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Abstract

Autonomous cars will likely play an important role in the

future. A vision system designed to support outdoor naviga-

tion for such vehicles has to deal with large dynamic en-

vironments, changing imaging conditions, and temporary

occlusions by other moving objects. This paper presents a

novel appearance-based navigation framework relying on

a single perspective vision sensor, which is aimed towards

resolving of the above issues. The solution is based on a

hierarchical environment representation created during a

teaching stage, when the robot is controlled by a human

operator. At the top level, the representation contains a

graph of key-images with extracted 2D features enabling

a robust navigation by visual servoing. The information

stored at the bottom level enables to efficiently predict the

locations of the features which are currently not visible, and

eventually (re-)start their tracking. The outstanding prop-

erty of the proposed framework is that it enables robust and

scalable navigation without requiring a globally consistent

map, even in interconnected environments. This result has

been confirmed by realistic off-line experiments and suc-

cessful real-time navigation trials in public urban areas.

1. Introduction

The design of an autonomous mobile robot requires

establishing a close relation between the perceived en-

vironment and the commands sent to the low-level con-

troller. This necessitates complex spatial reasoning rely-

ing on some kind of internal environment representation

[5]. In the mainstream model-based approach, a mono-

lithic environment-centred representation is used to store

the landmarks and the descriptions of the corresponding im-

age features. The considered features are usually geomet-
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ric primitives, while their positions are expressed in coordi-

nates of the common environment-wide frame [2, 16]. Dur-

ing the navigation, the detected features are associated with

the elements of the model, in order to localize the robot

and to effectively search for new model elements. How-

ever, the quality of the obtained results depends directly on

the precision of the underlying model. This poses a strong

assumption which impairs the scalability and, depending on

the input, may not be attainable at all.

The alternative appearance-based approach employs a

sensor-centred representation of the environment, which is

usually a multidimensional array of sensor readings. In

the context of computer vision, the representation usually

contains a set of key-images which are acquired during a

learning stage and organized within a graph [6]. Nodes

of the graph correspond to key-images, while the arcs link

the images containing a distinctive set of common land-

marks. This is illustrated in Figure 1. The navigation

Figure 1. Appearance-based navigation: the sketch of a navigation

task (left), and the set of first eight images from the environment

representation forming a linear graph (right). Note that the graph

has been constructed automatically, as described in 2.1.

between two neighbouring nodes is performed using well

developed techniques from the field of mobile robot con-

trol [17]. Different types of landmark representations have

been considered in the literature, from the integral con-

tents of a considered image [11] and global image descrip-

tors [6], to more conventional point features such as Harris

corners [2, 3]. We consider the latter feature-oriented ap-

proach, in which the next intermediate key-image is reached

by tracking the feature correspondences from the previous

key-image. Recognition of new landmarks is a critical is-
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sue in this approach, since it implies a risk of introducing

an association error. Predicting approximate locations of

currently invisible features (feature prediction) is therefore

an essential capability in feature-oriented appearance-based

navigation.

In this paper, a novel vision framework for scal-

able mapping and localization is presented, enabling ro-

bust appearance-based navigation in large outdoor environ-

ments. We consider separate mapping and navigation pro-

cedures as an interesting and not completely solved prob-

lem, despite the ongoing work on a unified solution [4]. The

proposed framework employs a hybrid hierarchical environ-

ment representation [6, 1], with a graph of key-images at the

top, and local 3D reconstructions at the bottom. The global

topological representation ensures an outstanding scalabil-

ity, limits the propagation of association errors, simplifies

consistency management in interconnected environments,

and enables appearance-based navigation. On the other

hand, the bottom-level geometric models enable feature pre-

diction by multi-view geometry techniques. The viability of

the approach has been confirmed by successful experiments

in real-time robot control. The results clearly demonstrate

that a globally consistent 3D reconstruction is not required

for large-scale navigation to be successful: we consider that

as the most important contribution of this work.

An appearance-based navigation approach with feature

prediction has been described in [8]. Simplifying assump-

tions with respect to the motion of the robot have been used,

while the prediction was implemented using intersection of

the two epipolar lines, which has important limitations [9].

