∫

h

Q(h) ln
Q(h)Ta

p(h, v)
(15)

where p(h, v) is calculated based on eqn.5, and Ta is a tem-
perature adjusted from high to low to avoid local minima.
By substituting eqn. 5 and eqn. 13 into eqn. 15 and omit
constant terms, we get the finally free energy

F (Q, p, Ta) ∝
N∑

t=1

Nt∑
i=1

L∑
j=1

Q(mt
i = j)

∥∥∥Zt
i − X̂t

jB
∥∥∥2

/(σt
j)

2

+
N∑

t=1

L∑
j=1

1
(τ t)2

tr

(
(X̂t

j − X̂t−1
j A)Σ−1(X̂t

j − X̂t−1
j A)T

)

+λ
N∑

t=1

∥∥∥Lf̂ t
∥∥∥2

+ Ta

N∑
t=1

Nt∑
i=1

L∑
j=1

Q(mt
i = j) ln Q(mt

i = j)

(16)

Subject to the constraint in eqn. 14, minimize
F (Q, p, Ta) w.r.t. Q(mt

i), we obtain the updating of Q(mt
i)

Q(mt
i = j) ← qt

ij/
L∑

j=1

qt
ij , (17)

where qt
ij = exp

(−∥∥∥Zt
i − f̂ t(Ŷj)

∥∥∥2 /
T t

D

)
(Ta and σt

j

are merged into one compact temperature parameter T t
D

which controls the softness of Q(mt
i)). Actually the up-

dating of Q(mt
i) in eqn. 17 is the true posterior probability

p(mt
i = j|f̂ t, Ŷj , Z

t
i ) of mt

i under current temperature T t
D,

which gives a soft assignment from edge point Zt
i to the

transformed mean shape.
Directly minimizing F (Q, p, Ta) w.r.t. Y or f is in-

tractable, as many terms are coupled together. Using the
same divide-and-conquer fashion in [13], the remaining op-
timization problems can be split into two slightly simpler
sub-problems: trajectory tracking SP1 and shape registra-
tion SP2 (Solutions are presented in section 4.2 and 4.3 re-
spectively), i.e.

Initialize f , Y and Q(m)
Initialize T t

D and λ
Begin: Deterministic Annealing

Update Q(m): Local Softassign
Estimate σt

j : Enable computing eqn. 18

σt
j =

√
Nt
i=1 Qt

i(m=j)‖Zt
i−f̂t(Ŷj)‖2

Nt
i=1 Qt

i(m=j)

Solve SP1: Trajectory Tracking
Solve SP2: Groupwise Shape Registration

Update Y : Estimate mean shape
Update f : Determine associated transformations

Decrease T t
D and λ

End

Table 1. Algorithm

SP1 : min
X̂

L∑
j=1

N∑
t=1

( Nt∑
i=1

Q(mt
i = j)

∥∥∥Zt
i − X̂t

jB
∥∥∥2

/(σt
j)

2

+tr
(
(X̂t

j − X̂t−1
j A)Σ−1(X̂t

j − X̂t−1
j A)T

)
/(τ t)2

)
,

(18)

SP2 : min
f,Y

N∑
t=1

( L∑
i=1

∥∥∥f t(Yj) − X̂t
jB

∥∥∥2

+ λ
∥∥∥Lf̂ t

∥∥∥2
)

.

(19)
The two sub-problems SP1, SP2 and the updating

scheme of Q(mt
i) (eqn. 17) can be explained intuitively

as: at current EM iteration, previously registered shape
result (i.e. previous transformed mean shape f t(Yj)) is
used to locally update the current soft assignment Q(mt

i).
This assignment may be wrong due to outliers and miss
data. Therefore temporal information over all frames is
subsequently explored to correct them, by solving trajec-
tory tracking problem SP1, hence their smooth temporal
trajectories are obtained; however these trajectories may
still be entangled. Accordingly, mean shape Y and spatial
smooth transformation f t is used to comb the trajectories
in each frame via solving shape registration problem SP2,
thus completing the current iteration. The complete EM al-
gorithm for MoTcHMMs is shown in Table 1.

4.2. Analytic Viterbi for Trajectory Tracking, SP1

In fact, problem SP1 corresponds to the inference of
c-HMM. As Viterbi algorithm (dynamic programming) is
used commonly to infer the best state sequence for discrete-
state HMM (d-HMM) [22], we consider its continuous ver-
sion of c-HMM for trajectory optimization.

Since our objective function in eqn. 18 is a quadratic
form of target variable X̃ , thus for each trajectory j (j =



1, 2, ..., L), minimizing energy E w.r.t. X̂j , we can get

∂E

∂X̂t
j

=at
jX̂

t−1
j + bt

jX̂
t
j + ct

jX̂
t+1
j − dt

j =0, t = 1, 2, ..., N

(20)
and its matrix form is
⎡
⎢⎢⎢⎢⎢⎢⎣

b1
j c1

j

a2
j b2

j c2
j

a3
j ... ...

