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Abstract

Motion blur can degrade the quality of images and is

considered a nuisance for computer vision problems. In

this paper, we show that motion blur can in-fact be used

for increasing the resolution of a moving object. Our ap-

proach utilizes the information in a single motion-blurred

image without any image priors or training images. As the

blur size increases, the resolution of the moving object can

be enhanced by a larger factor, albeit with a corresponding

increase in reconstruction noise.

Traditionally, motion deblurring and super-resolution

have been ill-posed problems. Using a coded-exposure

camera that preserves high spatial frequencies in the

blurred image, we present a linear algorithm for the com-

bined problem of deblurring and resolution enhancement

and analyze the invertibility of the resulting linear system.

We also show a method to selectively enhance the resolution

of a narrow region of high-frequency features, when the res-

olution of the entire moving object cannot be increased due

to small motion blur. Results on real images showing up to

four times resolution enhancement are presented.

1. Introduction

A limited resolution sensor may fail to recover sufficient

details on a static object. If we let the object move causing

motion blur, the resulting smear distributes the signal in-

formation to neighboring pixels. Can we exploit these addi-

tional pixel samples to reconstruct the object at a higher res-

olution? Unfortunately, both motion deblurring and resolu-

tion enhancement from multiple images are ill-posed prob-

lems [1, 22, 4] for photos captured with a traditional camera.

Can motion-blur be used to enhance the resolution of a

moving object? In this paper, we show that if the blurred

image is larger than the size of the moving object in pix-

els by a factor s, the resolution of the moving object can

also be enhanced upto a factor s (Figure 1). To practically

achieve this, we use a modified coded-exposure camera that

preserves high spatial frequencies in the motion blurred im-

(a) (b) (c)

(d) (e) (f) (g) (h)

Figure 1. Can we achieve resolution enhancement by letting ob-

jects blur? (a) Camera pixel resolution is insufficient to capture

individual alternating lines in a static image of a standard resolu-

tion chart since they span only n = 18 pixels. (b) Zoom showing

four times upsampling in horizontal direction. (c) If we intention-

ally let the object blur horizontally, the black lines occupy more

pixels. (d) The crop shows that now the smeared features spans

t = 74 pixels with motion blur k = 57 pixels. (e) The additional

samples support deblurring with a resolution enhancement factor

of s = ⌊ 74
18⌋ = 4. (f) and (g) For comparison, results of traditional

deblurring and its four times upsampling fails to recover the de-

tails. (h) Zoomed in close up of the static resolution chart.
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age.

Contributions: The contributions of this paper are as

follows.

• We show that the resolution of a moving object can be

enhanced by utilizing information from motion-blur, if

the blur size is sufficiently large.

• In practice, resolution enhancement is ill-posed and

produces meaningless reconstruction in the presence

of noise. We show that by using a coded-exposure

camera, one can improve the invertibility and achieve

practical resolution enhancements.

• We analyze the relationship between the blur size and

parameters of the code and show how to choose these

parameters for a given blur size and resolution en-

hancement factor (REF).

• We propose a method to selectively increase the res-

olution of a high frequency region on an object when

the blur is small.

Our procedures and assumptions are as follows. We

capture a single photo of a dynamic scene from a static

camera. We assume lens optical blur is smaller than one

pixel (in the high resolution space) and also assume that the

moving object is in the plane of focus. For simplicity, we

restrict our discussion to 1-D linear motions of the object,

although the technique can be extended to more complex

object motions and 2D motions such as camera shake. Thus,

the resolution can be enhanced only along the direction of

the motion. We assume either a known point spread func-

tion (PSF) for the motion blur or that it can be manually

specified by describing the direction and extent of motion

for 1-D linear motions. For practical deblurring, we assume

that the appearance of the object during the exposure time

remains invariant. Thus, specular, transparent and other

view-dependent appearance changes can distort the results.