The need for feature prediction has been alleviated in [3],

where the points from the next key-image are introduced

using wide-baseline matching [12]. A similar approach has

been proposed in the context of omnidirectional vision [7].

In this closely related work, feature prediction based on

point transfer [9] has been employed to recover from track-

ing failures, but not to introduce previously unseen features

as well. However, introduction of new features by wide-

baseline matching [7, 3] implies a great potential for intro-

ducing association errors caused by ambiguous landmarks.

Our experiments have shown that considerably better results

are obtained by optimizing the new feature location starting

from a prediction obtained by point transfer.

In comparison with model-based navigation approaches

such as the one described in [16], our approach does not

require a global consistency. By posing weaker require-

ments, we increase the robustness of the mapping phase,

likely obtain better local consistencies, can close loops re-

gardless of the extent of the accumulated drift and have bet-

ter chances to survive correspondence errors. Notable ad-

vances in prediction of feature positions have been achieved

in model-based SLAM [4]. Nevertheless, current imple-

mentations have limitations with respect to the number of

mapped points, so that a prior learning step still seems a ne-

cessity in realistic navigation tasks. Our approach has no

scaling problems: experiments with 15000 landmarks have

been performed without any performance degradation.

The paper is organized as follows. The details of the

proposed framework for mapping and localization are de-

scribed in Section 2. Section 3 provides the experimental

results, while the conclusion is given in Section 4.

2. Scalable mapping and localization

This section briefly describes the two high-level com-

ponents of the proposed vision framework for appearance-

based navigation. The mapping component extracts point

features from the learning sequence acquired along a de-

sired possibly circular physical path. During the navigation,

the localization component tracks the mapped features and

employs them to locate new features. Both components rely

on a multi-scale differential tracker with warp correction

and checking towards the reference appearance [19]. The

employed warp includes isotropic scaling and affine con-

trast compensation [18]. The output of the framework is a

set of 2D vectors connecting the current features with their

corresponding locations in the next key-image. These vec-

tors are finally used to support appearance-based navigation

based on visual servoing.

2.1. The mapping component

The mapping component constructs the environment

graph and annotates its nodes and arcs with geometric infor-

mation. Here we consider linear and circular graphs, while

the work on complex topologies [15] will be integrated in

the future. The nodes of the graph are formed by choos-

ing the corresponding key-images Ii. The same indexing is

used for arcs as well, by defining that arc i connects nodes

i − 1 and i. If the graph is circular, arc 0 connects the last

node n−1 with the node 0. Each node is assigned the setXi

of features from Ii, denoted by distinctive identifiers. Each

arc is assigned an array of identifiers Mi denoting land-

marks located in the two incident key-images. As shown

in Figure 2, arcs are finally annotated with two-view ge-

ometries Wi, recovered from Mi by random sampling with

the five-point algorithm [13] as the hypothesis generator.

The elements of Wi include motion parameters Ri and

ti (|ti| = 1), as well as the metric landmark reconstructions

Qi. The two-view geometries Wi are deliberately not put

into an environment-wide frame, since contradicting scale

sequences may be obtained along the graph cycles. The

scale ratio si between the incident geometriesWi andWi+1

is therefore stored in the common node i. Note that each

neighbouring pair of geometries Wi+1 and Wi+2 needs to

have some features in common, Mi+1 ∩ Mi+2 6= ∅, in

order to enable the transfer of features from the next two



key-images (Ii+1, Ii+2) on the path (see 2.2.2 for details).

Many maps can be constructed for the same motion of

the robot in the learning phase, depending on the selected

set of key-images and on the technique for extracting cor-

respondences. Quantitatively, a particular arc of the map

can be evaluated by an estimate of the reprojection error [9]

σ(Wi), and the number of correspondences |Mi|. These pa-

rameters are respectively related with accuracy of the point

transfer and robustness to interferences (occlusions, illumi-

nation variations). There is a trade-off in interpreting the

criterion |Mi|, since more points usually means better ro-

bustness but lower execution speed. Different maps of the

same environment can be evaluated by the total count of

arcs in the graph |{Mi}|, and by the parameters of the indi-

vidual arcs σ(Wi) and |Mi|. It is usually favourable to have

less arcs, since that ensures a smaller difference in lines of

sight between the relevant key-images and the images ac-

quired during navigation. This is important since the ability

to deviate from the reference path enables the robot to tol-

erate control errors and to avoid detected obstacles.

