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Abstract

We present a new method to fit grammar-based stochas-

tic models for biological structure to stacks of microscopic

images captured at incremental focal lengths. Providing

the ability to quantitatively represent structure and auto-

matically fit it to image data enables important biological

research. We consider the case where individuals can be

represented as an instance of a stochastic grammar, simi-

lar to L-systems used in graphics to produce realistic plant

models. In particular, we construct a stochastic grammar

of Alternaria, a genus of fungus, and fit instances of it to

microscopic image stacks.

We express the image data as the result of a generative

process composed of the underlying probabilistic structure

model together with the parameters of the imaging system.

Fitting the model then becomes probabilistic inference. For

this we create a reversible-jump MCMC sampler to traverse

the parameter space. We observe that incorporating spatial

structure helps fit the model parts, and that simultaneously

fitting the imaging system is also very helpful.

1. Introduction

The function of an object is often closely related to its

structural form. As a result, the process of understand-

ing what a novel item is or does frequently begins with

an inspection of its structure. This is particularly true in

biology, where scientific inquiries of microscopic speci-

mens focus on observing and quantifying structure in im-

ages under varying experimental conditions to test hypothe-

ses of specimen functionality. However, manually obtain-

ing such results is expensive and time-consuming. In this

paper we present a new method to automatically infer bio-

logical structure from microscopic images using grammar-

based models for biological growth.

Many biological structures comprise a set of connected

substructures that are recursively related and can be de-

scribed by a formal set of rules explaining their growth.

The set of rules is a grammar for growth and is similar to

Lindenmayer-systems [9] used in graphics. By stochasti-

cally and recursively applying these rules, an instance of the

grammar is generated. We consider such a grammar as a ba-

sis for building a probabilistic specimen model to infer from

data. The model is constructed so that repeated application

of the grammar rules can generate a parameterization of it.

Thus, our approach focuses on fitting a complete model of

the specimen, unlike previous methods that fit only individ-

ual and independent substructures of specimen [1, 13].

Images formed under a transmitted-light microscope

contain a significant amount of blur due to the high mag-

nification and shallow depth-of-field in the optics. This

makes accurate localization of structure in the images dif-

ficult. Rather than try to eliminate the blur from the im-

ages through deblurring methods [3, 7], we model the opti-

cal system in order to understand the image formation pro-

cess and unlock structural information captured in the im-

age blur. Combining a grammar-based structure model for

a specimen with a model for the optics of the imaging sys-

tem is an innovative and powerful way to understand micro-

scopic images accurately.

Inferring such models is analytically very difficult; the

number of parameters, their interdependence, and the fact

that the dimensions of the model is itself a parameter, cre-

ate a space that is prohibitively complex to work with. Thus,

we create a Markov chain Monte Carlo sampler [2, 11] to

efficiently explore the parameter space in search of a likely

set of parameters that generated the data. The moves of the

sampler that guide its search through the model parameter

space effectively embody the rules of the grammar for the

specimen. Furthermore, the sampler infers both the struc-

ture and imaging models simultaneously so that each can

benefit from an improved fit of the other. Since the dimen-

sionality of the model is unknown, we further construct a

reversible-jump MCMC sampler to handle model selection

and traverse the multi-dimensional parameter spaces.
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1.1. Scientific motivation

Understanding the morphological structure of an object

by modeling it and automatically fitting it to data yields

valuable quantitative information that creates further insight

into its function. For a biologist interested in analyzing mi-

croscopic specimen, automatically inferred structure can be

used in a high-throughput data analysis system to improve

experimental efficiency and increase the frequency of scien-

tific discoveries. Furthermore, since the function of a spec-

imen is often captured in other modes of data, such as gene

expression data, we can couple this with structural informa-

tion obtained in the fitting process. Multi-model data link-

ing can reveal new functional information that was not pre-

viously possible to obtain because of limitations in manual

structure quantification. Finally, our model is of the com-

plete structure and, once fit to data, can be used for visual-

ization in virtual environments and three-dimensional print-

ing for tactile exploration.

A good example of a biological specimen whose struc-

ture is recursive in nature is Alternaria, a microscopic genus

of fungus. The general form of Alternaria is tree-like with

species-dependent branching patterns. It is composed of

tubular filaments, hyphae, and ellipsoid-shaped reproduc-

tive spores that are darkly pigmented. Species of Alternaria

are frequently found in soil and organic debris and are esti-

mated to contribute to 25-50% of agricultural spoilage [17].