1.1. Related work

Super resolution (SR): SR refer to techniques aimed at

improving the resolution of a low-resolution sensor. Nu-

merous algorithms which combine multiple low-resolution

images into a single high resolution image have been pro-

posed in literature [24, 7, 13, 19, 10, 16, 9, 11, 25, 2]. In

these approaches, first the relative motion between the cam-

era and the scene is estimated and all images are registered

to a reference frame. Then the images are fused to obtain

a high resolution image. In [4], it was argued that motion

blur in individual images significantly degrades the quality

of super-resolution. They propose a jitter camera, where the

sensor was modified to obtain four images using controlled

sub-pixel detector shifts. A text-specific bimodal prior for

super-resolution of text in videos was proposed in [6].

High resolution recovery of 1-D features was proposed

in [5]. However, their method is restricted as they assume

that each row or column of the low resolution image results

from the sampling of the same signal with different shifts

(e.g. bar codes). In contrast, our approach has no such re-

striction and the profiles of 1-D signal on the object can be

different along the direction orthogonal to the motion direc-

tion.

Single image SR is an under-constrained problem and

most of the previous work can be divided into (a) recon-

struction based algorithms, where a high resolution image

is sought so that after downsampling, it is as close as pos-

sible to the low resolution input image, (b) learning based

Bayesian methods [21, 23] using training dataset and image

priors and (c) functional interpolation which results in blur-

ring of the discontinuities. Our approach is different from

algorithms in all the above three categories and is not a hal-

lucination algorithm. We show the resolution enhancement

using motion blur is not an under-constrained problem if the

blur is large and present a linear algorithm which does not

use any image priors or training data.

Motion deblurring: Image deblurring or deconvolu-

tion [12] has been a well-studied problem. See [14] for

a survey in this area. Blind image deconvolution [15] at-

tempts to infer the sharp image and the PSF simultaneously

from the given image, based on various assumptions ap-

plied to PSF. Bayesian methods assume specific image pri-

ors such as the Poisson distribution as in Richardson-Lucy

algorithm [18]. Ben-Ezra & Nayar [3] proposed a hybrid

camera where a low resolution video camera was used to

estimated the PSF, which was then used to deblur high res-

olution image from a digital still camera.

Coded sampling: Methods to preserve spatial frequen-

cies for subsequent reconstruction include coded aperture

imaging [20] used in astronomy to overcome the limita-

tions of a pinhole camera. Modified Uniformly Redundant

Arrays (MURA) [8] are used for coding and decoding the

light distribution of distant stars using circular convolution

and deconvolution. A coded exposure camera [17] can pre-

serve high spatial frequencies in a motion-blurred image

and make the deblurring process well-posed.

2. Resolution enhancement using motion blur

We first formulate the problem of resolving a moving

object at higher resolution using motion blur. We represent

quantities at high resolution using subscript s. Let us de-

note the image of the object captured using a virtual high

resolution sensor if the object was static. The observed low

resolution motion blurred image b is modeled as

b = hsensor ∗hmotion ∗hlens ∗us + η ,

= hsensor ∗hmotion ∗xs + η ,
(1)

where ∗ denotes convolution, η denotes the noise in the

imaging process and hlens, hmotion and hsensor denote the

lens, motion and sensor PSF’s respectively. We assume
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Figure 2. Basic concept of enhancing resolution using motion blur. (a) (Top) In traditional deblurring, the motion blurred image obtained

from sensor is deblurred using hmotion at the current resolution. It may fail to recover high spatial frequencies on the object if the resolution

is low. (Bottom) Our approach inverts the combined effect of hmotion and hsensor by modeling the blurring process at higher resolution

followed by decimation. This requires blur to be large enough so that t > ns. In practice, this linear system is ill-posed. (b) By using a

coded exposure camera, the smear matrix As changes to a banded matrix according to the binary code used for fluttering the shutter. This

makes (2) well-posed and invertible. (c) Estimated xs by adding noise in b and solving (2) using least squares (matlab backslash operator).

For the coded exposure camera, the condition number of the Ks matrix is orders of magnitude lower, facilitating faithful recovery of xs.

that CCD pixels are square as in [1] and thus hsensor is a

square PSF related to the pixel size. hmotion depends on ob-

ject motion within the exposure time of the captured image.