The devised mapping solution uses the tracker to find the

stablest point features in a given subrange of the learning se-

quence. The tracker is initiated with all Harris points in the

initial frame of the subrange. The features are tracked un-

til the reconstruction error between the first and the current

frame of the subrange rises above a predefined threshold σ.

At this moment the current frame is discarded, while the

previous frame is registered as the new node of the graph,

and the whole procedure is repeated from there. The above

is similar to visual odometry [14], except that we employ

larger feature windows and more involved tracking in or-

der to achieve more distinctive features and longer feature

lifetimes. To ensure a minimum number of features within

an arc of the graph, a new node is forced when the absolute

number of tracked points falls below n. Bad tracks are iden-

tified by a thresholdR on RMS residual between the current

feature and the reference appearance [19, 18]. Typically, the

following values were used: σ = 4, n = 50, R = 6.

The above basic mapping scheme provides substantially

better results than the approach [7] based on wide-baseline

matching with state-of-the-art algorithms [12]. This should

be regarded as no surprise, since more information is used

Figure 2. The linear environment graph. Nodes contain images

Ii, extracted features Xi and scale factors si. Arcs contain match

arrays Mi and the two-view geometries Wi.

to achieve the same goal. However, exceptions to the above

occur when there are discontinuities in the learning se-

quence caused by a large moving object, or a “frame gap”

due to preemption of the acquisition process. In the pre-

sented scheme, such events are reflected by a general track-

ing failure in the second frame of a new subrange. A re-

covery is consequently attempted by matching the last key-

image with the current image. This is especially convenient

when the mapping is performed online, from a manually

controlled robotic car.

Wide-baseline matching is also useful for connecting a

cycle in the environment graph, which occurs if the learn-

ing sequence is acquired along a closed physical path. Af-

ter the learning sequence acquisition is over, the first and

the last key-image are subjected to matching: a circular

graph is created on success, and a simple linear graph oth-

erwise. Note that in case of a monolithic geometric model,

the above loop closing process would need to be followed

by a sophisticated map correction procedure, in order to try

to correct the accumulated error. Due to topological repre-

sentation at the top-level, this operation proceeds reliably

and smoothly, regardless of the extent of the drift.

2.2. The localization component

In the feature-oriented appearance-based navigation, two

distinct kinds of localization are required: (i) explicit topo-

logical localization, and (ii) implicit fine-level localization

through the locations of the tracked landmarks. Topologi-

cal location corresponds to the arc of the environment graph

incident to the two key-images having most content in com-

mon with the current image. This is usually well defined in

practice since the motion of a robotic car is constrained by

the traffic infrastructure. Maintaining an accurate topolog-

ical location is extremely important since that defines the

landmarks which are currently considered for tracking. In

the proposed framework, the tracked features belong either

to the actual arc (topological location), or the two neigh-

bouring arcs as illustrated in Figure 3.

In this paper, we focus on the on-line facets of the local-

ization problem: (i) robust fine-level localization relying on

feature prediction, and (ii) maintenance of the topological

location as the navigation proceeds. However, for complete-

ness, we first present a minimalistic initialization procedure

used in the experiments.

2.2.1 The initialization procedure

The navigation program is started with the following pa-

rameters: (i) map of the environment (ii) initial topological

location of the robot (index of the actual arc) (iii) calibra-

tion parameters of the attached camera. The execution starts

with wide-baseline matching of the current image with the

two key-images incident to the actual arc. From the ob-



tained correspondences, the pose is recovered in the actual

geometric frame, allowing to project the mapped features

and to bootstrap the processing loop. Note that automatic

initialization using content based image retrieval is feasible.

