
Compositional Boosting for Computing Hierarchical Image Structures

Tian-Fu Wu1 and Gui-Song Xia1

1Lotus Hill Institute for Computer Vision and

Information Science, Ezhou, 436000, China

{tfwu.lhi,gsxia.lhi}@lotushill.org

Song-Chun Zhu1,2

2Statistics Department University of California,

Los Angeles, CA 90095, U.S.

sczhu@stat.ucla.edu

Abstract

In this paper, we present a compositional boosting al-
gorithm for detecting and recognizing 17 common image
structures in low-middle level vision tasks. These struc-
tures, called “graphlets”, are the most frequently occurring
primitives, junctions and composite junctions in natural im-
ages, and are arranged in a 3-layer And-Or graph repre-
sentation. In this hierarchic model, larger graphlets are
decomposed (in And-nodes) into smaller graphlets in mul-
tiple alternative ways (at Or-nodes), and parts are shared
and re-used between graphlets. Then we present a compo-
sitional boosting algorithm for computing the 17 graphlets
categories collectively in the Bayesian framework. The al-
gorithm runs recursively for each node A in the And-Or
graph and iterates between two steps – bottom-up proposal
and top-down validation. The bottom-up step includes two
types of boosting methods. (i) Detecting instances of A (of-
ten in low resolutions) using Adaboosting method through
a sequence of tests (weak classifiers) image feature. (ii)
Proposing instances of A (often in high resolution) by bind-
ing existing children nodes of A through a sequence of com-
patibility tests on their attributes (e.g angles, relative size
etc). The Adaboosting and binding methods generate a
number of candidates for node A which are verified by a
top-down process in a way similar to Data-Driven Markov
Chain Monte Carlo [18]. Both the Adaboosting and bind-
ing methods are trained off-line for each graphlet category,
and the compositional nature of the model means the algo-
rithm is recursive and can be learned from a small training
set. We apply this algorithm to a wide range of indoor and
outdoor images with satisfactory results.

1. Introduction
This paper presents a recursive algorithm called com-

positional boosting for detecting and recognizing 17 com-

mon image structures in low-middle level vision tasks, such

as edge detection[13], segmentation[16], primal sketch[8],

and junction detection [2, 12, 7, 14]. These structures

Line
Segment

Figure 1. A hierarchic representation of 17 graphlets in a joint

And-Or graph (links are reduced for clarity). Large graphlets are

decomposed into smaller ones in multiple ways and share parts

between them. All graphlets are composed of line segments at the

lowest level.

are the most frequently occurring primitives, junctions and

composite junctions in natural images, and we call them

“graphlets” in this paper as they are represented in small

graphical configurations.

As Figure 1 shows, these graphlets are compositional

structures and can be arranged in a three-level And-Or

graph representation. We only show a few of the links

in Figure 1 for clarity. In this hierarchic representation,

large graphlets are decomposed into smaller ones in mul-

tiple ways and share parts between them. An And-node

(in solid circle) represents a decomposition and all of its

children must appear together under certain spatial relations

(collinear, parallel, proximity, and perpendicular), while an

Or-node (in dashed circle) represents a few most plausible

ways of decomposition and only one of its children may be

1-4244-1180-7/07/$25.00 ©2007 IEEE

selected for each instance.

The study of this hierarchic representation is motivated

by three objectives.

Firstly, detecting junctions is, by itself, known to be a

challenging task in the vision literature [2, 12, 8, 13, 10, 7].

Local images are extremely ambiguous and yield multiple

interpretations. To resolve the uncertainty, one should not

only look at a larger scope, but also compute those compet-

ing configurations in an integrated manner, instead of de-

tecting them independently. In this paper, we first identify

the 17 most frequently occurring image structures and learn

their binding relations in the And-Or graph. We then infer

these graphlets from images in a common Bayesian frame-

work. The final result is a sketch graph consisting of a num-

ber of graphlets which has cleaner edges and junctions.

