
Fast Terrain Classification Using Variable-Length Representation for
Autonomous Navigation

Anelia Angelova1 Larry Matthies2

1Department of Computer Science
California Institute of Technology

anelia,perona@caltech.edu

Daniel Helmick2 Pietro Perona1

2Jet Propulsion Laboratory
California Institute of Technology

lhm,dhelmick@jpl.nasa.gov

Abstract

We propose a method for learning using a set of feature
representations which retrieve different amounts of infor-
mation at different costs. The goal is to create a more effi-
cient terrain classification algorithm which can be used in
real-time, onboard an autonomous vehicle.

Instead of building a monolithic classifier with uniformly
complex representation for each class, the main idea here
is to actively consider the labels or misclassification cost
while constructing the classifier. For example, some ter-
rain classes might be easily separable from the rest, so very
simple representation will be sufficient to learn and detect
these classes. This is taken advantage of during learning,
so the algorithm automatically builds a variable-length vi-
sual representation which varies according to the complex-
ity of the classification task. This enables fast recognition of
different terrain types during testing. We also show how to
select a set of feature representations so that the desired ter-
rain classification task is accomplished with high accuracy
and is at the same time efficient. The proposed approach
achieves a good trade-off between recognition performance
and speedup on data collected by an autonomous robot.

1. Introduction
Our goal is to build a learning algorithm that can rec-

ognize various natural terrains automatically from visual
information. The problem emerges in the context of au-
tonomous navigation, in which some terrain types may neg-
atively affect rover mobility. For example, the rover might
get stuck in mud or sand, so it needs to learn to recognize
such terrains in order to avoid them. In a more general con-
text, autonomous robots would need to perceive their envi-
ronment and understand what the effect of their interaction
with different objects or materials will be in their surround-
ings, so that they can accomplish autonomous tasks, e.g.
assist humans, work in cooperation with other robots, etc.

Among the challenges in this application domain is the
significant intra-class variability in the appearance of natu-
ral terrains (Figure 1). Additionally, terrain classes which
are very similar in appearance but affect the rover mobil-
ity differently need to be discriminated correctly. To ad-
dress these challenges, the terrain classification algorithm
has to use more complex representations than average color
or color histograms, commonly applied in current onboard
systems [3], [11], [15].

The most significant challenge for an onboard system,
however, is that it has to process the abundant information
from onboard sensors using very limited computational re-
sources. Some sensors are fast to acquire and fast to pro-
cess, e.g. range data, some might require more computa-
tionally intensive algorithms to process, e.g. image texture,
and some are expensive to obtain and process, but might be
invaluable in performing fine distinction between some ma-
terials, e.g. a high resolution, small field-of-view camera,
which can focus on small portions of the terrain.

Analogously, when looking at a single sensor, e.g. color
imagery, there are feature representations (or classifiers) of
varying complexity which achieve different levels of suc-
cess in classification. A very simple classifier might be suf-
ficient to discriminate between some classes, e.g. recogniz-
ing grass from soil could be done by using only color. Con-
versely, a very complicated one might be needed for classes
which are very similar but would incur a lot of penalty, if not
discriminated properly, e.g. soil and sand. In summary, the
terrain classification algorithm or representation does not
have to be uniformly complex for all classes.

Based on these observations, we propose to build a ter-
rain classifier in a hierarchical fashion, in which the descrip-
tion for each class is learned based on the complexity of the
classification task. The hierarchy is automatically built by
using representations of different complexity at each level
and by making decisions if further processing is needed
to classify some examples, or if the classification task can
be subdivided. In this way, the classification task is split
into smaller, possibly harder, but more focused subtasks

1-4244-1180-7/07/$25.00 ©2007 IEEE

and some classification decisions are made early using sim-
ple and fast to evaluate classifiers. Thus, the representation
of each class will be of variable length depending on the
complexity of the task and its confusion with other classes.
While in previous hierarchical classification methods [5] the
hierarchy is built in a bottom-up fashion, we construct it in
the reverse way, starting from simple classifiers. The rea-
son is that some classifications can be done satisfactorily
well with cheap sensors, without the need to invoke more
complicated or expensive processing. The learned variable-
length feature representation gives significant leverage dur-
ing detection. Note that previous texture and object recogni-
tion approaches use the same complexity of representation
for all classes [8], [9], [16].