2.2.2 Feature prediction and tracking resumption

The point features which are tracked in the current image

It are employed to estimate the current two-view geome-

tries Wt:i(Ii, It) and Wt:i+1(Ii+1, It) towards the two inci-

dent key-images, using the same procedure as in 2.1. An

accurate and efficient recovery of the three-view geome-

try is devised by a decomposed approach [10] in the cali-

brated context. The approach relies on recovering the rel-

ative scale between the two independently recovered met-

ric frames, by enforcing the consistency of the common

structure. The main advantages with respect to the “golden

standard” method [9] are the utilization of pairwise cor-

respondences (which is of particular interest for forward

motion), and real-time performance. Thus, the three-view

geometry (It, Ii, Ii+1) is recovered by adjusting the pre-

computed two-view geometry Wi+1 towards the more ac-

curate (in terms of reprojection error) of Wt:i and Wt:i+1

(see Figure 3). The geometry (It, Ii+1, Ii+2) is recovered

from Wi+2 and Wt:i+1, while (It, Ii−1, Ii) is recovered

from Wi and Wt:i. Current image locations of landmarks

mapped in the actual arc i + 1 are predicted by the geom-

etry (It, Ii, Ii+1). Landmarks from the previous arc i and

the next arc i+2 are transferred by geometries (It, Ii−1, Ii)
and (It, Ii+1, Ii+2), respectively.

Figure 3. The current image It and the three groups of features

considered for tracking when the topological location is i+1. The

notation is explained in Figure 2. See text for more details.

In any case, the prediction by point transfer is performed

only if the estimated reprojection error of the employed cur-

rent geometry is within the safety limits. The obtained pre-

dictions are refined (or rejected) by minimizing the residual

between the warped current feature and the reference ap-

pearance. As in tracking, the result is accepted if the pro-

cedure converges near the predicted location, with an ac-

ceptable residual. The above procedure is also employed to

check the consistency of the tracked features, which occa-

sionally “jump” to the occluding foreground. Thus, follow-

ing the sanity check on the employed two-view geometry,

the tracking of a feature is discontinued if the tracked posi-

tion becomes too distant from the prediction.

2.2.3 Maintaining the topological location

Maintaining a correct topological location is critical since

both feature prediction and robot control depend on its ac-

curacy. This is especially the case in sharp turns where the

tracked features die quickly due to the contact with the im-

age border. An incorrect topological location implies a sub-

optimal introduction of new features and may be followed

by a failure due to insufficient features for calculating Wt:i

and Wt:i+1, and performing the prediction.

Best results have been obtained using a straightforward

geometric criterion: a forward transition is taken when the

camera pose in the actual geometric frame Wi+1 is in front

of the farther camera Ii+1. This can be expressed as:

〈−Ri+1
⊤ · ti+1, tt:i+1〉 < 0 . (1)

The decision is based on the current geometry related to the

next key-imageWt:i+1, which is geometrically closer to the

hypothesized transition, as shown in Figure 4. As before,

the above is cancelled if the estimated reprojection error

of the employed current geometry is not within the safety

limits. Note that backwards transitions can be analogously

defined in order to support reverse motion of the robot.

Figure 4. Condition for changing the topological location.

After each change of the topological location, the refer-

ence appearances (references) are redefined for all relevant

features in order to achieve better tracking. For a forward

transition, references for the features from the actual geom-

etry Wi+1 are taken in Ii+1, while the references for the

features from Wi+2 are taken in Ii+2 (see Figure 3). Previ-

ously tracked points from geometries Wi+1 and Wi+2 are

instantly resumed using their previous positions and new

references while the features from Wi are discontinued.

3. Experimental results

The experiments have been carried out on sequences

taken from the robotic car and in real-time, during naviga-

tion. The experiments are organized in three groups, involv-

ing mapping, off-line localization, and navigation (real-time

localization with robot control).

3.1. Mapping experiments

We first present quantitative mapping results obtained on

the learning sequence ifsic5, corresponding to the reverse

of the path shown in Figure 1. The selected set of key-

images is presented in Figure 5.



Figure 5. Key-images from the map of the sequence ifsic5. The

sequence contains 1900 images, acquired along a 150 m path. The

images can be enlarged within the pdf document of the article.