These species are among the most common potent airborne

allergens [16] and one of the most prodigious producers of

toxic chemicals, some of which have been linked to forms

of cancer [5]. Thus, Alternaria is heavily analyzed by my-

cologists in order to better understand its functionality and

discover methods to ameliorate its effects.

To aid in the analysis of Alternaria and illustrate our

ideas for structure modeling and inference, we developed

a grammar-based model for Alternaria and sampling meth-

ods to fit the model to three-dimensional microscopic im-

ages stacks. The image stacks are three-dimensional in the

sense that the mycologist who captured them continuously

imaged the specimen while increasing the focal length of

the microscope. Figure 1 shows images from two of these

stacks,A1 andA2. Notice the significant blur in the images,

a result of the optics in the transmitted-light microscope.

2. Stochastic grammar for structure

L-systems were invented by the biologist A. Linden-

mayer as a mathematical tool to model cellular interactions

in plants [8]. L-systems are a type of formal grammar simi-

lar to Chomsky grammars with the exception that all rewrit-

ing rules are applied in parallel and simultaneously replace

all letters in a word [12]. A parametric stochastic context-

free L-system is a tuple

Gπ = 〈V, σ, ω, P, π〉 (1)

(a) 36 of 102 in A1 (b) 48 of 102 in A1

(c) 13 of 82 in A2 (d) 53 of 82 in A2

Figure 1. Images from Alternaria 3D data sets A1 and A2. In each

image, the point-spread function of the brightfield transmitted-

light microscope generated blur from nearby focal planes.

where V is the alphabet, σ is the set of formal parameters,

ω is the axiom, consisting of letters from the alphabet, P is

a set of production rules, and π : P → [0, 1] is a probability

distribution [12]. Applying the set of production rules to

the axiom recursively replaces each letter with other letters

from the alphabet, producing a more complex, self-similar

structure.

2.1. Alternaria Lsystem

A fungus from the genus Alternaria grows similarly to a

plant—it has a long vegetative hyphae with branches that

have a three-dimensional sporulation pattern [15]. Each

branch is a primary conidiophore development which is a

type of hypha capable of producing spores. The hyphae

cells in a branch can develop another hypha cell through

apical growth or a spore from its tip. After a spore devel-

ops, several structures can occur, depending on the species:

another spore, a lateral intra-conidium hypha branch com-

ing from one cell of the spore, an apical conidium terminus

hypha branch, coming from the tip, or a sub-conidium coni-

diophore hypha branch coming from the hypha cell imme-

diately before the spore.

In general, the fungus produces a new hypha cell or a
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spore, which in turn develops more hyphae cells or spores,

defining a recursive growth pattern with self-similar struc-

ture. To model this growth process we use a parametric,

stochastic and context-free L-system.

In our grammar the set of parameters and probability dis-

tributions are determined from the morphological character-

istics obtained by plant pathologists from observation of the

structure. For example, the following rule represents how

the long vegetative hyphae grows and develops branches:

V hypha→ H(π1, π2, R) [ Branch ]V hypha (2)

where H(π1, π2, R) represents a number of hyphae cells,

obtained from a probability distribution π1, each cell with

length drawn from probability distribution π2, and each cell

at an angleR(θ, φ) with respect to the previous structure. A

branch is replaced by

Branch→ H(π1, π2, R) Cd (3)

where Cd is one of several conidiophore developments - a

possible sub-conidium hypha, Cd3, followed by a spore; or

a hypha cell, h(π,R); or no change:

Cd→ Pπ([Cd3] Spore Cd2, h(π,R) Cd, Cd) (4)

where Pπ represents the probabilities of creating each of the

developments.

We complete our grammar for Alternaria with the fol-

lowing rules:

Cd2 → Pπ(Spore Cd2, Apical Cd, (5)

Lateral Cd, Cd2)

Cd3 → Pπ(h(π,R) Cd, Cd3) (6)

Figure 2 shows instances generated by this L-system.

To facilitate the process of examining how the parame-

ters define each species, we created an on-line tool which

scientists can use to explore a 3D VRML model of the fun-

gus after modifying the parameters and the probability dis-

tributions 1.