Secondly, in a broader view, we may consider the

graphlets as 17 small object categories, thus the repre-

sentation and algorithm presented in this paper should re-

veal some desirable design principles for multi-class ob-

ject recognition. More specifically, as compositionality and

part-sharing [5, 3, 11] are common principles in object mod-

eling and recognition, an effective inference algorithm must

explore the compositional structures. However, in the object

recognition literature, though there are recent works on joint

training and classification on multiple categories, such as

the JointBoosting[17], spatial boosting[1], mutual boosting

[6] and other multi-class boosting method[4], these meth-

ods do not explicitly decompose objects into parts. Conse-

quently their computation is based on raw image features,

though some features are shared by different categories.

In contrast, our method in this paper exploits the explicit

decomposition between the 17 classes. The algorithm runs

recursively for each node A in the And-Or graph and iterate

two steps – bottom-up proposal and top-down validation.

The bottom-up step includes two types of boosting methods.

1. Implicit boosting: detecting instances of A (often

in low resolutions) using Adaboosting through a se-

quence of tests on image features.

2. Explicit binding: proposing instances of A (often in

high resolution) by binding existing components (i.e.

children nodes of A) through a sequence of compati-

bility tests on their attributes, say angles, alignments,

and relative size etc.

The two methods generate a number of candidates for

node A which are verified by a top-down process in a way

similar to DDMCMC [18]. Both the Adaboosting and bind-

ing are trained off-line for each graphlet category, and the

composition and part sharing leads to smaller training sets

and a recursive algorithm.

Thirdly, objects appear in multiple resolutions, and a ro-

bust algorithm must account for the scaling effects. In the

literature of object detection and classification, images are

Or-node

And-node

Leaf -node

C

A1

A

B

b b c c

A2 An

L1

L2
L3

L4

L1

L4L2

L3

Topological Connection

Co-linear

Parallel

(a)

(b)

(c)

Figure 2. (a) An And-Or graph representation for one graphlet

– the rectangle in two resolutions. The node A can either termi-

nate into a leaf node (square) or have two ways of composition

by nodes B and C. The dashed line between And-nodes or Leaf-

nodes represent the relations of them. (b)Three generic and most

prominent relations between any two line segments: co-linearity,

parallelism and topological connection. (c) The relations between

the 4 lines of the rectangle configuration.

often scaled to a certain regular window size, because the

features in the detection algorithm are learned in that par-

ticular scale. For example, all face images must be down-

scaled to around 20 × 20 pixels in Viola and Jones [19].

The down-scaling process loses information. In contrast,

we represent each graphlet in multiple resolutions, as Fig-

ure 2 illustrates. The terminal nodes are the low resolution

representation and are detected by tests on raw image fea-

tures. The non-terminal nodes are the high resolution repre-

sentation and are detected by tests on the attributes of their

parts. The latter may be further defined in two resolutions

as well.

The rest of the paper is arranged as follows. Section 2

presents the three-level generative model and learns a dic-

tionary of graphlets. Section 3 proposes the compositional

boosting algorithm and implements the pursuit of graphlets

with experiments in Section 4. The paper is concluded with

a discussion in Section 5.

2. Generative representation with graphlets

2.1. Learning the graphlets

In the first experiment, we collect a database of 200 im-

ages (many from the Corel dataset). To suit the low-middle

level tasks, we choose images which contain generic struc-

tures at relatively high resolutions instead of complex ob-

jects or clutter (such as tree, texture etc). These images

are manually segmented and sketched into graph represen-

tations, and we denoted these sketch graphs by

Training data set 1 : DG = {S1, S2, ..., S200}.

0.00

0.05

0.10

0.15

0.20

0.25

Figure 3. The normalized frequency counts (vertical axis) for the

16 most commonly observed graphlets (horizonal axis) on sketch

graphs of natural images.

Starting with the edge element as the basic element, we

count the frequency of all the small subgraph configurations

(called graphlets) in the 200 graphs above. Some TPS (Thin

Plate Spline) distance is used in the counting process. The

frequency of the top 16 graphlets is plotted in Figure 3.(a).

