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Abstract

Two major limitations of real-time visual SLAM algo-
rithms are the restricted range of views over which they can
operate and their lack of robustness when faced with erratic
camera motion or severe visual occlusion. In this paper we
describe a visual SLAM algorithm which addresses both of
these problems. The key component is a novel feature de-
scription method which is both fast and capable of repeat-
able correspondence matching over a wide range of view-
ing angles and scales. This is achieved in real-time by using
a SIFT-like spatial gradient descriptor in conjunction with
efficient scale prediction and exemplar based feature rep-
resentation. Results are presented illustrating robust real-
time SLAM operation within an office environment.

1. Introduction
Significant advances have been made in real-time esti-

mation of the 3-D pose of a moving camera using vision in
uncalibrated environments. It requires simultaneous estima-
tion of a scene map, and is related to simultaneous localisa-
tion and mapping (SLAM) in robotics [3]. Applications are
in areas such as Wearable Computing, in which the cam-
era is either hand-held or attached to a user. This makes
it a challenging task using vision alone. It is best tack-
led by stochastic filtering, and pioneering work was done
by Davison [2], using Kalman filtering and efficient feature
matching. Eade and Drummond [4] recently demonstrated
a comparable system using the FastSLAM algorithm [12].
Both approaches give impressive real-time performance, al-
beit over restricted areas with smooth motions and minimal
visual occlusion.

Unfortunately, these restrictions are a major stumbling
block to use in real applications. A central difficulty is
the reliance on simple template matching for feature cor-
respondence in order to achieve real-time operation. Under
smooth motions, filter predictions of feature locations are

reliable and hence matching ambiguity can be minimised.
However, when faced with erratic motion, such as camera
shake, or significant occlusion, the lack of discrimination
leads to mismatch and filter instability. Similarly, as fea-
tures are viewed from wider angles, surrounding regions
deviate from the templates and matching becomes unreli-
able, again resulting in failure. Matching ambiguity is ad-
dressed to some extent by Pupilli and Calway [13] using a
particle filter, although the approach lacks full covariance.
Wide angled viewing can be accounted for by warping tem-
plates based on estimated or assumed surface normals, as in
[11, 4], but this has limitations and also fails to address the
ambiguity problem. Of course, recovery from tracking fail-
ure can always be achieved by relocalising the camera using
an auxiliary process, as demonstrated in [15] for example,
but this needs to be put off for as long as possible to avoid
repeated re-initialisation and hence reduced performance.

A more desirable approach is to seek greater discrimina-
tion in feature matching so as to improve robustness when
filter uncertainty increases. Techniques such as the Scale-
Invariant Feature Transform (SIFT) [9] and maximally sta-
ble regions [10], for example, have been shown to give reli-
able feature matching over a wide range of viewing angles
and scales. However these methods were designed primar-
ily for off-line matching and object recognition, and aim for
full invariance to compensate for the lack of view informa-
tion. This makes them inefficient for SLAM systems, in
which estimates of camera position and direction are avail-
able. This is exploited by Chekhlov et al. [1], who demon-
strate that scale predictions from the SLAM filter can be
used to increase the efficiency of feature matching using de-
scriptors similar to that used in the SIFT. The resulting algo-
rithm demonstrates significant performance gains over that
previously achieved, including the ability to recover SLAM
operation following camera shake and occlusion. What this
work failed to address, however, was the issue of wide angle
viewing of features, and this proves to be a limitation when
seeking to extend operation over wider physical areas.
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In this paper we tackle this problem by utilising an exem-
plar based representation of feature regions (corresponding
to affine transformations of the initialisation region), which
when combined with the descriptor gives increased wide
angle matching. However, it turns out that for real-time
operation, this can only be achieved by adopting a differ-
ent scale prediction strategy to that used in [1]. This results
in an alternative formulation and initial results suggest that
robustness is significantly increased. The paper is organ-
ised as follows. In the next section we briefly outline the
SLAM system, followed by a detailed description of the
feature matching process, which is the main contribution
of the paper. Results are then presented showing successful
real-time SLAM operation in an office environment, includ-
ing withstanding camera shake, occlusion and wide angled
viewing.