Additionally, we show a general algorithm which per-
forms efficient selection of a set of classifiers or ‘sensors’
which can achieve a particular classification task within a
limited time. This is a generalization of the method of Vi-
ola and Jones [17] who proposed to use classifiers in a se-
quence. No principled approach for selecting or adjusting
the complexity of the classifiers was provided in [17].

The idea for selectively processing visual information for
the purposes of terrain recognition, proposed here, can be
extended to using multiple onboard sensors of various ca-
pabilities and computational costs. It can also find applica-
tions in the learning of a large number of objects or visual
categories, where a uniform size description for all objects
will be impractical and inefficient.

2. Previous work
Previous terrain recognition approaches have focused on

recognizing classes that are relatively easily discriminable,
such as ‘sky’, ‘grass’, ‘road’ [11], or have been limited to
only detecting the drivable dirt road [1], [3]. In contrast,
we consider a larger variety of terrain types, some of which
might be visually quite similar, such as sand, soil and gravel,
and would be all considered to be in a ’dirt road’ category
in the abovementioned approaches. These classes, how-
ever, induce very different robot mobility, especially when
driving on slopes, and therefore need to be correctly rec-
ognized. Unlike conventional methods for terrain classifi-
cation which classify individual pixels [3] or pixel neigh-
borhoods [11], here the proposal is to look at larger terrain
patches. In this way, not only better statistics of occurrence
of typical texture features can be built, as shown in [16], but
also a speedup can be achieved by applying the proposed
complexity-dependent processing of patches.

Previous texture [8], [10], [16] and scene [9] recogni-
tion approaches apply a fixed, uniform representation for
all classes or construct the features without regard to the
existence of other classes. Our approach is, in that sense,
orthogonal to them because, as a result of the proposed hi-
erarchical representation, the final feature representation for

each class is of variable length depending on how hard a
particular discrimination task is.

Hierarchical classification has become popular with clas-
sifying data which is naturally hierarchically organized, e.g.
large corpora of documents, web sites or news topics [7].
It has also been applied to digit [5] and object recogni-
tion [12]. These methods require an already built hierarchy
which can be obtained prior to learning, e.g. by agglomer-
ative clustering of classes according to their similarity [5].
These techniques work from bottom up and assume that a
sufficiently good object representation exists [5], [12]. Our
proposal is to build the hierarchy in the reverse direction,
starting from simple classifiers and not evaluating more
complicated or costly classifiers, unless necessary. The hi-
erarchy here is also built as a part of the learning process.
Some similar ideas to subdivide the classification problem
have appeared in [18] in which a nearest neighbor classifier
finds crude clusters of similar classes and then more precise
classifiers, e.g. SVM, are used to discriminate among them.

The idea of using classifiers of increasing complexity has
been previously used in [6], [17]. These methods exploit
the extremely skewed distribution of face vs nonface in an
average image to build a classifier which quickly discards
large areas which do not contain a face. Here we consider
multi-class recognition and propose a mechanism for auto-
matically subdividing the classification into more focused
sub-tasks which work on fewer and more similar to one an-
other classes. We also provide an approach for selecting a
subset of classifiers to achieve the desired task.

3. Selecting an optimal set of sensors
In this section we provide an algorithm which efficiently

selects a set of classifiers which can work in a sequence to
achieve the classification task.

Suppose we are given a set of N sensors, or classifiers,
Ci, i = 1, ..., N , for each of which we know how well they
perform on the data (i.e. classification errors ei, i = 1...N)
and how much time ti will be spent if they are tested on a
dataset of a particular unit size. Additionally, let us assume
that each classifier has a mechanism for classifying a par-
ticular portion of the data ri with large confidence, so these
examples are not to be evaluated further in the sequence (ri

is an estimate of the portion of examples discarded by ei-
ther of the techniques proposed in Section 4). The goal is to
determine a subset of classifiers which work in succession,
so as to minimize some criterion, e.g. classification error or
computational time. For example, we might want to know
the optimal sequence of classifiers, if any, which can run
within a predefined time limit and what minimal error to ex-
pect of it. The information needed, i.e. ei, ti, ri, can be ob-
tained by running each classification algorithm individually
and measuring their performance prior to the optimization.
The general subset selection problem is NP-complete, so we

Figure 1. Patches from each of the classes in the dataset collected by an autonomous robot on natural terrains. The variability in texture
appearance is one of the challenges present in our application domain. To simplify the task we have manually removed the ‘mixed’ terrain
patches (most right column) from the training data, but they will no doubt be present in the test sequences of the robot.