Specifically, by improving resolution in this paper, we refer

to inverting the combined effects of hsensor and hmotion. We

assume lens PSF is less than one pixel in the high resolution

grid, or resolution can be improved only upto the lens PSF.

Thus, xs = (hlens ∗us) is our desired high resolution static

image of the object. In addition, we assume that the ob-

ject moves in a straight line with constant speed within the

exposure time, leading to a spatially invariant PSF hmotion.

Resolution enhanced deblurring: Let s denote the res-

olution enhancement factor (REF) and k denote the size of

blur (in pixels) in the low resolution sensor output. Without

loss of generality, assume that the object is moving verti-

cally. Let n and ns = n ∗ s denote the height of the object

in low resolution and high resolution grid respectively and

w denotes its width. Then each column of the observed im-

age b will be smeared in the vertical direction and will have

t = k +n−1 samples due to linear convolution.

Discretizing (1) relates the high resolution image xs to

the low resolution blurred image b as

Ds ∗As ∗xs =b,

Ks ∗xs =b,
(2)

where xs is ns×w high-resolution object, As is the smearing

matrix representing motion blur in the high resolution grid

and Ds is the decimation matrix due to hsensor. Each row

of Ds has only s ones, with each column having at most a

single one. Each column of As corresponds to a circularly

shifted PSF vector of length s∗ k zero-padded to the size of

xs, representing linear convolution1. Ks = Ds∗As denote the

1Note that the motion blur in high resolution grid will be s× k

combined deblurring and decimation matrix. Figure 2(a)

shows a toy example for s = 2, where a 16 pixel tall high

frequency pattern moves vertically for k = 50 pixels.

Traditional deblurring: In traditional deblurring, one

attempts to recover x at current resolution by solving

Ax = b, (3)

where A denotes the smear matrix for blur size k. Thus, tra-

ditional deblurring only tries to invert the effect of hmotion

at the current resolution. On the other hand, our approach

inverts the combined effect of hmotion and hsensor by model-

ing the motion blur process in high resolution, followed by

decimation to account for low resolution. In fact, (2) can

also be written as

Ds ∗As ∗xs = Ds ∗bs = b, (4)

where bs is the motion-blurred image in high resolution.

A simple counting argument shows that the number of

observations t in the low resolution motion blurred image

should be greater than the number of unknowns ns for reso-

lution enhancement. Thus

t ≥ ns

(n+ k−1) ≥ n∗ s

k ≥ n∗ (s−1)+1

(5)

Thus, motion blur k has to be larger than the size of the

object in the direction of the motion by a factor of s−1 for

resolution enhancement by a factor of s. For example, if

s = 4, the object should move more than three times its size

in the direction of the motion. In Figure 1, the chart with

width n = 18 pixels blurs by k = 57 pixels, more than three

times its width. This facilitates resolution enhancement by

a factor of four. Thus, as the size of the blur k increases,



REF can be increased. However, in practice, this results in

more noise in the estimated image as shown by the analysis

in Section 3.2.

3. Invertibility of resolution enhancement

In practice, the linear system (2) is ill-posed. Previous

research have shown that deblurring and super-resolution

are ill-posed problems. Baker & Kanade [1] analyzed the

theoretical limits on super-resolution from multiple images,

assuming that the images are perfectly registered. They

showed that for square PSF, the reconstruction constraints

are not invertible, and the condition number for integer

magnification factors (> 1) is infinity. The linear system is

not invertible because high frequencies are lost in the sen-

sor output due to motion blur and low resolution, resulting

in zeros in the frequency spectrum of the PSF’s. Tanaka

& Okutomi [22] presented a condition number theorem for

super-resolution and analyzed Gaussian and box PSF. Ben-

Ezra et al. [4] showed that any motion blur in individual

images is bad for super-resolution using multiple images.