This excludes the edge element itself and the two line seg-

ment shown in Figure 1. Other graphlets are very rare (less

than 0.2%) and thus are ignored.

We denote the graphlets and the frequency by

graphlets set : (∆G, h) = {(gi, h(gi)) : i = 2, 3, ..., 17}.
(1)

We then learn the And-Or graph representation in Fig-

ure 1 automatically through a recursive binding process.

Suppose our goal is to build a good coding model for the

200 sketch graphs in DG. We start with a naive model

that codes each line segment independently. The learning

process then explores the dependency between the line ele-

ments (alignments). Take for example the rectangle in Fig-

ure 2.(a). This rectangle A can be expressed by two possi-

ble compositions of graphlets which occur with probability

ρ and 1− ρ respectively. Written in a stochastic production

rule, it is,

A → b · b | c · c; ρ|(1 − ρ).

‘|’ means alternative choice and is represented by an “Or-

node”. ‘·’ means composition and is represented by an

“And-node” with an arc underneath. b and c are smaller

graphlets for parallel bars and L respectively.

Let h(A) is the frequency of A in Eq.(1), and p(A) =
ρp(b)p(b) + (1 − ρ)p(c)p(c) is the accidental probability

that A occurs through the b and c, then the following log-

likelihood ratio measures the non-accidental statistics and

thus the gain of coding length by binding the element into a

graphlet A.

δL(A) = log
h(A)
p(A)

. (2)

Multiplying it by the total frequency of A, we have the over-

all coding gain in adding the graphlet A in the ”codebook”,

Bind(A) = h(A) log
h(A)
p(A)

(3)

where the larger Bind(A) is, the more significant A is.

In the next section, we shall use this coding length in the

Bayesian framework to search for the most parsimonious

representation.

Figure 1 shows the results we pursued from the image

database. Currently, we treat the 17 hierarchical structures

as a dictionary, denoted by ∆G, augmenting the two-level

models in low level vision to a three-level model to bridge

low level and middle level representations.

∆G = ∆1
G ∪ ∆2

G ∪ ∆3
G (4)

2.2. Generative image model with graphlets

Given an image I defined on an image domain Λ, we first

convert it into a primal sketch representation S, following

[8]. Like the manually sketched graph above, S is an at-

tributed graph which can reconstruct the image through a

dictionary ∆sk of small image patches under the edges and

fill in the remaining areas by texture. As discussed above,

we further decompose this sketch graph into an unknown

number of N graphlets through the graphlet dictionary ∆G

above.

G = (g1(β1),, GN (βN)), (5)

where βi, i = 1, 2..., N are the parameters βk (affine trans-

formations plus deformations) for each graphlet gi . That is,

we have a decomposition

S = ∪N
i=1gi ∪ go

where go is the remaining line segments in S.

Therefore we have a three level generative model,

G
∆G=⇒ S

∆sk=⇒ I. (6)

This is described in the following joint probability

p(I, S,G) = p(I|S; ∆sk)p(S|G; ∆G)p(G) (7)

where p(I|S; ∆sk) follows the primal sketch model [8], and

the joint probability of S and G are:

p(S, G; ∆G) ∝ exp {−L(go) − L(G))}, (8)

where L(g) is the coding length of a given graphlet g. Each

line segment in go is coded independently (thus expensive).

The graphlets in G are also coded independent of each other.

Therefore we have a Bayesian formulation,

(G, S)∗ = arg max p(G, S|I) (9)

= arg max p(I|S; ∆sk)p(S|G; ∆G)p(G).

Maximizing this Bayesian posterior probability leads to a

improved sketch graph G which are decomposed into a

number of graphlets G = (g1, ..., gN).

1 2 n

1 2 3

1 2 n

1 2 3

Figure 4. (a)Illustration of compositional boosting for a generic

node A and (b) the data structure associated with each node for

hypothesis testing. See text for detailed interpretation.