C1 C3C2 CN ...

Figure 2. A set of classifiers, ordered by increasing complexity and
classification power. The algorithm automatically selects a subset
of them which, when used together, solve the final classification
task with minimum error and in limited time.

assume that the order in which the classifiers are selected is
known (Figure 2). The classifiers here are ordered accord-
ing to their complexity which, unless overfitting occurs, can
be thought of as ordering by decreasing classification error.
In practice, this ordering will be also correlated with the
increasing computational time of the classifiers. The key
requirement underlying this assumption is that in this or-
dering, the portion of examples which can be successfully
removed by each classifier ri is preserved, independently of
the previously removed examples.

Now that the classifiers are ordered by complexity we
wish to find a subset (in that particular order) so as to min-
imize the classification error and at the same time limit the
computational time. This is solved algorithmically in the
following way: let us define the function En

i (T,R) which
returns the minimum error accumulated through the optimal
sequence of classifiers with indices among i, ..., n, running
within time limit T and processing R portion of the whole
data. En

i (T,R) is computed using the following recursion:

En
i (T,R) = min(eiri+En

i+1(T−Rti, R−ri), E
n
i+1(T,R))

with the bottom of the recursion being En
n(T,R) =

enR. The final function that needs to be estimated is

EN (Tlimit)=minn≤N (En
1 (Tlimit, 1)), i.e. we would like

to select a set of classifiers, among the first N which can
classify all the examples (R=1) with minimal error within
the time limit Tlimit (the choice of Tlimit is guided by the
application requirements). In our particular case, we solve
it recursively, as we have a small N . However, for large N it
is conceivable to quantize the parameters T and R and solve
it efficiently using dynamic programming. Note that in the
formulation of the problem, apart from trying to minimize
the classification error and limit the time, the portions of
examples which are expected to be discarded at each level
also play a role in selecting the optimal sequence.

3.1. Case study: terrain recognition
As an example, let us consider the following classifiers

in the context of terrain recognition:
0) Average red - the average normalized red in a patch
1) Average color - the average normalized R,G in a patch
2) Color histogram - a 3D color histogram, which builds

statistics of pixel values in a patch
3) Texton based - a 1D histogram of occurrence of a

set of learned atomic texture features (‘textons’), similar
to [16]; we use 20 textons per class.

4) Texton based, slow - same as 3) but using 40, instead
of 20, textons per class.

The average color representation is not very accurate for
the six terrain classes we are interested in (Figure 1), but
has been used in alternative applications to discriminate be-
tween terrains such as sky, grass, dirt road [11] and has
been preferred for its speed. The color histogram represen-
tation [15] considers statistics of occurring pixel values. It
provides better representation than the average color and is
also fast but cannot capture the dependency of neighboring

Table 1. Classification performance of each of the base algorithms.

Algorithm Error (ei,%) Time (ti,sec.)
0) Average red 40.9±1.7 0.06±0.01
1) Average color 17.5±2.6 0.06±0.01
2) Color histogram 14.0±3.3 0.57±0.03
3) Texton based 8.1±1.5 4.21±0.32
4) Texton based, slow 7.9±2.4 6.26±0.42

pixels. The texton based representation considers a texture
as a union of features with specific appearances, without
regard to their location [16]. This type of representation,
known as ’bag-of-features’, has become very popular with
object recognition [2], but the concept is more akin to tex-
tures. The texton based representation used here has some
small differences to [16]: when working on large image
patches we perform random feature sampling, which pro-
vides a certain speedup during testing. Table 1 compares the
average test errors and times of the abovementioned classi-
fiers for 100 runs on 200 randomly sampled test patches1.
We consider the performance of the texton based classifier
satisfactory, as the data is quite challenging. However, its
computational time is not acceptable for a real-time system.