3. Modeling

Our generative model for 3D microscopic image data of

Alternaria combines a grammar-based structure representa-

tion with a model of the imaging system. This enables us

to accommodate the burring effects of the microscope and

more accurately infer structure. What follows is a descrip-

tion of each component in our model.

1http://vision.cs.arizona.edu/taralove/lsystem.html

(a) 3 iterations (b) 12 iterations

(c) An instance of vegetative hypha with branches

Figure 2. 3D models generated by the L-system, showing growth

of simple structures (a), one branch (b), and an instance of the

model (c).

3.1. Grammarbased structure

We model the structure of Alternaria based on its gram-

mar for growth. We represent its hyphae and spores as an

ordered set of ellipsoids and cylinders, and enforce connect-

edness among these substructures to one apical growth and

multiple lateral branches. The model has a root position and

direction of growth given by (pr, ϕr, ϑr), where the posi-

tion is in the 3D imaging window W . The growth direction

is defined by two Euler angles for symmetric objects, i.e.,

ellipsoids and cylinders. Denote the space containing all

root position and orientations by P.

The ith apical hypha with mh number of branch hyphae

is defined as a collection of structure parameters and de-

scendant growth indices.

h
(mh)
i = (l, w, ϕ, ϑ, λ, t, j, k1, . . . , kmh

) . (7)

The length and width of the hypha cylinder is l, w; its ori-

entation is given by two Euler angles relative to the growth

direction of its apical parent; λ ∈ [0, 1] represents the aver-

age opacity of the substructure in the image; and t ≥ 0 is

the integer branch level of the hypha. The index j specifies

its apical growth, and the lateral branches are indexed by k.

The spore and branch hypha substructures s
(ms)
j and
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Figure 3. An example of a spore sj , lateral branch bk, and apical

hypha hi, and how they are connected in the model of Alternaria.

b
(mb)
k are similarly defined (see figure 3). A lateral branch

hypha has an additional parameter, d ∈ [0, 1], specifying

the normalized position along the major axis of its parent

where the branch is located. The position of all descendant

substructures is determined by their size and relative orien-

tation to their parent. The root substructure of the model

has a base orientation and position as previously described.

Let n = (nh, ns, nb) be the number of substructures in

the model. Then the number of branch hypha per substruc-

ture lies in the space

M =

{

M :

nh
∑

i=1

mh,i +

ns
∑

i=1

ms,i +

nb
∑

i=1

mb,i = nb

}

. (8)

The parameterization of all ordered sets of nh apical hypha

with mh branches is given by

H
(nh,mh) = H

(mh,1)
1 × · · · ×H

(mh,nh
)

nh . (9)

The parameterizations over all sets of spores and branches

are similarly defined as S
(ns,ms) and B

(nb,mb).

By combining the subspaces for root position and ori-

entation, branch hypha distribution, and ordered sets of n

substructures, we define the space over all Alternaria mod-

els as

Ψ(n) =
⋃

M∈M

P × H
(nh,mh) × S

(ns,ms) × B
(nb,mb). (10)

The construction of the space is such that an instance of a

grammar for Alternaria can be mapped into it.

3.2. Imaging system

The image formation process in a microscope is a con-

volution of the true unobserved 3D image with the point

spread function, or impulse response, of the imaging sys-

tem. The PSF is the 3D response h(x, y, z) of a point source

of light in the system. Schlecht et al. [13] developed a

model for the PSF of a transmitted light microscope using

constraints from previous empirical observations [14]. They

found that fitting it simultaneously with an independent and

individual spore model improves the accuracy of detection

in image stacks of Alternaria.

The x, y-plane in the space containing the PSF model is

defined to be parallel to the focal plane, and the z-axis is

aligned with the optical axis of the microscope. It is defined

as a mixed function

h̃(x, y, z) =
α|z|

√

2π (β |z| + γ)
e
− x2+y2

2(β |z|+γ) (11)

with x, y ∈ R
2 and z ∈ Z. The parameter γ is the base vari-

ance for a stack of z-axis aligned 2D Gaussians, β scales the

distance from the x, y-plane, and α is the base in a geomet-

ric distribution used to weight each Gaussian.

Alternaria in the 3D image data occupy a relatively small

region of the imaging window. Hence, many pixels in the

data are saturated with the intensity of light used by the

brightfield microscope. We define the background inten-

sity of the imaging system over the range [0, 1] and denote

it as υ.