3. Compositional boosting
As the And-Or graph representation is recursive, our in-

ference computes the graphlets in a recursive manner. With-

out loss of generality, we only interpret the algorithm for

computing one node A in Figure 4, following the generic

representation in Figure 2.

The algorithm remains two data structures for each node

A:

• An Open List. It stores a number of weighted particles

(or hypotheses) which are computed in a bottom-up

process for the instances of A in the input image.

• A Closed List. It stores a number of instances for A
which are accepted in the top-down process. These

instances are nodes in the current parsing graph G.

The algorithm iterates over two processes: bottom-up

proposal and top-down validation. The bottom-up process

includes an Adaboosting and binding methods for generat-

ing a number of candidates for node A. These candidates

are verified by a top-down process in a way similar to Data-

Driven Markov Chain Monte Carlo [18].

Both the Adaboosting and binding methods in the

bottom-up detection are trained off-line for each graphlet

category, and the compositional model leads to small train-

ing set and recursive algorithm.

3.1. Bottom-up Proposals

The bottom-up process includes two types of boosting

methods.

(i) Generating hypotheses for A directly from images.

This bottom-up process uses Adaboosting [19, 9, 4, 15] for

Negatives

Figure 5. Positive examples of various graphlets and negative

training examples of background.

detecting the various terminals t1, ..., tn without identifying

the parts. The detection process tests some image features.

This process is called implicit testing.

We train AdaBoost classifier [19, 9, 4] for each graphlet.

Features used include statistics of gradients, both magnitude

and orientation, differences between histograms of filter re-

sponses of the filter banks used by the primal sketch model,

intensity edge flow and texture edge flow [16] at multiple

scales over a local image patch Λi. There are 4158 fea-

tures in total, denoted by F (Iλi). Some positive examples

of graphlets and negative examples from the background are

shown in Figure 5.

The particles generated by implicit testings are shown

in Figure 4.(b) by single circles with bottom-up arrows.

Figure 6 shows the proposal map for different kinds of

graphlets.

The weight of a detected hypothesis (indexed by i) on

image patch Λi is the logarithm of some local marginal pos-

terior probability ratio,

ωi
A = log

p(Ai|Iλi)
p(Āi|Iλi)

≈ log
p(Ai|F (Iλi))
p(Āi|F (Iλi))

= ω̂i
A. (10)

where Ā represents a competing hypothesis. For compu-

tational effectiveness, the posterior probability ratio is ap-

proximated by posterior probabilities using local features

F (Iλi) rather than the image Iλi .

(ii) Generating hypotheses for A by binding a number of

k (1 ≤ K ≤ n(A), n(A) = 3) parts A1, A2, ...An(A). The

binding process will test the relationships between these

child nodes for compatibility and quickly rule out the ob-

viously incompatible compositions. This is called explicit
testing.

There are three relations {τ⊥, τ‖, τ } for perpendicular-

ity, parallelism, and co-linearity respectively. We associate

each relation type with a potential energy (Ur⊥ , Ur‖ , Ur).
By considering a line connecting the midpoints of the

two segments, a and b, and denoting the smallest angles

each segment forms with this line as θa and θb respectively.

(p)PI-junctions

(i)Final T-junctions

(j)Parallel

(e)Colinear

(s)Double L-junction(3)

(k)Y,Arrow,Cross proposal (l)Final Y,Arrow,Cross

(a)A running example (b)Sketch probability map

(f)L-junction proposals (h)T-junction proposals(g)Final L-junctions

(d)Final Sketch(c)Canny result

(n)Rectangle

(o)Joint rectangle (q)Double L-junction(1)

(m)U-junction

(r)Double L-junction(2)

Figure 6. A running example for the computing the graphlets using compositional boosting. (e)-(l) are the bottom-up proposals (particles)

for the graphlets respectively and (d) is the final sketch after verifying the graphlets. The final sketch is more concise and clean than the

Canny edge map, especial on the junctions.

we define (Ur⊥ , Ur‖ , Ur) as follows

Ur (ab) = L(a)2θa + L(b)2θb (11)

Ur‖(ab) = (θa − θb)2 (12)

Ur⊥(ab) = J(a)�a + J(b)�b (13)

where L(a), L(b) are the lengths of line segments a and b
respectively, �a and �b are the extended length of the two

line segments that intersect one another. J(a) = ∞, if

�a > CL(a) with a constant C favoring greater extensions

for longer segments, and J(a) = �a
L(a) otherwise.