2. Visual SLAM Using Stochastic Filtering
We use a stochastic filtering framework in a similar man-

ner to that in [2, 4, 1], based around an unscented Kalman
filter (UKF) [7], primarily for ease of implementation. The
system has the usual predictor-corrector structure as illus-
trated in Fig 1. As each video frame is processed, we aim
to estimate the current 3-D camera pose and update esti-
mates of the 3-D position of scene points, all with respect
to a known world coordinate frame. The filter state there-
fore has the form x = (v, z), where v = (q, t) encodes
the camera pose via the quaternion q, representing the ori-
entation, and the position vector t, and z = (z1, . . . , zM )
denotes the 3-D position vectors for M scene points. Dur-
ing SLAM operation, the number of points will change, as
points are added to and removed from the map, and thus the
filter state dimension needs to be variable.

The filter requires a process model and an observation
model [7], defining the state dynamics and the relationship
between the state and measurements taken from the video
frames. We assume a constant position motion model for
the camera, i.e. a random walk, which gives greater robust-
ness to erratic motion [13], and we also assume that the
scene is rigid. This leads to the following process model

f(x,n) = (t + nτ ,∆q(nω) ⊗ q, z) (1)

where n = (nτ ,nω) is a 6-D noise vector, assumed to
be from N(0, Qn), ∆q(nω) is the incremental quaternion
corresponding to the Euler angles defined by nω, and ⊗

denotes quaternion multiplication. Note the non-additive
noise component within the quaternion part, which is nec-
essary to give an unbiased distribution in rotation space [1].

The filter observations are assumed to be corrupted po-
sitions of projected scene points within the current video
frame. For a given scene point, its projection corresponds
to a transformation into the camera co-ordinate system

prediction

measurement

update

3-D pose and map

Unscented

Kalman Filter

Figure 1. Stochastic filtering for visual SLAM, illustrating
predictor-corrector operation in which measurements found within
predicted search regions are used to update camera pose and scene
map estimates.

followed by perspective projection onto the image plane.
Thus, for the mth point, this gives a 2-D image point
u(zm,v) = Π(R(q)(zm − t)), where R(q) denotes the
rotation matrix corresponding to the normalised quaternion
q and Π() denotes standard pin-hole projection for a cali-
brated camera. The observation model is then the concate-
nation of the projected points with additive noise:

h(x,w) = (u(z1,v) + w1, . . . ,u(zM ,v) + wM ) (2)

where the multivariate noise vector w is from N(0, Rw).
The filter provides successive estimates of the mean state

and its covariance. As illustrated in Fig. 1, an iteration in-
volves generating a mean and covariance prediction for the
next state via the process model in (1), collecting measure-
ments of feature positions from the current video frame, and
then updating the mean and covariances using the Kalman
equations based on the observation model in (2). Both the
process and observation models are non-linear and thus we
require an approximation to the KF, hence our use of the un-
scented KF. Crucially, the mean and covariance predictions
from the filter are used to constrain the search for features
as illustrated in Fig. 1. This utilises the global structure
built up within the scene map and can be implemented us-
ing the unscented transform [7]. To minimise computation,
candidate feature points within search regions, indicated in
yellow in Fig. 1, are detected using a fast salient point oper-
ator (we use that proposed by Rosten and Drummond [14]),
and the most likely feature positions are then found by com-
parison with feature measurements taken around each scene
point at initialisation. This comparison is critical for suc-
cessful operation of the filter and it is the main concern of
this paper. We return to it in the next section.

There are, however, several additional components that
need to be in place for real-time SLAM operation. We
briefly describe these here; readers are referred to [2, 4, 13]
for more details. To bootstrap the filter we position the cam-
era parallel to a test pattern in the scene, with known fea-
ture points, and this sets the scale factor as well as provid-
ing an initial map with which to begin tracking the camera
pose. As the camera moves away from the test pattern, new
scene points are initialised into the map concurrent with



tracking. Potential points are selected from candidate 2-D
salient points in unexplored regions and their 3-D position
initialised using factored sampling along the correspond-
ing projection ray in conjunction with feature matching in
subsequent frames. As depth estimates converge, the new
points are incorporated into the map, although care needs
to be taken to ensure correct initialisation of covariances
[2, 1]. As tracking proceeds the 3-D position estimates con-
verge, hence enabling wider area operation. Points which
fail to be matched over successive frames are pruned from
the map in order to minimise computation. Both the initial-
isation of new points and the subsequent tracking of camera
pose therefore depends critically on successful matching of
features across frames and it is on this that we now concen-
trate.