The results of running the algorithm with Tlimit=3 sec-
onds are the following2. It has selected classifiers 1), 2),
3) as the optimal sequence; 0) is left out as its cost is simi-
lar to 1) but its performance is much worse, so it is not cost
effective to include it; 4) is left out as it has prohibitive com-
putational time, but 3) is possible to include because it will
process only a portion of the examples. The expected error
of the selected sequence is 11.7%.

The above example is to illustrate that if we have avail-
able multiple classifiers of different capabilities with respect
to our particular task, we can automatically select a subset
of them which 1) have subsumed redundant and inefficient
classifiers 2) will work more efficiently in succession. This
algorithm can be viewed as a formal method for selecting
the complexities of each of the classifiers in a cascade, in-
stead of selecting them in an ad-hoc way, as in [17].

4. Learning a variable-length representation
The previous section showed how to select a subset of

the available classifiers so as to minimize the classification
error and at the same time guarantee that the computational
time would not exceed a particular, predefined time. In this

1Computational times are machine dependent and should be considered
in relative terms.

2For the purposes of this example, we have set ri to 0.01, 0.2, 0.3, 0.4,
and 0.5 for i = 0, ..., 4 respectively, although in practice r0 is 0 and will
be immediately discarded by the optimization.

section we show how to create a variable-length represen-
tation using the selected sequence of classifiers. We build a
hierarchical classifier, composed of feature representations
of generally increasing complexity, at each level of which,
a decision is made if the recognition task can be subdivided
into smaller sub-tasks, or if some terrain classes do not need
further classification. Note that the labels take part in this
decision. Figure 3 shows a schematic of the algorithm. Be-
cause of this representation, an important speedup can be
achieved during testing, since the slowest to compute parts
of the feature representation would not need to be evaluated
for all of the classes. Additionally, if some examples are
classified with high confidence, they are not evaluated by
the subsequent classifiers.

We use the feature representations corresponding to the
classifiers, selected in Section 3.1: 1) Average color; 2)
Color histogram; 3) Texton based. In this case, the sim-
plest representation residing at the top level is only two di-
mensional, the medium complexity representation is a three
dimensional histogram of pixel color appearances, while the
most complex and accurate, but slowest to compute, repre-
sentation is a histogram of textons detected within a patch.
The classifier at each level of the hierarchy is a decision
tree performed in the feature space for this particular level.
A nearest neighbor classifier is used only in the last stage.

4.1. Building the hierarchy
At each level of the hierarchy we wish to determine if

it is possible to subdivide the terrain recognition task into
non-overlapping classes. After performing training with the
classifier at this level, its classification performance is eval-
uated. If there are two subgroups of classes which are not
misclassified with classes outside the group, then the classi-
fier at the next level can be trained on each subgroup inde-
pendently. A similar technique is applied after classification
in the other intermediate levels of the hierarchy.

At each level of the hierarchy we test the newly built
classifier on a validation set and construct a graph of R

nodes, each node of which represents a terrain class, and
each edge m(i, j) represents the portion of examples of
class i, misclassified as class j, 1 ≤ i, j ≤ R. Instead
of a graph, we can equivalently use the confusion matrix
M = MRxR which results from this particular classifica-
tion. Now the problem of finding non-overlapping classes is
reduced to a min-cut problem, and in particular we will use
a normalized min-cut problem which favors more balanced
sizes of the two groups. Instead of solving the exact normal-
ized min-cut problem, which is known to be NP-complete,
we will apply the approximate version [13]. Using the ap-
proximate normalized min-cut [13], we compute the matrix:

A = D−1/2(D − M)D−1/2,

where D(i, i) =
∑R

j=1 Mi,j , D(i, j) = 0, for i 6= j. Then

Figure 3. Schematic of the proposed hierarchical algorithm. A
decision whether to subdivide the recognition task into several
groups of non-overlapping classifications is made at each level.
The terminal nodes are shaded; these classes do not need to be
further trained or classified.

the coordinates of the second smallest eigenvector of A are
clustered into two groups. This is trivial as the unique sep-
aration is found by the largest jump in the eigenvector. The
elements which correspond to these two clusters are the
groups of classes with the minimal normalized cut.