These potential functions are used as the attributes to test

explicit binding for graphlets.

The particles generated by explicit testings are illustrated

by a big ellipse containing n(A) = 3 small circles for its

children in Figure 4.(b). Some examples are shown in Fig-

ure 6.

The weight of a binding hypothesis (indexed by i) is the

logarithm of some local conditional posterior probability ra-

tio. Suppose a particle Ai is bound from two existing parts

Ai
1 and Ai

2 with Ai
3 missing, and Λi is the domain contain-

ing the hypothesized A. Then the weight will be

ωi
A = log

p(Ai|Ai
1, A

i
2, IΛi)

p(Āi|Ai
1, A

i
2, IΛi)

= log
p(Ai

1, A
i
2, IΛi |Ai)p(Ai)

p(Ai
1, A

i
2, IΛi |Āi)p(Āi)

≈ log
p(Ai

1, A
i
2|Ai)p(Ai)

p(Ai
1, A

i
2|Āi)p(Āi)

= ω̂i
A. (14)

where Ā means competitive hypothesis. p(Ai
1, A

i
2|Ai) is re-

duced to tests of compatibility between Ai
1 and Ai

2 for com-

putational efficiency. It leaves the computation of searching

for Ai
3 as well as fitting the image area IΛA

to the top-down

process.

The two kinds of bottom-up tests generate hypotheses

for graphlets and place them into an open list.

Results of bottom-up proposals are shown in Figure 6

and Figure 8, and as we can see in the figures, there can be

more than one particle on the same patch, which is caused

by the local ambiguity and needs top-down verification to

be resolved.

3.2. Top-down verifications

The top-down process validates the bottom-up hypothe-

ses in all the Open lists and accepted hypotheses are placed

into a closed list, following the Bayesian posterior proba-

bility. It also needs to maintain the weights of the Open

lists.

(i) Given a hypothesis Ai with weight ω̂i
A, the top-down

process validates it by computing the true posterior proba-

bility ratio ωi
A stated above. If Ai is accepted, it is placed

into the Closed list of A. The criterion of the acceptance is

discussed below. In a reverse process, the top-down process

may also select a node A in the Closed list, and then either

delete it (putting it back to the Open list) or disassemble it

into independent parts.

(ii) The top down process must maintain the weights of

the particles in the Open Lists after adding (or removing)

a node Ai. It is clear that the weight of each particle de-

pends on the competing hypothesis. Thus for two compet-

ing hypotheses A and A′ which overlap in a domain Λo,

accepting one hypothesis will lower the weight of the other.

Therefore, whenever we add or delete a node A, all the other

hypotheses whose domains overlap with that of A will have

to update their weights.

The acceptance of a node can be computed by a greedy

algorithm that maximizes the posterior probability. At each

iteration it selects the particle whose weight is the largest

among all Open lists and then accepts it until the largest

weight is below a threshold.

For the pursuit of graphlets, the top-down process veri-

fies and selects a subset G = {g1(β1), g2(β2), ..., gN (βN)}
that maximizes the joint probability of Eq.(8). We do this

with a process that maximizes a posterior (MAP).

(S∗, G∗) = arg max p(G, S|I; ∆B , ∆G)
= arg max p(G, S, I; ∆B , ∆G)
= arg minL(g0) + L(G) + L(I|S)
= arg minLg0 + LG + LI|S (15)

Where Lg0 is the coding length of the residual of the sketch

graph after encoding by G, LG is coding length of the se-

lected graphlets, and LI|S is the coding length of the sketch-

able region of the image I . The encoding of this region is

based on works in [8].