3. Robust Feature Matching for Visual SLAM
Matching features across successive video frames is a

challenging task to achieve in real-time, especially when
operating in cluttered environments and over wide view-
ing angles, when perspective effects can become signifi-
cant. Template matching, as used in [2, 4], is an attrac-
tive option for SLAM since it minimises image process-
ing effort, which is essential for real-time operation. When
search regions are small, which reduces the chances of mis-
match, the approach can be effective, although as viewing
angles increase matching will become problematic. The lat-
ter can be addressed by warping templates, as in [11, 4]
for example, but this has limitations. A greater difficulty
occurs when the camera pose becomes uncertain, due to
sudden erratic motion or occlusion for example, and search
regions correspondingly increase, resulting in widespread
mis-match due to the lack of discrimination inherent in tem-
plate matching and leading to tracking failure (an example
of this is shown in Fig. 6). Greater discrimination in feature
matching is therefore required if increased robustness is to
be obtained.

3.1. Scale Prediction in Feature Matching
Considerable work has been done in developing robust

feature matching for off-line systems, in applications such
as object recognition, and techniques such as the SIFT de-
veloped by Lowe [9], have demonstrated highly discrimi-
nate matching. However, these methods are very general,
in that they assume that no a priori information is available
about camera views, and hence attempt to build in sufficient
invariance to compensate for this lack of prior knowledge.
The situation in a SLAM system is different, in that esti-
mates of the camera pose are available, and thus the use of a
‘full invariance’ descriptor is wasteful. Instead, the camera
pose estimates can be used to reduce the need for full in-
variance in the descriptor and hence minimise computation

and potentially increase robustness. This is the approach
adopted in [1], where the estimates of camera position are
used to predict the changes in scale between features in dif-
ferent frames. This in turn is used to compute spatial gradi-
ent descriptors, similar to those used in the SIFT, at scales
which compensate for the change in camera position.

The matching algorithm operates as follows. When map
points are initialised, descriptors are built at multiple scales.
This is a one off overhead which is done concurrently with
SLAM operation. In subsequent frames, descriptors at po-
tential corresponding points are generated at frame resolu-
tion and the estimated change in camera position obtained
from the filter is used to predict which of the original de-
scriptors they should be compared with. The uncertainty in
camera position as indicated by the estimated covariance is
also used to define a range of scale descriptors on which
to base the comparison. Thus, as camera position becomes
uncertain, the range of descriptors tested widens, hence in-
creasing the likelihood of determining a correct match. This
is particularly significant in relocating the camera should
tracking be interrupted. Equally important is that when
tracking is consistent, then computational efficiency is in-
creased by reducing the range of potential candidates that
need to be tested. The resulting algorithm was shown to
give robust performance, capable of recovering SLAM op-
eration even after severe camera shake or total visual occlu-
sion.

3.2. Exemplar Based Feature Matching
A limitation of the above approach however is that the

spatial gradient descriptors have restricted view angle in-
variance. As the camera moves away from where points are
initialised and features are viewed from increasing angles,
matching becomes less reliable and tracking stability is re-
duced. It is this issue that we address in this paper. To do so,
we employ an exemplar approach in which a given feature
point is represented by multiple descriptors corresponding
to a set of affine transformations of the region surrounding
the point. The motivation here is that we approximate the
change in appearance of a feature by an affine transforma-
tion and that the resulting set of descriptors will populate the
area of ‘descriptor space’ corresponding to different view-
ing angles. A similar approach to modelling changes in fea-
ture appearance was adopted by Lepetit and Fua [8].

A difficulty with this approach, however, is that the num-
ber of descriptors that need to be generated at initialisation
becomes large if multiple scales are used as in [1]. To over-
come this we employ an alternative strategy to compensate
for scale changes. At initialisation, descriptors are gener-
ated for affine transformations of the region surrounding a
feature. In subsequent frames, descriptors are generated at
scales determined from the estimates of camera position,
with descriptors at multiple scales being generated when the
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Figure 2. Feature matching using spatial gradient descriptors,
affine exemplars and scale prediction.

camera position becomes uncertain. This is the reverse of
the strategy adopted in [1], in that scale is now accounted for
in the current frame rather than in the initialisation frame.
But in doing so, it frees up time at initialisation to generate
descriptors for the set of affine warps, and allows real-time
operation.