After the min-cut is found, the amount of misclassifica-
tion between the two selected groups is computed. If there
is only negligible misclassification, the data is split into sub-
groups of classes, which are trained recursively, indepen-
dently of one another, at the next more complex level. This
procedure is applied until the bottom level of the hierarchy
is reached or until a perfect classification is achieved. This
particular approach is undertaken, since a simple and fast
to compute algorithm can be sufficient for classifying per-
fectly some classes or at least for simplifying the classifi-
cation task. With this procedure, some groups of examples
can be classified without resorting to the classifiers resid-
ing at the bottom levels of the hierarchy, especially if they
involve some very inefficient computations. Conversely, if
there are no useful splits, this means that the feature space is
not reliable enough for classification and the classifier needs
to proceed to the next level of complexity. In the case where
one of the groups is of a single class, it will be a terminal
node in the hierarchy and no more training and testing will
need to be done for it. We have limited the subdivisions to
two groups only, although recursive subdivision is possible.

Instead of using the raw confusion matrix M , some do-
main knowledge can be introduced. A cost matrix CRxR,
which determines the cost of misclassification of different
terrains, can be constructed for a particular application. For
example, misclassifying sand for soil is very dangerous as
the rover might get stuck in sand, but confusing terrains of
similar rover mobility would not incur a significant penalty.
Given C, the normalized min-cut is performed on the matrix
MC = M.C (element-wise multiplication).

4.2. Finding confident classifications
An additional mechanism of the algorithm is to perform

early abandon of examples which have confident classifica-
tions. That is, such examples will not be evaluated at the
later stages of the hierarchy. For that purpose we put the al-
gorithm in a probabilistic framework. At each intermediate
level we wish to determine the probability of a particular
classification (assignment to a class wi) given an example:

P (wi|X) = p(X|wi)p(wi)
P

R
j=1

p(X|wj)p(wj)
, 1 ≤ i ≤ R.

Each example, for which the risk of misclassification
∑

j 6=i P (wj |X)=1−P (wi|X) 3 is small, will be discarded.
The prior probabilities are set according to some know-

ledge about the terrain. For example, if the terrain contains
mostly soil and grass, the soil and grass will have higher pri-
ors than the other terrains. Here we set equal priors because
we have extensive driving on predominantly asphalt, sand,
gravel and woodchip terrains too. So now the problem is re-
duced to computing p(X|wi) for i = 1, ...,K. As we have
mentioned, the classifier at the intermediate levels is a deci-
sion tree. Also note that some of the feature representation
might be high dimensional e.g. 2) and 3), if 3) were se-
lected to be an intermediate level. To compute the required
probability we use the following non-parametric density es-
timation method, proposed by [14]. For each example X ,
the probability p(X|wi) is approximated by:

p(X|wi) =
1

Ni

Ni
∑

s=1

∏

k∈path

1

hk
K

(

Xk − Xk
s

hk

)

,

where Xk are the values of X along the dimensions selected
along the path from the root to the leaf of the tree where
this particular example is classified, Xs, s = 1, ..., Ni are
the training examples belonging to class wi, K is the kernel
function, and hk is the kernel width. In this way, instead of
performing a density estimation in high dimensional spaces,
only the dimensions which matter for the example are used.

At each level we evaluate a threshold such that if
P (wi|X) ≥ Θ for some example X , then it will be classi-
fied as belonging to class wi and will not be evaluated in the
consequent levels. The rest of the examples are re-evaluated
by the supposedly more accurate classifier at the next level.

4.3. Discussion
Building the classifier in a hierarchical way has the fol-

lowing advantages. Firstly, classes which are far away in
appearance space or otherwise easily discriminable, will
be classified correctly early on, or at least subdivided into
groups where more powerful classifiers can focus on es-
sentially more complex classification tasks. This strategy

3If a misclassification cost matrix C is available, the risk of misclassi-
fication R(i|X) =

PR
j=1

Ci,jP (wj |X) will be used instead.

could be considered as an alternative to the ‘one-vs-all’ and
‘one-vs-one’ classifications when learning a large number
of classes simultaneously. Secondly, there is no need to
build complex description for all classes and perform the
same comparison among all classes. So, the description
lengths of each class can be different, which gives signif-
icant leverage during testing. Thirdly, classifications which
are confident will be abandoned early during the detection
phase, which will give additional speed advantage. A draw-
back of hierarchical learning is that a mistake in the deci-
sion while using simple classes can be very costly, so for
that purpose we make a decision only if the classification is
correct with high probability.