3.1. Coded exposure imaging

One way to preserve high spatial frequencies in a

motion-blurred image is to use a coded exposure cam-

era [17]. We analyze the invertibility of the linear system

for resolution enhancement and show that it is significantly

improved using a coded exposure camera.

The coded exposure camera is a simple modification of

a conventional camera in terms of the integration of light

within a single frame (see Figure 3). Instead of keeping the

shutter open for the entire exposure duration, a coded expo-

sure camera ”flutters” the shutter open and closed accord-

ing to a carefully chosen pseudo-random binary sequence

within a single frame. For static parts of the scene, this

only results in reducing the effective exposure time by half.

However, for moving objects, the resulting motion-blurred

image exhibits coded blur as opposed to continuous blur for

a traditional camera. The blurred image is a convolution of

the static image with the temporal code used for modulat-

ing the exposure. Effectively, the motion PSF is changed

from a low pass box filter to a broad-band filter. The fre-

quency response of this broadband filter depends on the bi-

nary code used for fluttering the shutter. Since the resulting

motion PSF becomes broad-band and does not have zeros in

its frequency spectrum, resolution enhancement becomes a

well-posed invertible problem.

In terms of the linear system (2), the A matrix is changed

if the exposure is coded as shown in Figure 2. For a tradi-

tional camera, the motion PSF is a box filter, represented as

all ones2 in each column of A. By coding the exposure, this

is changed to the binary code used for fluttering.

2assuming that the object is moving at a constant speed

Blurred image: Coded exposure cameraBlurred image: Traditional camera
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Figure 3. Toy example showing the difference between a tradi-

tional and coded exposure camera. In a traditional camera, the

shutter is kept open for the entire exposure time resulting in loss

of high spatial frequencies and a continuous blur in the blurred

image. In a coded exposure camera, the shutter is fluttered (open

and closed) according to a binary code within the exposure time,

preserving high spatial frequencies in the blurred image.

Traditional Camera Flutter Shutter Camera

Motion 
Deblurring

Motion Deblurring    

+ Resolution 
enhancement

Raskar et al. 

SIGGRAPH’06:         
practical

Raskar et al. 

SIGGRAPH’06:         
practical

This paper: 
practical

This paper:   
ill-posed

Well-known:    
ill-posed

Well-known:    
ill-posed

Figure 4. Motion deblurring using a traditional camera is a well-

known but ill-posed problem. The flutter shutter camera [17]

makes deblurring a well-posed problem. Our work differs in that

we combine deblurring with resolution enhancement. We show

that in practice, the resulting linear system remains ill-posed using

a traditional camera. By using a flutter shutter camera, the condi-

tioning of the system can be improved.

How does coding the exposure help in solving the sys-

tem? Let us compare the estimated xs in presence of noise

in b. We add zero mean Gaussian noise (σ = 0.1) to the

blurred images b shown in Figure 2. Figure 2(c) shows the

estimated xs using traditional and coded exposure camera

by solving the linear system in (2). Note that the condi-

tion number of the Ks matrix for traditional camera is of the

order of 1018. In contrast, the condition number of Ks us-

ing coded exposure camera is only 149.2. Thus, even with

small amount of noise, (2) is non-invertible for a traditional

camera but becomes invertible using a coded exposure cam-

era. Figure 4 summarizes the differences with this work,

traditional motion deblurring and coded exposure based de-

blurring [17].

3.2. Theoretical analysis

Consider a length m binary code according to which the

camera’s shutter is open and closed within one exposure

time. We study the relationship between the code length m,

blur size k, and REF, s. We analyze (2) in terms of the noise

covariance of the estimated xs. For a linear system Ax = b,

assuming IID Gaussian noise in b with mean 0 and vari-
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Figure 5. Relationship between code length m, blur size k and REF,

s. (a) Plots of SNR versus relative blur size k/m for coded expo-

sure camera using codes of different lengths for traditional deblur-

ring (s = 1). Note that for each curve, SNR degrades after k > m.