The analysis was performed in terms of the parameters

of individual geometric models, which were introduced in

2.1. These parameters are (i) the number of point features

(more is better), (ii) the reprojection error (less is better),

and (iii) the inter-node distance (more is better). Figure 6(a)

shows the variation of the first two parameters along the arcs

of the created environment graph. A qualitative illustration

of the third parameter (inter-node distance) is presented in

Figure 6 as the sequence of recovered camera poses corre-

sponding to the nodes of the environment graph.

In order to achieve a uniform representation, all geomet-

ric models were put into the common metric frame of the

first geometry W1. The figure suggests that the mapping

component adapts the density of key-images to the inherent

difficulty of the scene. The dense nodes 7-14 correspond

to the first difficult moment of the learning path: approach-

ing the traverse building and passing underneath it. Nodes

20 to 25 correspond to the sharp left turn, while passing

very close to a building. The hard conditions persisted af-

ter the turn due to large featureless bushes and a reflecting

glass surface (see Figure 5, bottom row), which is reflected

in dense nodes 26-28. The number of features in arc 20 is

exceptionally high, while the incident nodes 19 and 20 are

very close. The anomaly is due to a large frame gap causing

most feature tracks to terminate instantly. Wide-baseline

matching succeeded to relate the key-image 19 and its im-

mediate successor which consequently became key-image

20. The error peak in arc 21 is caused by an another gap
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Figure 6. Counts of mapped point features and reprojection errors

(a), and sequence of camera poses corresponding to 28 arcs of the

environment graph obtained from the sequence ifsic5 (b).

which has been successfully bridged by the tracker alone.

In the second group of experiments, we consider the

learning sequence loop-clouds, taken along a circular

path of approximately 50 m. Circular sequences are es-

pecially suitable for testing the mapping alternatives since

they provide an intuitive notion about the achieved over-

all accuracy. We investigate the sensitivity of the map-

ping algorithm with respect to the three main parameters

described in 2.1: (i) minimum count of features n, (ii) max-

imum allowed reprojection error σ, and (iii) the RMS resid-

ual threshold R. The resulting poses have been plotted in

Figure 7 for 4 different parameter triples.

0

77 0’
0

32 0’

n = 100, σ = 1, R = 4 n = 50, σ = 2, R = 6

0
28

0’ 0

26 0’

n = 50, σ = 4, R = 6 n = 25, σ = 2, R = 6
Figure 7. Poses from the maps obtained on input sequence

loop-clouds, by employing different mapping parameters.

Reasonable and usable representations have been ob-

tained in all cases, despite the smooth planar surfaces and

vegetation which are visible in Figure 8. The presence of

node 0’ indicates that the cycle at the topological level has

been successfully closed by wide-baseline matching. Ide-

ally, nodes 0’ and 0 should be very close; the extent of the

distance indicates the magnitude of the error due to the ac-

cumulated drift. The relations between the two nodes in the

first three results in Figure 7 suggest that the distance be-

tween the corresponding locations is around 1.5 m. The last

map in Figure 7 (bottom-right) was deliberately constructed

using suboptimal parameters, to show that our navigation

approach essentially works even when the global consis-

tency is difficult to enforce. The navigation can smoothly

proceed despite a discontinuity in the global geometric re-

Figure 8. Key-images from the map obtained on the sequence

loop-clouds, with n = 50, σ = 4, R = 6. The images

can be enlarged within the pdf document of the article.



construction, since the local geometries are “elastically”

glued together by the continuous topological representation.

The experiments show that there is a direct coupling be-

tween the number of arcs |{Mi}|, and the number of fea-

tures in each arc |Mi|. Thus, it is beneficial to seek the

smallest |{Mi}| ensuring acceptable values for σ(Wi) and

|Mi|. The requirement that neighbouring triples of images

need to contain common features did not cause problems in

practice: the accuracy of the two-view geometries σ(Wi)
was the main limiting factor for the mapping success.