The key element of the method is that the class labels are
taking active part in building the hierarchy and therefore
creating the variable-length representation. This is in con-
trast to previous approaches which have done the feature
extraction disregarding the class label [8], [9], [10], [16].

Although the proposed hierarchical construction shares
the general idea of a decision tree of subdividing the task
into smaller subtasks, the proposed hierarchy operates dif-
ferently. More complicated classifiers reside at each level
rather than simple attributes, as is in a decision tree. This
requires a more complicated attribute selection or, in our
case classifier selection, strategy as proposed in Section 3.
Some previous criteria for subdividing the training data into
subclasses have been applied for decision trees [4], but they
involve combinatorial number of trials to determine the op-
timal subset of classes per node. Instead, we propose an
efficient solution using normalized min-cut (Section 4.1).

For an arbitrary learning task, there is no guarantee that a
split in the learning of classes will occur at the earlier stages.
In that case, the algorithm presented in Section 3 ensures
that the hierarchical classifier converges to the largest com-
plexity classifier at the bottom level, rather than building a
composite representation at multiple levels. In particular,
the algorithm in Section 3 takes into consideration the time
that can be saved by classifying examples early on and the
overhead of computing additional shorter length represen-
tations and selects (in a greedy way) the optimal sequence
of classifiers, if any. The framework is advantageous for
problems in which the complexity of discrimination among
classes is non-uniform, e.g. for easily identifiable classes
or groups of classes which can be assigned short descrip-
tion lengths and, conversely, for sets of classes which are
very similar and more complex representations are needed
to make fine distinctions among them.

5. Experimental evaluation
The proposed algorithm has been applied to terrain

recognition for the purposes of autonomous navigation. The

dataset has been collected by an autonomous LAGR4 robot
while driving on six different off-road terrains: soil, sand,
gravel, asphalt, grass, and woodchips. We consider the tex-
ture in image patches which correspond to map cells. The
patches are 100 pixels across for map cells visible at close
ranges (1-2m) and 10-15 pixels across for cells at far ranges
(5-6m). Figure 1 shows some examples from the best res-
olution patches available from all the terrains. The data is
quite challenging as it is obtained in outdoor environments.

We compare the classification performance and the
speed of each of the baseline (flat) classifiers with the hi-
erarchical classifier. The experimental setup is such that all
the classifiers are evaluated on the exact same split of the
data into training, test and validation subsets. The average
performance and time from multiple runs or across multiple
frames is reported below. The algorithm depends on two
parameters: 1) the portion of examples g1 misclassified be-
tween two groups before a split is allowed (here g1=0.03).
2) the portion of examples g2 misclassified by a high confi-
dence early abandon technique (here g2=0.06),

Two experiments are performed:
Experiment 1. We take ∼600 patches collected from the

rover at close range. They are distributed equally by random
sampling into independent training, validation and test sets
and each of the algorithms is tested on them. The results of
this experiment, comparing the baseline algorithms to the
hierarchical one are shown in Figures 4 and 5. The hier-
archical classifier decreases the computational time of the
texton classifier more than twice at the expense of slight in-
crease in the test error. We also compared the performance
of the hierarchical classifier, in the cases when only splitting
is allowed, and when only examples with significant confi-
dences are discarded (without doing any splitting). When
only splitting in the hierarchy is performed, the computa-
tional time decreased, but not dramatically, which is due
to the fact that in our particular application five out of six
classes will reach the bottom level (a typical hierarchy dis-
cards the grass class after the first level and then after the
second level splits the rest of the classes into two groups:
{sand, soil, woodchip} and {gravel, asphalt}). The impor-
tant point is that in this case a decrease in computational
time is achievable without compromising classification per-
formance. A more notable decrease in test time comes from
discarding examples with large confidence, which however
introduces some error. The final hierarchical classifier ben-
efits from both mechanisms.