(b) SNR for a coded exposure camera is much better compared

to a traditional camera for wide range of code lengths and motion

blur sizes. (c) Similar plots as in (b) for combined deblurring and

resolution enhancement (s = 2), showing that it is impractical us-

ing a traditional camera. (d) SNR versus s for a fixed blur size k

(= 100) pixels and object size n (= 25) pixels. As s increases,

reconstruction noise also increases.

ance σ2, the covariance matrix of the estimated x̂ is given

by σ2Σ, where Σ = (AT A)−1. The mean square error (MSE)

of x̂ is σ2

n
Trace(Σ). Thus, the signal to noise ratio (SNR)

can be defined as n
Trace(Σ) .

Blur size and code length for s = 1: We first analyze

the relationship between blur size k and code length m for

traditional deblurring (s = 1). Figure 5(a) shows plots of

SNR (in db) versus relative blur size k/m for fixed ob-

ject size (n = 25 pixels) for coded exposure camera using

different code lengths m. For each m, a good code was

found as described in Section 3.3. Note the for each curve,

SNR remains high till k equals m (log(k/m) = 0). Thus,

a code of length m is the most effective when the blur size

k is equal to m. Figure 5(b) shows same plots as in Fig-

ure 5(a) along with the SNR plot for a traditional camera.

The X axis is changed to blur size k for fair comparison

with the traditional camera. For small blur (k ≈ 10 pix-

els), coded-exposure camera performs similar to a tradi-

tional camera. As the blur size increases, the performance

of coded-exposure camera improves significantly. Note that

for k ≤ 52, SNR is highest for m = 52 (red curve), for

50 < k ≤ 100, SNR is highest for m = 100 (green curve),

emphasizing that code length m should be close to blur size

k.

Blur size and code length for s = 2: Figure 5(c) shows

SNR plots similar to Figure 5(b) but for s = 2. The SNR for

a traditional camera degrades sharply even for small motion

blur, making it impractical for resolution enhancement. In

comparison, the coded-exposure camera makes the linear

system (2) more stable. For code length m, the correspond-

ing curve peaks at k ≈ m
s

. This is because the effective blur

in high resolution space is k ∗ s and the best code should be

of the same length.

SNR and REF: Figure 5(d) shows the plot of SNR ver-

sus resolution enhancement factor s for fixed k = 100 pixels,

n = 25 pixels and code length m = 400. Again, the perfor-

mance of a traditional camera degrades quickly even with

small values of s. Interestingly, the SNR values are low

for integer values of REF, similar to the observation made

in [1]. As REF increases, SNR decreases even for coded ex-

posure camera. Thus, higher resolution enhancement leads

to more noise in the estimated image. To summarize,

• By coding the exposure, the invertibility of the linear

system for deblurring and resolution enhancement is

greatly improved.

• For a given enhancement factor s and blur size k, the

optimal code length is m≈ k∗s. However, mismatch in

the code length does not degrade results significantly.

• Since for reasonable values of s, large motion blur is

required, this emphasize the need for finding good long

codes.

3.3. Fast broadband code search

The ”goodness” of the code is based on maximizing the

minimum of the FFT of the zero padded code so that the

motion PSF does not have zeros in its frequency spectrum.

We implemented a fast randomized search where a length

m binary sequence is randomly generated, and stored if it is

better than the previous one. Thus, one need to store only

the current best sequence. This approach gives a good se-

quence within one hour of Matlab computation time. How-

ever, if the system specifications are known (such as the

approximate blur size k and REF s), one can maximize the

SNR as defined above in searching for the code.

4. Results

We use a digital Canon camera with an external ferro-

electric shutter placed in front of the main lens for coding

the exposure, similar to [17]. The ferro-electric shutter be-

comes opaque/transparent according to the binary code be-

ing 0/1 respectively. We use a 100 long code3 with total

exposure time of 200 ms. We estimate the PSF (amount of

blur in pixels and motion direction) manually.

We compare the resolution enhancement results with (a)

deblurring result (referred to as ”traditional deblurring”) up-

sampled by REF, s, and (b) static image upsampled by s.