... ... cN−2
j

aN−1
j bN−1

j cN−1
j

aN
j bN

j

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

X̂1
j

X̂2
j

.

.

X̂N−1
j

X̂N
j

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

d1
j

d2
j

.

.

dN−1
j

dN
j

⎤
⎥⎥⎥⎥⎥⎥⎦

. (21)

Efficient solution to SP1 can be obtained by solving a set of
linear equation (eqn. 21) in following steps:

1) Recursion: for row t (t = 2, 3, ..., N), eliminate lower
band at

j in the band matrix by subtracting with row t − 1.
2) Termination: solve X̂N

j using linear algebra.
3) Trajectory backtracking: recursively track back to pre-

vious row t (t = N −1, N −2, ..., 1), eliminate upper band
in the band matrix and solve X̂t

j using linear algebra.
As this way is similar to Viterbi algorithm for d-HMM

(c.f. page 264 in [22]), we call it analytic Viterbi algorithm.
Due to space limitation, details of exact equation are omit-
ted. In the inference point of view, this way can also be
viewed as a belief propagation (BP) process (c.f. section
IV-C in [20]), but it is more concise especially enabling us
to consider high order c-HMM straightforwardly in future.

4.3. Solution to Shape Registration, SP2

Under the regularization in eqn.10, minimizing the func-
tional in eqn. 19 w.r.t. function f , we get a TPS

f t(X) = CtX + Dt +
L∑

k=1

wt
kφ

(‖X − Yk‖
)
, (22)

with TPS kernel φ(r) = r2 ln r. A least-squares approach
can be applied to solve Ct, Dt and wt

k , details are referred
to [13].

Minimizing the energy in eqn. 19 w.r.t. Yj , we get

N∑
t=1

∂[f t(Yj)]
∂Yj

(
f t(Yj) − X̂t

jB

)
= 0. (23)

By substituting eqn.22 into eqn. 23, and its simpler form is

N∑
t=1

[Ct]T .

(
CtYj + Dt+

L∑
k=1

wt
kφ(

∥∥Y old
j − Y old

k

∥∥ − X̂t
jB

)
= 0.

(24)

Finally the updating of Y is

Yj ←
( N∑

t=1

[Ct]T CT

)−1 N∑
t=1

[Ct]T .

(
X̂t

jB − Dt −
L∑

k=1

wt
kφ(

∥∥Y old
j − Y old

k

∥∥)
)

.

(25)

During annealing EM iteration, mean shape undergoes
gradually updating, thus Y old is used to get a simpler form
in eqn. 24.

5. Outlier and Missing Data Handling
In analytic Viterbi algorithm, all point instances X̂t

j at
frame t of the trajectory j are considered together to give the
global optimization results of the trajectory tracking prob-
lem SP1 (eqn. 18 and eqn. 21). If one point instance is
entrapped to outliers or far neighbors (due to missing data),
its location will be inconsistent with others thus temporal
continuity will be broken. Consequently, by solving eqn.
21, all these points are pulled back and a smooth trajectory
is obtained, thus yielding a mechanism for handling outlier
and missing data.

However, too much temporal constraint may introduce a
bias in X̂t

j . In order to control it, temporal parameter τ t in
eqn. 18 is designed as

1
(τ t)2

= α
Nt

L

NL∑
t

∑
j(σ

t
j)2

= α
NNt∑

t

∑
j(σ

t
j)2

. (26)

During EM iteration, α is decreased to a small value with
the passage of time (e.g. initially set as 1 and decrease to
0.05), thus towards the end, τ t has a very tiny bias effect
for normal data. But it will retain its power against missing
data; suppose edge points corresponding to X̂t

j are missed at

frame t, then
∑

i
Q(mt

i=j)
Nt/L → 0. Although τ t possess small

value at the end, it is still significant w.r.t.
∑

i Q(mt
i = j),

therefore the second term (temporal constraint) inside sum
in eqn. 18 will dominate and missing data is still handled.

Since τ t will be very small in the end, outliers must be
removed ASAP, otherwise it will make trouble without τ t’s
watch. A reweighting procedure during EM iteration is used
in our work to remove outliers. When τ t still has its power,
outliers will be given a low weight, thus it’s no chance for
them in the later iterations. Because point instance X̂t

j

couldn’t be entrapped to outliers under the protect of τ t,
thus outliers will far away from all point instances, so a low
weight can be given to them according to the distance be-
tween them and point instances.

6. Experiments
Three situations are considered in our experiment (cor-

responding to dancing ballerina, talking face, and walk-



ing person, respectively), two are presented in the pa-
per. Below we introduce the situations and correspond-
ing data sets, along with the generation of input edge se-
quence. Complete results with vivid animation are available
at http://media.cs.tsinghua.edu.cn/ dhj/cvpr07/.