We combine the space over all PSF models and back-

ground intensities into Φ, and let a parameterization of it be

an imaging model given by

φ = (α, β, γ, υ). (12)

3.3. Generative data model

Let Θ(n) = Ψ(n) × Φ be the parameter space over all

Alternaria and imaging models, and let θ(n) = (ψ(n), φ) be

an instance of that space. Then the solution space spanning

all model configurations is

Ω =
⋃

n∈N3

n × Θ(n). (13)

For any (n, θ(n)) ∈ Ω, we generate a model scene

Iθ(i, j, k), which is a hypothesis of the unobserved 3D im-

age data. Background pixels in the model scene have the

highest saturation with value υ, and pixels belonging to a

substructure with opacity λ have the value υ (1 − λ).
Given a model scene, pixels in the 3D image data

I(i, j, k) are modeled as i. i. d. Gaussian with means and

variances defined by

µIθ
(i, j, k) = Iθ ∗ ∗ ∗ ĥ, (14)

σ2
Iθ

(i, j, k) = c · µIθ
(i, j, k), (15)
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where ∗ ∗ ∗ denotes 3D convolution and ĥ is the quantized

PSF model in (11).

The mean value for a pixel in I(·) is a weighted average

of the model scene pixel intensities by the PSF model. The

constant c scales the variance to approximate pixel intensity

variations due to Poisson noise in the imaging system.

4. Bayesian inference

Given a stack of Alternaria image data I(i, j, k) in the

3D window W , we want to find the model (n, θ(n)) ∈ Ω
that best fits the data. We formulate this as a Bayesian sta-

tistical inference problem by defining a probability distribu-

tion over the model space given the image data and find a

maximum. Specifically, we define a posterior

p
(

n, θ(n) | I
)

= kp L
(

I | n, θ(n)
)

π
(

n, θ(n)
)

, (16)

where kp is a normalization constant, L(· | ·) is the likeli-

hood of the image data, and π(·) is the model prior.

The independence assumption among pixels in the

model of the image data results in a product of Gaussians for

the likelihood function. Using the image model means (14)

and variances (15), the likelihood is defined as

L
(

I | n, θ(n)
)

=
∏

i,j,k

σ−1
Iθ√
2π

e
− 1

2

»

I(i,j,k)−µIθ
(i,j,k)

σIθ

–2

. (17)

4.1. Priors

The prior over the model space Ω assumes independence

between the structure and imaging models and is defined as

π
(

n, θ(n)
)

= πΨ

(

n, ψ(n)
)

πΦ(φ) . (18)

The priors for the imaging parameters φ are modeled as

i. i. d. Gaussian. The position of the Alternaria root ranges

uniformly over the image 3D window W . Since the orien-

tation and position of a substructure in Alternaria is deter-

mined by the configuration of its parent and its own internal

parameters, we model each substructure as conditionally in-

dependent given its parent.

The density function for each substructure is composed

of independent subdensities defined over its parameters. For

all types of substructures, the Euler angle ϕ is Gaussian

distributed over [0, π], and ϑ is uniformly distributed over

[−2π, 2π]; width w and length l are Gaussian distributed;

and opacity λ is uniformly distributed over [0, 1]. The prob-

ability a substructure is added either laterally or apically is

ph, ps, pb. The lateral position d of a branch hypha is Gaus-

sian distributed over [0, 1], and the probability that a branch

is created at depth t is geometrically distributed.

Let j be the index of the parent substructure of hypha hi

in ψ(n). Then the density function for hyphae is given by a

set of independent subdensities

fh(i | j) = ph fw,l(i | j) fϕ,ϑ(i | j)fλ(i | j). (19)

The density functions for spores and branches are similar,

but with branches having an extra term for the level t sub-

density.

Finally, we restrict the interaction between substructures

so they do not intersect. This is done by not allowing any

of the substructures to geometrically overlap, which is not

possible in the actual data. The prior probability for an Al-

ternaria model is then

πΨ

(

n, ψ(n)
)

= kn

π

nh
∏

i=1

χ
(

hi 0 hj 6=i, s, b ∈ ψ(n)
)

fh (i|parent(i))

ns
∏

i=1

. . .

nb
∏

i=1

. . . (20)

where kn

π is a normalization constant for the truncated sub-

density functions, ⊢ denotes geometric intersection, and

χ(·) is the characteristic function giving 1 for true and 0
otherwise.