Test results of the hierarchical classifier when trained
with different values of the parameter g1, varying from g1=0
(no hierarchical split allowed) to g1=0.1, are shown in Fig-
ure 6. As seen, there is a certain range for which the pro-
posed classifier can decrease the computational time no-

4LAGR stands for Learning Applied to Ground Robots and is an exper-
imental all-terrain vehicle program funded by DARPA

tably with almost no increase in classification error. A ver-
sion of the hierarchical classifier in which examples of high
confidence are not allowed to be eliminated (g2=0) is also
shown. The initial large error, corresponding to g1=0, is
due to evaluating all the representations for all of the exam-
ples. The error starts decreasing as soon as the hierarchical
splitting is allowed.

Experiment 2. We test the algorithm on 512x384 image
sequences collected by the rover. As the image resolution
decreases with range, a texture classifier trained at close
range does not generalize well at far ranges. To solve the
problem, we train two independent classifiers for patches
observed at close (≤3m) and far (> 3m) ranges. The perfor-
mance is evaluated on a ∼1600 frame sequence containing
all six terrains, testing every tenth frame of the sequence.
A local voting among the decisions on the neighboring map
cells is done to remove occasional misclassification errors.

5 10 15 20 25
0

1

2

3

4

Error (%)

Ti
m

e
(s

ec
on

ds
)

Flat avg. color
Flat col. hist.
Flat texton
Hier. confid.
Hier. split
Hierarchical

Figure 4. Experiment 1. Average test results evaluated on ∼200
randomly sampled best resolution test patches (100 runs).

0.880.030.09

0.830.17

0.030.97

0.970.03

0.920.08

1.0

Tr
ue

 c
la

ss

Predicted class

Texton based. Error=7.07%

sand soil grass gravel asph. wchip

wchip

asph.

gravel

grass

soil

sand

0.850.060.09

0.080.880.04

0.050.95

0.970.03

0.030.030.870.08

1.0

Tr
ue

 c
la

ss

Predicted class

Hierarchical. Error=8.17%

sand soil grass gravel asph. wchip

wchip

asph.

gravel

grass

soil

sand

Figure 5. Experiment 1. Confusion matrices for one of the runs
from the results in Figure 4. Texton based (left), hierarchical
(right). Only the non-zero elements are displayed.

Summary results are shown in Table 2. The hierarchical
classifier simultaneously achieves very good performance
(only slightly outperformed by the texton approach) and
decreases the computational time by more than a factor of
two. To further analyze the results, we restricted the clas-
sification to the patches at close and far ranges (Table 3).
At close ranges, the texton approach has higher classifica-
tion rate than the hierarchical one, as expected, but is much

5 10 15 20
0

1

2

3

4

5

Error (%)

Ti
m

e
(s

ec
on

ds
)

Flat avg. color
Flat col. hist.
Flat texton
Hierarchical (g2=0)
Hierarchical (g2=0.06)

Figure 6. Experiment 1. Test results for different values of the
parameter g1 (averaged over 50 runs).

slower. The deterioration of the texton classifier perfor-
mance at far ranges is because the farther patches take a
much smaller portion of the image and do not contain suffi-
cient texture information. The hierarchical classifier, on the
other hand, takes advantage of the other baseline methods
which rely mostly on color to achieve better classification
performance. Furthermore, when comparing the computa-
tional time, we can observe that the hierarchical classifier is
significantly faster than the texton approach at close range,
which is because map cells take larger portions of the im-
age and are more informative. As a result, they are more
likely to be correctly classified with simpler methods, and
whenever they are classified early, a significant speedup is
achieved. The hierarchical classifier spends more compu-
tational time at far ranges, since the patches are less infor-
mative and therefore the algorithm cannot be very certain in
making a split during training or in making an early deci-
sion during testing. Figure 7 shows the terrain classification
results and the amount of time spent to test each map cell
on a frame collected on gravel terrain.

Table 2. Experiment 2. Average classification rate and time on
image sequences. Classifies all cells of the forthcoming terrain; in-
cludes all image resolutions. The test time is evaluated per frame.

Algorithm Classif. (%) Time (sec.)
Texton based [16] 78.65 3.47
Hierarchical (proposed here) 76.58 1.48

6. Conclusions and future work
We propose to efficiently process color imagery using a

hierarchy of classifiers (‘sensors’) which retrieve different
amounts of information at different costs. First, a subset

Figure 7. Experiment 2. Input color image (left), terrain classification results of the hierarchical classifier in a frame (middle) and the
amount of computations performed on each cell (right) overlayed on the original image. The algorithm gains speed advantage from
classifying some patches at close range with much less computation than the baseline method. Gravel terrain.