Bi-cubic interpolation is used for upsampling. The reader

should note that the resolution is enhanced only along the

311010010011101000001000100110100001101100100100001

10101111111101010101001010110110000110011101100011



(a) Captured blurred photo (b) Rectified image

(c) Cutout of blurred image within yellow box

(d) Traditional deblurring output, x

(e) Upsampled x by two along motion direction

(f) Resolution enhancement deblurring, s=2

Figure 6. Text resolution enhancement. (a) Captured blurred photo

of a bus. (b) Rectified image to make motion lines horizontal. (c)

Magnified cutout corresponding to the yellow box in rectified im-

age. (d) Estimated deblurred image x at current resolution. (e)

Upsampled x by two in horizontal direction. (f) Estimated resolu-

tion enhanced deblurred image xs using s = 2. Note the separation

between letters ”0”,”3” and ”8” is clear in our result.

direction of the motion and that all images were captured

using the coded exposure camera. Thus, the ”traditional de-

blurring” results for comparison refer to deblurring results

on coded exposure images.

Figure 1 shows results on a standard resolution chart.

Resolution enhancement by a factor of four was achieved.

Our approach was able to resolve the lines upto the top of

the chart as compared to the upsampled static image or up-

sampled deblurred result at low resolution. Figure 6 shows

a challenging outdoor scenario of increasing the resolution

of text on the bus. The captured image is first rectified man-

ually to make the direction of motion horizontal. Only the

cutout corresponding to the text is processed. The sepa-

ration between the letters ”038” is clear in the estimated

xs as compared to the low resolution deblurring. Figure 7

shows a similar example of increasing the resolution of text

”4010X05” on a moving cart.

5. Selective enhancement of resolution

In Section 2, we showed that for increasing the resolu-

tion by a factor of two, the object should blur equal to its

size in the direction of the motion. This might be restrictive

in certain scenarios. For example, one might be interested in

increasing the resolution of a small patch (e.g. logo or text)

on an object rather than the entire object. We propose to

selectively enhance the resolution of an object patch to han-

dle such cases. The key idea is that although motion blur

may be small compared to the size of the object, it might

(a) Captured Blurred Photo

(b) Blurred image corresponding to black box

(c) Traditional deblurred image x

(f) Resolution enhancement deblurring, s = 3

(e) Upsampled static image by three

(d) Upsampled x by three

Figure 7. Text resolution enhancement. (a) Captured blurred

photo. (b) Cutout corresponding to the letters ”4010X05” high-

lighted within the black outline in (a). Motion blur k = 77 pixels,

t = 113 pixels in horizontal direction. (c) Image x deblurred at

current resolution has n = 37 pixels in motion direction. (d) Up-

sampled image x by three in the motion direction. (e) We also

captured a static image of the cart. Upsampled static image by

three in the motion direction. (f) Since the number of samples t is

greater than 3∗n, resolution enhancement by a factor of three can

be achieved. Note that the letters ”0” and ”5” are clearly separated

in our result.

be large enough compared to the size of an individual patch

or region of interest on the object to facilitate resolution en-

hancement.

The resolution of a narrow patch P on an object can be

increased selectively when the motion blur of the object is

small, if it is surrounded by low frequency neighborhood re-

gions. To achieve this, we reorganize the linear system (2)

so as to assume more unknowns on the patch P (sufficient to

do resolution enhancement deblurring) and less unknowns

on surrounding regions (sufficient to do low resolution de-

blurring). Suppose the patch P of size np is surrounded by

patches L and R of sizes nl and nr respectively so that

n = nl +np +nr (6)

Let t < s∗n in (5) so that the resolution of the entire object

cannot be increased by s. In other words, there are more

unknowns than observations. We first form the Ks matrix

for the entire object. Then we resample the rows of Ks to

reduce the number of unknowns and obtain a new matrix K̂s

which is then used in (2) (See Figure 9).

We adopt a two step process. We first deblur the image

to obtain x. Then simple user interaction identifies patchess

L, P and R. If we increase the resolution of P by s, then
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Figure 8. Selective enhancement of resolution of a narrow high fre-

quency patch surrounded by large low frequency neighborhoods.