Compositional Boosting

Input: an image I and an And-Or graph.

Output: a parsing graph pg with initial pg = ∅.

1. Repeat

2. Schedule the next node to visit A
3. Call the Bottom − Up(A) process to update A’s

Open lists

4. (i) Detect terminal instances for A from images

5. (ii) Bind non-terminal instances for A from

its children’s Open or Closed lists.

6. Call the Top − Down(A) process to update A’s

Closed and Open lists

7. (i) Accept hypotheses from A’s Open list to its

Closed list.

8. (ii) Remove (or disassemble) hypotheses from A’s

closed lists.

9. (iii) Update the Open lists for particles

that overlap with current node.

10. Until a certain number of iteration or the largest

particle weight is below a threshold.

Figure 7. Flow of compositional boosting algorithm

Results are shown in Figure 6, where we can see that

some particles appear in the proposal but do not appear in

the final results.

The algorithm described thus far is deterministic. As

an alternative, one may use a stochastic algorithm with re-

versible jumps. According to the terminology of data driven

Markov chain Monte Carlo (DDMCMC) [18], one may

view the approximative weight ω̂i
A as a logarithm of the

proposal probability ratio. For the stochastic algorithm, its

initial stage is often deterministic when the particle weights

are very large and the acceptance probability is always 1, so

this approach is generally only valuable when ωi
A is close

to 0.

We summarize the compositional boosting algorithm as

shown in Figure 7.

The key issue of the inference algorithm is to order the

particles in the Open and Closed lists. In other words, the

algorithm must schedule the bottom-up and top-down pro-

cesses to achieve computational efficiency. The optimal

schedule between bottom-up and top-down is a long stand-

ing problem in vision. A greedy way for scheduling is to

measure the information gain of each step, either a bottom-

up testing/binding or a top-down validation, divided by its

computational complexity (CPU cycles). Then one may or-

der these steps by the gain/cost ratio.

4. Experiments

In our second experiment, we apply the compositional

boosting algorithm to compute a sketch graph S and a se-

ries of graphlets G in a wide variety of indoor and outdoor

images as shown in Figure 6 and Figure 8 (Please refer

to the supplemental file for an animation of the composi-

tional boosting process and more results). As in our train-

ing set, we are targeting low-middle level generic structures

and thus avoid textures and clutter.

In Figure 8, we show the results of five images. For each

image, The “Canny” image is the Canny edge map which

are pixel level representation and has no concepts such as

corners, junctions and line segments. The “First layer” im-

age is the detection result of the first layer graphlets includ-

ing different kinds of junctions where parallel lines are in

red, L-junction in green, T-junction in blue, Arrow junction

in yellow and so on. The “Final sketch” image is the sketch

graph G which are graph level representation and more con-

cise than the Canny edge map. It has the concepts of differ-

ent graphlets. Many high-level vision tasks can be based on

this representation.

In these images, the junctions and composite junctions

are much improved in comparison to the Canny edge map.

It is also much improved in comparison to the primal sketch

method [8].

5. Discussion

In this paper, we present a compositional boosting al-

gorithm for detecting and recognizing 17 common image

structures in low-middle level vision tasks. We conducted

two sets of experiments: one on learning and binding the

graphlets from sketch graph, and the other on detecting the

graphlets from raw images. The key contribution of this pa-

per is a recursive compositional boosting algorithm which

explore the recursive decomposition structures in the rep-

resentation, in contrast to the literature on spatial boosting

[1] and JointBoosting [17], and mutual boosting[6]. It only

needs a small set of training examples and is easy to scale

when new nodes are added – all are desirable properties for

object detection and recognition. In ongoing projects, we

are applying this algorithm to object recognition by moving

up the hierarchy.

6. Acknowledgements

This work is done at the Lotus Hill Research In-

stitute and is supported by : National 863 project(No.

2006AA01Z121), National Science Foundation China(No.