Moving camera: Ballet sequence is used for testing of
this case. Video stabilization is first applied and then sim-
ple intra-frame subtraction result is used for moving object
detection and used as ROI for edge sequence generation.

Simple environment: Face capturing environment is
considered, a fixed rectangle is used as ROI.

6.1. Parameters Setting

In the initialization of EM for MoTcHMMs, transfor-
mation f for each frame is set as identical transform, ini-
tial soft assignment Q(m) is set as equivalent probability,
and mean shape Y can be random initialized under the help
of deterministic annealing. At the end of each EM itera-
tion, regularization parameter λ and temperature parameter
T t

D are decreased under exponential annealing scheme, i.e.
λ ← λoldξ, T t

D ← T t
D

old
ξ, where ξ is annealing rate and

is set to 0.9 in our experiment. Initial value of λ is not cru-
cial based on our experimental observation and set to 5 al-
ways. The key parameter is the temperature parameter T t

D,
one needs a careful manual setting when apply the work
of [13][14]. We present an empirical way to set T t

D auto-
matically: T t

D
init = var(Zt)/ε = 1

εNt

∑Nt

i=1

∥∥Zt
i − Z̄t

∥∥2
,

ε ≈ 6 ∼ 10, where ε isn’t a critical value, and is fixed to 8
for all our experiments.

Only L (the number of points in mean shape) is needed
to set according to input in our experiment. L implies the
complexity of the object’s shape, i.e. how many points are
needed to represent it. It is easy to set L, just give a suffi-
cient number, e.g. 250 for face sequences, and 200 for ballet
sequences.

6.2. Capabilities of Our Algorithm

The color convention used for below figures is, black
dots depict the input edges, green stands for outliers and
red represents the attained registration. A challenging bal-
let sequence is used for testing and figure 4 shows the input
edge maps with significant non-rigid deformations. Results
are presented in figure 5, respective estimated correspon-
dences and deformation field are superimposed on the raw
edges. Despite the ambiguity present in cluttered edges, a
meaningful mean shape is obtained. Outliers and massive
loss of data in this sequence is also handled successfully by
our algorithm. Details are shown in figure 6, there is a mas-
sive loss of edges for left arm, but we still can attain a good
registration. The work of [14] can’t deal with this sequence
because of missing data and outliers; in their algorithm TPS
was folded during iteration, and finally failed.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Input example of a ballet sequence

 

 

 

 

 

 

 

 

 

 

 

 

 
(a) frame 1              (b) frame 3                 (c) frame 5 

 

 

 

 

 

 

 
(d) frame 10            (e) frame 15               (f) mean shape 

 

 

 

 

 
 

 
 

   

Figure 5. Results of ballet sequence

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

  

Figure 6. Missing data handling

6.3. Face Alignment

Our algorithm can be used for automatic face alignment
from vide sequence (see figure 1 and figure7). Raw in-
put edge maps along with registration results are shown in
figure 7a-c, face images superimposed by estimated corre-
spondence points are presented in (d)-(f) and (g) shows the
estimated mean shape. To validate the result of our edge
level face alignment, estimated transformations are used to
warp all input face images into the common coordinate of
mean shape, and generate a mean face image (shown in fig-
ure 7h). For comparison, an overlay image is generated by
simple averaging of face images (i.e. without any warp)
and is shown in figure 7i. The mean image is significant
less blurred than the overlay image due to our edge based
registration and this result can give a sufficient initialization
for further image based registration and be used to build ap-
pearance model.

7. Conclusions and Future Work
This paper presents a novel approach for groupwise

shape registration which is performed directly on raw edge
sequence rather than pre-segmented training shapes. It en-



 

 

 

 

 

 

 

 
(a) frame 10                 (b) frame 20                    (c) frame 36 

 

 

 

 

 

 

 
(d) frame 10                 (e) frame 20              (f) frame 36 

 

 

 

 

 

 

 

 
(g) mean shape        (h) mean image             (i) overlay 

 

 

 

 

 
 

  

  

  

 

 

Figure 7. Face alignment at edge level by our algorithm

ables fully automatic scheme for shape modeling in fu-
ture. We introduce the view point of trajectory track-
ing into shape registration and they are combined by a
spatio-temporal generative model: mixture of transformed
continuous-state HMMs (MoTcHMMs). Our algorithm is
tested on real video sequences of a dancing ballerina, talk-
ing face, and walking person; their mean shape, correspon-
dences among complete edge sequence and associated non-
rigid transformations can be jointly estimated from clut-
tered edges.

Currently, we assume one video segment as input to
make situation not so hard and also to make a compact dis-
cussion of main idea. In future, we will consider how to
automatically segment a long video into pieces and perform
shape registration for each one or multiple ones. High order
HMM can also be considered. We will apply our work for
automatic face modeling and other related applications such
as recognition and object tracking.
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