In some cases, a more precise overall geometric picture

might have been obtained by applying a global optimization

post-processing step. This has been omitted since, in the

context of appearance-based navigation, global consistency

brings no immediate benefits and poses scalability prob-

lems. Enforcing the global consistency is especially fragile

for forward motion which occurs predominantly in the case

of non-holonomic robotic cars. In this context, more than

half of the correspondences are not shared between neigh-

bouring geometries, and the ones that are shared are more

likely to contain association errors due to a larger change in

appearance.

3.2. Localization experiments

We first illustrate the capability of the localization com-

ponent to resume temporary occluded and previously un-

seen features. Figure 9 shows the results of feature tracking

within the localization component. The employed map has

been illustrated in Figure 6 and discussed in the accompany-

ing text. The figure shows a situation in which six features

have been wiped out by a moving pedestrian, and subse-

quently resumed without errors. In the figure, the rejected

predictions are designated with crosses: notice that they

are near to where the corresponding landmarks would have

been projected had they not been occluded. In the case of

feature 146 in frame 743, the tracker “zoomed out” so that

the legs of the occluding person are aligned with the edge of

the tracked corner. Feature 170 has been found in the same

frame by “zooming in” onto a detail on the jacket. Both

findings were rejected due to a large residual towards the
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Figure 9. Re-introducing disoccluded landmarks: tracked features

and rejected projections are designated with squares and crosses,

respectively. The bottom row shows the references and optimized

warps for the features 146 (left) and 170 (right).

reference appearance. The danger of introducing an associ-

ation error while searching for an occluded feature can not

be completely avoided, but is largely suppressed within a

conservatively configured tracker with warp correction and

checking [18] (large features, low RMS threshold R).

The capability of the localization component to traverse

a topological cycle created by the mapper was tested on

a sequence obtained during two rounds roughly along the

same circular physical path. This is a quite difficult sce-

nario since it requires continuous and fast introduction of

new features due to persistent changes of viewing direction.

The first round was used for mapping (this is the sequence

loop-clouds, discussed in Figures 7 and 8), while the lo-

calization is performed along the combined sequence, in-

volving two complete rounds. During the acquisition, the

robot was manually driven so that the two trajectories were

more than 1 m apart at several occasions during the experi-

ment. Nevertheless, the localization was successful in both

rounds, as summarised in Figure 10(a). All features have

been successfully located during the first round, while the

outcome in the second round depends on the extent of the

distance between the two trajectories.
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Figure 10. Average counts of tracked features on the map shown

in Figure 8, while processing the sequences (a) loop-clouds

(two rounds), and (b) loop-sunlight (one round).

The map built from the sequence loop-clouds has also

been tested on the sequence loop-sunlight, acquired

along a similar circular path in bright sunlight. The imag-

ing conditions during the acquisition of the two sequences

were considerably different, which can be seen in Fig-

ure 11. Nevertheless, the localization component success-

fully tracked enough mapped features, except in arcs 10, 11

and 12 as shown in Figure 10(b). The recovered geometries

in arc 10 were too uncertain so that the switching towards

arc 11 did not occur at all, resulting in zero points tracked

in arcs 11 and 12. The two factors amplifying the effects

of feature decimation due to different illumination were a

tree covering most of the field of view, and a considerable

curvature of the learning path (see Figures 8 and 11). The

localization component was re-initialized by wide-baseline

matching using the key-images incident to the arc 13, where

the buildings behind the tree begin to be visible. Figure 11

shows the processing results immediately after the reini-

tialization, within arc 13. The figure shows that there is
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a big potential for association errors since many prominent

landmarks are ambiguous due to structural regularity typi-

cal for man-made environments. The framework deals suc-

cessfully with such ambiguities, since good predictions of

invisible feature positions are provided by point transfer.

3.3. The navigation experiments

The proposed framework performed well in navigation

experiments featuring real-time control of the robotic car. A

simple visual servoing scheme was employed, in which the

steering angle ψ is determined from average x components

of the current feature locations (xt, yt) ∈ Xt, and their cor-

respondences in the next key-image (x∗, y∗) ∈ Xi+1.