Figure 2 illustrates the feature matching algorithm. Hav-
ing identified a 2-D point for initialisation, we generate a
set of affine transformations of the surrounding region. We
exclude pure 2-D rotations since these are accommodated
for by compensating for dominant orientation when gener-
ating the descriptors [9]. This leaves a 3-D parameterisation
for the transformations of the form A = R−1

θ
SRθ, where

Rθ denotes a 2-D rotation by angle θ and S = diag[s1, s2]
defines the scaling along each dimension [8]. In the ex-
periments we sampled this parameterisation in order to give
around 60 affine warps per feature. Spatial gradient descrip-
tors, compromising of sets of orientation histograms [9], are
then generated for each affine ‘patch’, giving the set of de-
scriptors d1 . . . dK . In the experiments we used patch sizes
of 22 × 22 and 4 × 4 histograms, giving descriptors with
128 elements.

In order to match the same feature in later frames, de-
scriptors at one or more scales are generated about candi-
date points. The scales are determined by the change in
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Figure 3. Synthetic planar sequence comparison between the new
method and that in [1] : (a) percentage of correct matches for each
map point; (b) minimum descriptor error over all features against
viewing angle.

camera position as indicated by the relative change in depth
from the 3-D map point concerned (r0 and rn in Fig. 2). It is
important to build in the uncertainty in the estimated param-
eters from the filter to ensure robust matching, especially
when tracking is interrupted and loss of position occurs.
This can be done efficiently by using the unscented trans-
form to compute covariance values for the relative depth of
features and use this to determine a range of scales over
which to compute descriptors for a given point in the cur-
rent frame. Thus, in Fig. 2 descriptors at two scales are
being generated for each candidate point in frame n. The
matched point is then selected as that associated with the
descriptor having the minimum euclidean distance, below a
given threshold, to one of the exemplar descriptors gener-
ated at initialisation.

4. Results

We tested the new algorithm by performing SLAM in
an office environment using a calibrated hand-held web-
cam with a resolution of 320 × 240 pixels. Tracking was
initialised with four known map points corresponding to
the corners of a planar black rectangle on a white back-
ground placed in the scene. Performance assessment com-
menced once the test pattern became out of view. We
also compared performance with feature matching based
on normalised correlation and the previous method in
[1]. For all experiments SLAM operation was in real-
time, typically around 20 fps with around 25 map fea-
tures. It should be noted, however, that our use of the
UKF is not optimal (it has complexity of order N3) and
that speed up would be achieved when using either an
EKF or a fastSLAM implementation. Our interest here
has been in gaining more robust feature matching whilst
maintaining similar processing time, rather than on opti-
mising overall SLAM speed. Video results can be found at
www.cs.bris.ac.uk/Research/Vision/Realtime/.



4.1. Performance against view point changes

In the first experiment we compare the matching capabil-
ities of the new algorithm with that in [1]. For this we gener-
ated a synthetic sequence consisting of the camera moving
in front of a texture mapped planar surface. The camera was
rotating about a fixed origin on the plane, enabling match-
ing performance to be recorded against viewing angle. To
ensure fair comparison, the same feature points were ini-
tialised into the scene map for both methods. Figure 3a
shows the percentage of correct matches for each feature all
frames for both methods and for the case when only a single
descriptor was generated at initialisation in the new method,
i.e. without exemplars. The latter is similar to the method
in [1] except that the scale compensation is reversed. Note
that matching performance is significantly better when ex-
emplars are included. This is confirmed in Fig. 3b, which
shows the best matching descriptor error for each feature
against viewing angle. Whereas errors begin to increase
significantly at angles around 40 degrees for the method in
[1], errors remain low up to around 60 degrees for the new
method.