5. Sampling

Inferring the most likely model given Alternaria image

data is a challenging task; the posterior (16) is a complex

distribution virtually impossible to evaluate analytically or

numerically. Thus, we employ MCMC sampling to explore

the model solution space in search of a maximum under the

posterior [2, 11].

The sampler iteratively generates random, unbiased

model samples from the solution space Ω. It consists of a set

of moves, or Markov chain, that create new model propos-

als by proposing changes to parameters in a previous sam-

ple. The sampler moves fall into two categories: changes to

Alternaria substructures, the PSF, or the background; and

changes to the number of substructures in the model. The

latter are commonly referred to as diffusion moves and the

former jump moves.

At each iteration of the sampler, the mth move is se-

lected for execution with probability r(m) and a new model

(n, θ̃(n)) is proposed. In this paper, we use a uniform distri-

bution for r(·). Depending on how likely the new model is

under the posterior and to have been proposed, it is accepted

or rejected. Specifically, we use the Metropolis-Hastings

(MH) algorithm for MCMC [6, 10], and it is used for both

diffusion and jump moves.
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5.1. Diffusion moves

The diffusion moves for modifying a substructure in

(n, θ(n)) and proposing a new model are rotate, resize,

opacity, shift, and lateral-d. We define moves to update the

PSF and background parameters, as well. The proposal dis-

tributions for diffusion moves are obtained by modifying

the prior (18). For parameters updated in a move, we re-

place their subdensity in the prior with a Gaussian that has

means equal to corresponding parameters in the previously

accepted model.

For example, the proposal distribution for randomly se-

lecting the ith hypha with parent index j and rotating it is

qrot

(

θ̃(n) | θ(n)
)

=
1

nh

π
(

n, θ̃(n)
)

fϕ,ϑ(i | j)
σ−2

ϕ,ϑ

2π

exp

[

− (ϕ̃i − ϕi)
2 + (ϑ̃i − ϑi)

2

2σ2
ϕ,ϑ

]

, (21)

where σ2
ϕ,ϑ is a small variance. The proposal distributions

for other diffusion moves are similarly constructed.

Under the MH algorithm for the rotateth diffusion move,

the acceptance probability for a proposed model is

α
(

n, θ̃(n)
)

= min

{

1,
p(n, θ̃(n) | I) qrot(θ

(n) | θ̃(n))

p(n, θ(n) | I) qrot(θ̃(n) | θ(n))

}

.

(22)

The definition is derived to maintain a detailed balance con-

dition in the Markov chain, which is a sufficient condition

for convergence to the posterior [11].

By expansion, most of the terms in (22) cancel, most no-

tably the normalization constants and all of the non-rotation

subdensities. As with the proposal distributions, the ac-

ceptance probabilities for other diffusion moves are similar;

hence, their definitions are omitted.

5.2. Jump moves

The jump moves in the sampler implement model selec-

tion by changing the dimensionality of the model and ac-

cepting or rejecting. A set of birth/death moves add and

remove substructures at apical or lateral positions. For api-

cally connected hyphae and spores, merge/split moves join

together or break apart two substructures. A lateral branch

can be merged or split with its parent, as well. Finally, a

set of switch moves transition one or more hypha to a spore

and vise versa. These sampler moves embody the grammar

rules for Alternaria.

For a hypha birth move, the proposal distribution for a

new h̃i apically attached to a parent at hj is defined as the

normalized hypha density function (19) in the model prior

qbirth(h̃i |hj) = kπ fh( ĩ, j ). (23)

During a death move, a spore is randomly selected for dele-

tion, so a proposal distribution is not needed. The proposal

distributions for merge/split and switch are similarly based

on their prior subdensities.