ψ = −λ (xt − x∗) , where λ ∈ R+ . (2)

We present an experiment carried out along an 1.1 km ref-

erence path, offering a variety of driving conditions includ-

ing narrow sections, slopes and driving under a building.

In order to accomodate the control frequency of 1 Hz, the

navigation speed was set to 30 cm/s in turns, and otherwise

80 cm/s. The map was built by the procedure described in

2.1, on a learning sequence acquired under manual control.

The compound appearance-navigation system performed in

a way that only five human interventions were required, at

locations shown in Figure 12. Between the points A and

B the robot smoothly drove over 740 m despite a passing

car occluding the majority of the features, as shown in Fig-

ure 13. Several similar encounters with pedestrians have

been dealt with in a graceful manner too. The system suc-

ceeded to map features (and subsequently find them) in

seemingly featureless areas where the road and the grass

occupied most of the field of view. The reasons for the five

0

A

D

E

B

C

Figure 12. The graph of 320 nodes mapping an 1.1 km reference

path. Large circles mark places where a human intervention was

necessary. The distance between A and B is approximately 740 m.

interventions were (i) failures within the localization com-

ponent due to unsuccessful maintenance of the topological

location in turns (A, B and D), and (ii) prevention of a curb

contact due to an extremely narrow section of the road (E)

and a tendency of the control law (2) to “cut the corners”

(C).

The environment representation shown in Figure 12 is

quite inaccurate from the global point of view. The begin-

ning and the final node of the graph correspond to the same

physical location, but this is not the case in the figure due

to evident deviations in shape and scale. Nevertheless, the

experimental system succeeds to perform large autonomous

displacements, while also being robust to other moving ob-

jects. We consider this as a strong indication of the potential

Figure 13. Sequence of images obtained during the execution of a

navigation experiment. The points used for navigation re-appear

after being occluded and disoccluded by a moving car.



of the proposed framework towards real applications of au-

tonomous vehicles in the near future.

4. Conclusion

We described a novel framework for large-scale mapping

and localization, based on point features mapped during a

learning session. The purpose of the framework is to pro-

vide 2D image measurements for appearance-based naviga-

tion. The tracking of temporarily occluded and previously

unseen features can be (re-)started on-the-fly due to feature

prediction based on point transfer. 2D navigation and 3D

prediction smoothly interact through a hybrid hierarchical

environment representation. The navigation is concerned

with the upper topological level, while the prediction is per-

formed within the lower, geometrical level.

In comparison with the mainstream approach involving

a monolithic geometric representation, the proposed frame-

work enables robust large-scale navigation without requir-

ing a geometrically consistent global view of the environ-

ment. This point has been demonstrated in the experiment

with a circular path, in which the navigation bridges the first

and the last node of the topology regardless of the extent

of the accumulated error in the global 3D reconstruction.

Thus, the proposed framework is applicable even in inter-

connected environments, where a global consistency may

be difficult to enforce.

The localization component requires imaging and nav-

igation conditions such that enough of the mapped land-

marks have recognizable appearances in the acquired cur-

rent images. The performed experiments suggest that this

can be achieved even with very small images, for moderate-

to-large changes in imaging conditions. The difficult sit-

uations include featureless areas (smooth buildings, vege-

tation, pavement), photometric variations (strong shadows

and reflections), and the deviations from the reference path

used to perform the mapping, due to control errors or obsta-

cle avoidance. In the spirit of active vision, the last problem

will be addressed within the control domain.

In our recent implementation, the mapping and localiza-

tion throughput on 320×240 gray–level images is 5 Hz and

7 Hz, respectively, using a notebook computer with a CPU

performance roughly equivalent to a Pentium 4 at 2GHz.

Most of the processing time is spent within the point fea-

ture tracker, which uses a three-level image pyramid in or-

der to be able to deal with large feature motion in turns.

The computational complexity is an important issue: with

more processing power we could deal with larger images

and map more features, which would result in even greater

robustness. Nevertheless, encouraging results in real-time

autonomous robot control have been obtained even on very

small images. In the light of future increase in processing

performance, this suggests that the time of vision-based au-

tonomous transportation systems is getting close.
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