60672162 and No. 60673198). The data used in this pa-

per were provided by the Lotus Hill Annotation project

[20], which was supported partially by a sub-award from

the W.M. Keck foundation, a Microsoft gift and the 863

project(No. 2006AA01Z121). The authors thank Di Lu for

his help in the preparation of training data.

References
[1] S. Avidan. Spatialboost: Adding spatial reasoning to ad-

aboost. In ECCV, 2006. 2, 7

[2] D. J. Beymer. Finding junctions using the image gradient. In

MIT AI Memo, 1991. 1, 2

[3] H. Chen, Z. J. Xu, Z. Q. Liu, and S. C. Zhu. Composite

templates for cloth modeling and sketching. In CVPR, 2006.

2

[4] P. Dollar, Z. Tu, and S. Belongie. Supervised learning of

edges and object boundaries. In CVPR, 2006. 2, 4

[5] S. G. E. Bienenstock and D. Potter. Compositionality,

mdl priors, and object recognition. In Advances in Neu-
ral Information Processing Systems 9, M.Mozer, M.Jordan,
T.Petsche, eds., MIT Press, 1998. 2

[6] M. Fink and P. Perona. Mutual boosting for contextual infer-

ence. In NIPS, 2003. 2, 7

[7] G.Giraudon and R.Deriche. On corner and vertex detections.

In CVPR, 1991. 1, 2

[8] C. E. Guo, S. C. Zhu, and Y. N. Wu. Towards a mathematical

theory of primal sketch and sketchability. In ICCV, 2003. 1,

2, 3, 6, 7

[9] T. H. J. Friedman and R. Tibshirani. Additive logistic re-

gression: a statistical view of boosting. Annals of Statistics,

38(2):337–374, 2000. 4

[10] D. Li, G. Sullivan, and K. Baker. Edge detection at junctions.

In Proc. Alvey Vision Conference, 1989. 2

[11] B. Ommer and J. M. Buhmann. Learning compositional cat-

egorization models. In ECCV, 2006. 2

[12] L. Parida, D. Geiger, and R. Hummel. Junctions: Detection,

classification, and reconstruction. IEEE Trans. on PAMI,
20(7):687–698, July 1998. 1, 2

[13] X. Ren, C. Fowlkes, and J. Malik. Familiar configuration

enables figure/ground assignment in natural scenes. Vision
Science Society, 2005. 1, 2

[14] M. A. Ruzon and C. Tomasi. Edge, junction, and corner

detection using color distributions. IEEE Trans. on PAMI,
23(11):1281–1295, Nov. 2001. 1

[15] R. E. Schapire. The boosting approach to machine learning:

an overview. In MSRI Workshop on nonlinear Estimation
and Classification, 2002. 4

[16] B. Sumengen and B. S. Manjunath. Edgeflow-driven varia-

tional image segmentation: Theory and performance evalua-

tion. IEEE Trans. on PAMI, 2005. 1, 4

[17] A. Torralba, K. P. Murphy, and W. T. Freeman. Sharing fea-

tures: Efficient boosting procedures for multiclass object de-

tection. In CVPR, 2004. 2, 7

[18] Z. Tu and S. C. Zhu. Image segmentation by data-

driven markov chain monte carlo. IEEE Trans. on PAMI,
24(5):657–673, May 2002. 1, 2, 4, 6

[19] P. Viola and M. J. Jones. Rapid object detection using a

boosted cascade of simple features. In CVPR, 2001. 2, 4

[20] Z. Yao, X. Yang, and S. Zhu. Introduction to a large-scale

general purpose ground truth database:methodology, annota-

tion tool and benchmarks. In EMMCVPR, 2007. 7

U PI Rectangle DL1

Canny First layer Final Sketch

Final Sketch

Rectangle DL1PIU

First layerCanny

Final Sketch

U PI

First layer

Rectangle DL1

Final Sketch

U PI

Canny First layer Final Sketch

First layerCanny

First layer

U

Canny

Figure 8. More experiments on computing the graphlets.