Synthetic example showing success (left) and failure (right) cases

for s = 2. Image b simulated by blurring the high resolution im-

age (ns = 128 pixels in horizontal direction) by motion blur k = 50

pixels and downsampling by two has t = 114 pixels along motion

direction. Traditional deblurring will estimate a low resolution

output x having n = t − k + 1 = 65 pixels. Since t < 2 ∗ n, res-

olution of the entire image cannot be increased by two. However,

the resolution of eye patch can be selectively enhanced by estimat-

ing two times more unknowns in the that region, while rest of the

image can be deblurred at low resolution.

the available samples for patches L and R are t − s∗np. Di-

viding the number of samples equally4 between L and R,

the available samples for each of the patches L and R are

q = (t − s∗np)/2. We resample Ks where for each row (see

Figure 9)

• The first s∗nl entries corresponding to patch L are re-

sampled to length q.

• The next s∗np entries corresponding to the patch P are

kept as such.

• The last s∗nr entries corresponding to patch R are re-

sampled to length q.

Figure 8 shows a synthetic example where the static im-

age is blurred horizontally and downsampled. Due to the

4Note that the samples can also be distributed according to the relative

size of R and L.

ns= s*n

t

Ks

t < s*nL + s*nP + s*nR

resample rows

q = (t - s*nP)/2

s*nRs*nRs*nLs*nL s*nPs*nP qs*nPq

t

Observations < unknowns

Ks
^

t > q + s*nP + q

Observations > unknowns

nP = 27

t = 277

(i) Captured blurred photo

(ii) Traditional deblurring output x

s*nP

(iii) Selective enhancement of resolution

Upsampled by 2 
for comparison

Figure 9. (Top) Resampling rows of Ks to yield K̂s for patch of

length np. K̂s is then used in (2). (Bottom) Real example where

the resolution of the text ”410X05” is enhanced by two while the

rest of the image is deblurred at low resolution. The motion blur k

equals 39 pixels, which is larger than the size of the patch np = 27

pixels. Thus, REF s = 2 can be achieved for the patch.

small motion blur, the resolution cannot be increased by two

for the entire image in the horizontal direction. However,

one can selectively increase the resolution of the eye patch

as shown when the neighboring regions have low frequen-

cies. Figure 8 also shows the failure case if the surround-

ing patches have high frequency texture. Figure 9 shows

a real example where the resolution of text ”4010X05” is

increased by two, while rest of the image is deblurred at

low resolution. Note that this example is different from the

one in Figure 7, where the resolution of the entire deblurred

output x was increased by three.

6. Discussion

Handling background: In practice, when an object

moves, it smears with the background and the unknown

background color along the scanline also needs to be es-

timated. We assume that the background is low frequency

and does not have high frequency texture. We estimate a

single unknown color for the background on every motion

line.



Limitations and future work: A future application

could be increasing the resolution of a static scene from a

single low resolution image captured by intentionally shak-

ing the camera. We have dealt with simple linear motions

and thus recovery of high frequencies and resolution en-

hancement can only be done along the motion direction.

More complicated motions can lead to spatially varying

PSF. Automatic PSF estimation from a single image is a

challenging problem. We currently rely on user input to in-

fer the direction of the motion and the blur size. Textured

background will also create problems for deblurring. Our

approach is linear and fast, although the use of specific pri-

ors such as bimodal distribution for text can improve results

in those situations.

Conclusions: We have shown that motion blur can be

used to enhance the resolution of a moving object from a

single photo, if the blur is sufficiently large. We showed

that resolution enhancement is an ill-posed problem for im-

ages captured using a traditional camera and that the coded

exposure camera significantly improves the invertibility of

the resulting system. Theoretical analysis of the relation-

ship between code length, size of the blur and REF shows

that our approach can handle a range of blur values and res-

olution enhancement factors. Results on up to four times

resolution enhancement were shown to be possible, but with

selective enhancement, larger enhancement factors may be

achieved.
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