4.2. Feature Matching Performance

We observed similar gains in performance with live
SLAM operation. As an illustration, Fig. 4 shows views
through the camera with projected map points superim-
posed for the three different methods. The ellipses indicate
search regions derived from the filter, green (light grey) in-
dicates a match and red (dark grey) indicates a mis-match.
When the camera is positioned roughly fronto-parallel to
initialised features, as in the left column, all three methods
give good matches. However, as the camera pans around,
it is only the new method with exemplars that can main-
tain good matching performance. This is confirmed in Fig.
5a which shows the average percentage of matches over all
frames for the new method (red/dark line) and the method
in [1], averaged over 20 runs. The significant difference is
between frames 200 and 800, when there was significant
changes in viewing angle. Between frames 900 and 1500
there were bouts of camera shake and occlusion (indicated
by sudden drops in matches) but viewing angle was similar
to that at initialisation and so both methods give comparable
performance.

To illustrate the key components of the new method, Figs
5b and 5c show the exemplars selected as the best match
over all frames for three features and the changes in scale
compensation over all frames for one feature, respectively.
Note the wide range of exemplars used, indicating the com-
pensation for viewing angle, and the changes in scale range,
particularly during bouts of shake and occlusion. In the lat-
ter, the blue and green lines indicate the upper and lower
levels of the scale range. Figure 5d shows processing times

Figure 4. Feature matching performance during SLAM, compari-
son between the new method and that in [1] : (top) new method;
(middle) new method without exemplars; (bottom) method in [1].

per frame for one run in which 26 features were mapped,
with steady state operation at around 17-20 fps. As noted
ealier, we would anticipate that increased frame rate would
be achieved using an EKF implementation.

4.3. Erratic Motion and Occlusion
In the final experiments we illustrated the ability of the

new method to recover following bouts of camera shake
and visual occlusion. As noted earlier, robustness to such
unpredictable camera motion is essential if visual SLAM
algorithms are to be used in real applications and this as-
pect of performance is one of the main motivations for the
work described here. It is also worth emphasising that it
is clearly unrealistic to aim to maintain tracking during all
forms of erratic motion; sufficiently severe changes in cam-
era position, especially when combined with visual occlu-
sion, can always break SLAM operation. However, if re-
peated re-initialisation and hence reduced performance is to
be avoided, then sufficient robustness needs to be built in to
withstand the types of erratic movement that may occur dur-
ing ‘normal use’ in real applications. This includes a degree
of camera shake, temporary occlusion and perhaps combi-
nations of the two. The algorithm presented here does man-
age to recover from such episodes, as illustrated in Figures 6
and 7. In the former we have compared performance with a
standard visual SLAM algorithm using template matching
in the form of normalised correlation, similar to that used
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indicate initialisation of new features).

Figure 6. Performance comparison of the new method (bottom two rows) with that based on normalised cross correlation matching (top
two rows). Note the successful recovery of the new method following camera shake and the failure of the correlation system.

in [2]. The figures show both the view through the cam-
era with projected map points and associated search regions
and an external 3-D view showing the estimated camera po-
sition, its trajectory and the associated position covariance,
indicated by an ellipsoid.

In Fig. 6 the frames show SLAM operation before dur-
ing and after fairly severe camera shake. The main thing to
note is that the template matching approach (top two rows)
fails completely after the shake, whilst the new method suc-
cessfully recovers. Note also that during shake the covari-

ance estimate obtained in the new method increases sig-
nificantly, resulting in large search regions, and that the
descriptors enable successful matching over such regions
when shaking ceases. In contrast, the covariance estimate
in the template matching version does not grow so much
due to false matches obtained, due to the lack of discrimi-
nation, which further prevents relocation once shaking has
ceased. A particularly impressive example is shown in Fig.
7, where severe visual occlusion is combined with move-
ment of the camera to a different viewing point. Despite



Figure 7. Frames illustrating the performance of the new method during SLAM operation showing recovery from severe visual occlusion
during which the camera undergoes a large change in position.

this the new method successfully recovers. The template
matching method failed completely in this example.

5. Conclusions
We have presented a new method for visual SLAM

which demonstrates improved performance over existing
methods. The use of affine exemplars combined with scale
prediction and feature description gives robust matching,
even allowing recovery of operation following significant
camera shake and visual occlusion. The demonstrated im-
provement in matching capability over that in [1] would
suggest that this new approach is to be preferred. Current
work is focused on improving the wide area operation of the
system, particularly in feature management, and we aim to
extend the method into areas such as the kidnapped camera
problem.
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