In order to use the MH algorithm for jump moves, we re-

define the acceptance probability. Following the guidelines

for reversible-jump MCMC [4], the acceptance probability

for a hypha birth move becomes

α
(

n + 1, θ̃(n+1)
)

= min

{

1,
p(n + 1, θ̃(n+1) | I)

p(n, θ(n) | I)

r(death)

r(birth) qbirth(h̃i |hj)

∣

∣

∣

∣

∣

∂(θ̃(n+1))

∂(θ(n), h̃i)

∣

∣

∣

∣

∣

}

. (24)

Since the change in dimensionality is a one-to-one map-

ping from (h̃i, θ
(n)) → θ̃(n+1) and a uniform distribution

is used for r(·), the Jacobian is 1 and the move probabili-

ties cancel; thus, the equation reduces considerably. Since

birth/death moves are dual, the acceptance probability for

a death move is the inverse of the second argument to the

minimum function in (24). The acceptance probabilities for

the other jump moves are similarly constructed.

As with the diffusion moves, the jump move acceptance

probabilities maintain the detailed balance condition [4].

Thus, the posterior will be the stationary distribution of the

trans-dimensional Markov chain followed by the sampler.

5.3. Datadriven MCMC

The spore structures in the data are much larger than the

hypha and more darkly pigmented. However, we have ob-

served that it is difficult for the sampler to correctly switch

a substructure proposal from hypha to spore. Thus we im-

prove the birth and switch moves by doing preliminary data

analysis to construct a more informative proposal distribu-

tion (data-driven MCMC [18]).

The replacement proposal distribution is similar to what

has been used for independent spore detection in Al-

ternaria [13]. We use a gradient-based surface point de-

tection algorithm and a very coarse Hough transform for

ellipsoids to obtain rough estimates of spores in the data.

The estimates are collected into a spore likelihood table,

which is normalized and used as the new proposal distribu-

tion. Although the estimates from the Hough transform are

very coarse, it is tolerable because diffusion moves in the

sampler will perfect the fit of proposed spores.

We also used data-driven methods in the sampler to

speed-up the initial estimate of the base structure in the

model. We follow the assumption that the imaged growth

of Alternaria begins at the bottom of the microscopic im-

age stack and proceeds upward.
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(a) Surface of A1 (b) (c) (d) (e)

(f) Surface of A2 (g) (h) (i) (j)

Figure 4. The sampler was run on data sets A1 and A2 from 10 random starting states. The first row shows a rendering of surface points

from the gradient-based detection for data-driven proposals (a) from set A1 and four of the inferred models (b)–(e). The second row shows

similar results for set A2 (f)–(j). We are clearly fitting Alternaria structure in the data. If we continue to run the sampler, more of the

structure would be fit, particularly in the case of A2.

6. Results

We evaluated the effectiveness of the model sampler on

Alternaria image sets A1 and A2, shown in figure 1. A1 is

composed of 102 images of size 800×800 pixels and A2

has 82 images of size 700×700. Since the data are so large,

we down-sample them along rows and columns to 20% of

their original size. However, since the number of images in

each stack is already disproportionately small, we did not

decrease the resolution in depth.

We ran the sampler from 10 random starting states on

both data sets, each for 20, 000 iterations. Figure 4 shows

four of the ten models fit to each data set. The sampler had

a more difficult time fitting the structure in A2; a narrow

lateral hypha spawned very large areas of structure. With

more iterations we would expect to begin to fit more of it.

The average inferred background intensity forA1 andA2

was 0.74 and 0.72 with a negligible standard deviation. Ta-

ble 1 gives the inferred PSF model parameters for the data

sets. The PSF parameters for A2 have larger variance be-

cause not as much structure was fit in the images as A1.

Figure 5 shows two images from A1 at different depths

compared to corresponding inferred model scene images.

We construct the model scene images by optically section-

ing the Alternaria model and convolving it with the point-

spread function. From these images we observe that simul-

taneously fitting structure and imaging models closely re-

sembles the image formation process, enabling us to obtain

a more accurate fit to the data.

α β γ

mean stdev mean stdev mean stdev

A1 0.99 0.001 0.91 0.08 0.75 0.26

A2 0.84 0.14 0.68 0.4 0.64 0.24

Table 1. Mean PSF model parameters inferred from the Alternaria

data from 10 random starting states. The larger variance in the

parameters for the second set is most likely from not fitting as

much structure.

7. Conclusion

Learning the structure of an object is one of the first steps

in trying to understand its function. Biologists recognize

this fact and conduct many experiments that require ana-

lyzing images of microscopic structures. We have shown

that combining a grammar-based specimen model with an

imaging model is useful to automatically obtain quantitative

information for biological structures in microscopic image

stacks.
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