Table 3. Experiment 2. Classification performance on image se-
quences, evaluating separately patches at close and far ranges.

Algorithm Classif. (%) Time (sec.)
Texton based (ranges ≤ 3 m) 78.85 2.32
Hierarchical (ranges ≤ 3 m) 77.40 0.70
Texton based (ranges > 3 m) 64.18 1.10
Hierarchical (ranges > 3 m) 65.68 0.82

of classifiers is selected as a response to the needs of the
classification task. That is, classifiers which are redundant,
inefficient, or simply not useful regarding a particular clas-
sification task are not selected by the algorithm. Second, a
hierarchical classifier is built, taking into consideration the
labels and the complexity of the classification task. As a re-
sult, a variable-length representation for each terrain class is
learned, which gives significant leverage during detection.
The outcome is a very competitive in terms of performance
terrain classifier which also runs faster.

A natural extension is to consider more complex rep-
resentations from high resolution or multi-spectral cam-
eras which have better discriminative capabilities for some
classes and will improve the overall performance. Another
important next step is to construct the hierarchy while per-
forming the optimization proposed in Section 3. This will
provide more accurate estimates for the values ei, ti, ri.

Acknowledgment. This research was carried out by the
Jet Propulsion Laboratory, California Institute of Technol-
ogy with funding from the NASA’s Mars Technology Pro-
gram. We thank Max Bajracharya and the anonymous re-
viewers for providing very useful comments on the paper.

References
[1] Y. Alon, A. Ferencz, and A. Shashua. Off-road path fol-

lowing using region classification and geometric projection

constraints. CVPR, 2006.
[2] A. Berg, T. Berg, and J. Malik. Shape matching and object

recognition using low distortion correspondences. CVPR,
2005.

[3] H. Dahlkamp, A. Kaehler, D. Stavens, S. Thrun, and
G. Bradski. Self-supervised monocular road detection in
desert terrain. Robotics: Science & Systems, 2006.

[4] R. Duda, P. Hart, and D. Stork. Pattern Classification. John
Wiley & Sons, 2001.

[5] X. Fan. Efficient multiclass object detection by a hierarchy
of classifiers. CVPR, 2005.

[6] F. Fleuret and D. Geman. Coarse-to-fine face detection. In-
ternational Journal of Computer Vision (IJCV), 2001.

[7] D. Koller and M. Sahami. Hierarchically classifying docu-
ments using very few words. International Conference on
Machine learning (ICML), pages 170–178, 1997.

[8] S. Lazebnik, C. Schmid, and J. Ponce. A sparse texture rep-
resentation using affine invariant regions. CVPR, 2003.

[9] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of
features: Spatial pyramid matching for recognizing natural
scene categories. CVPR, 2006.

[10] T. Leung and J. Malik. Representing and recognizing the
visual appearance of materials using three-dimensional tex-
tons. IJCV, 43(1), 2001.

[11] R. Manduchi. Bayesian fusion of color and texture segmen-
tations. ICCV, 1999.

[12] K. Mikolajczyk, B. Leibe, and B. Schiele. Multiple object
class detection with a generative model. CVPR, 2006.

[13] J. Shi and J. Malik. Normalized cuts and image segmenta-
tion. IEEE Trans. on PAMI, 2000.

[14] P. Smyth, A. Gray, and U. Fayyad. Retrofitting decision tree
classifiers using kernel density estimation. ICML, 1995.

[15] B. Upcroft et al. Multi-level state estimation in an outdoor
decentralised sensor network. Proceedings of the Int. Symp.
on Experimental Robotics, 2000.

[16] M. Varma and A. Zisserman. Texture classification: Are fil-
ter banks necessary? CVPR, 2003.

[17] P. Viola and M. Jones. Rapid object detection using a boosted
cascade of simple features. CVPR, 2001.

[18] H. Zhang, A. Berg, M. Maire, and J. Malik. SVM-KNN:
Discriminative nearest neighbor classification for visual cat-
egory recognition. CVPR, 2006.

