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Abstract

In this paper, we propose a new approach, called lo-
cal and weighted maximum margin discriminant analysis
(LWMMDA), to performing object discrimination. LWM-
MDA is a subspace learning method that identifies the un-
derlying nonlinear manifold for discrimination. The goal
of LWMMDA is to seek a transformation such that data
points of different classes are projected as far as possible
while points within a same class are as compact as pos-
sible. The projections are obtained by maximizing a new
discriminant criterion, called local and weighted maximum
margin criterion (LWMMC). Different from previous max-
imum margin criterion (MMC) which seeks only the glob-
ally Euclidean structure of data points, LWMMC takes the
local property into account, which makes LWMMC more
accurate in finding discriminant information. LWMMC has
an additional weighted parameter β that further broadens
the average margin between different classes. Computa-
tionally, LWMMDA completely avoids the singularity prob-
lem. Besides, LWMMDA couples the QR-decomposition
into its framework, which makes LWMMDA very efficient
and stable in implementation. Finally, LWMMDA frame-
work is straightforwardly extended into the reproducing
kernel Hilbert space induced by a nonlinear function φ. Ex-
periments on digit visualization, face recognition, and fa-
cial expression recognition are presented to show the effec-
tiveness of the proposed method.

1. Introduction

Automatical object recognition has been extensively
used in a wide range of military, commercial and law en-

forcement applications. A few recognition subjects have
been developed over the past few decades. Statistical pat-
tern recognition is one of the most successful and well-
studied subject. In statistical pattern recognition, a pat-
tern is represented by a point in a high dimensional space.
For example, a pattern of facial image with a resolution
of 100 × 100 pixels yields a 10000-dimensional data point
in the face space. The high dimensionality problem thus
arises due to the fact the number of samples available is
relatively small when compared with the sample features.
This causes the “curse of dimensionality”. The suggestion
that at least ten times as many training samples per class as
the dimensionality are used is a good practice [5]. How-
ever, in many practical applications, it is fairly expensive
to obtain so large number of samples due to limitations of
sample availability, time and cost. Learning a meaningful
subspace in which the patterns possibly reside so as to re-
duce the dimensionality is an effective method for perform-
ing discrimination. In fact, the intrinsic dimensionality of
the object space is much lower. In other words, the data
points have an underlying structure of manifold embedded
in the high-dimensional space. They substantially have a
much more compact characterization.

In the past few decades, an increasing interest in unrav-
elling the manifold of perceptual observation has been wit-
nessed. Principal component analysis (PCA) [9] and lin-
ear discriminant analysis (LDA) [4] are two most classical
techniques of learning a manifold, in which different prop-
erties are pursued by formulating different objective func-
tions. PCA, also known as Karhunen-Loéve transforma-
tion, aims at preserving the global structure of the data set
and seeks a set of mutually orthogonal basis of maximum
variance. PCA has been successfully applied to discover
the manifold of face space [10], which is called Eigenfaces
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method. LDA, also called Fisher’s linear discriminant, is a
supervised learning approach. The goal of LDA is to find a
subspace projected onto which the data points of different
classes are far from each other while the data points within
a same class are close to each other. The optimal trans-
formation is obtained by maximizing the ratio between the
between-class scatter and the within-class scatter. LDA has
been widely used in face recognition producing the well-
known Fisherfaces method [2].

More recently, the maximum margin criterion (MMC)
was developed by Li et al. [11] from another perspective as
an efficient and robust feature extraction criterion instead of
Fisher’s criterion. The new criterion is general in the sense
that, when a suitable constraint is imposed, it actually gives
rise to be LDA. Although both LDA and MMC are two su-
pervised manifold learning methods, the implementation of
MMC is much easier than that of LDA since MMC com-
pletely circumvents the inverse matrix operation and thus
the small sample size (SSS) problem as exists in LDA. As
we know, in under-sampled situation, the singularity makes
LDA cannot be used directly. Meanwhile, it has been shown
that MMC could achieve competitive (or better) recognition
rate when compared with LDA and its variants [11]. Zheng
et al. [19] gave a weighted version of MMC. Another non-
parametric margin maximum criterion (NMMC) was also
developed in literature [13]. This method has a reasonable
interpretation for classification problem. However, its com-
putational demand is intractable.

PCA, LDA, MMC and NMMC are all linear methods.
They fail to discover the underlying nonlinear structure of
the manifold. To overcome this drawback, the kernel-based
counterparts are developed via the so-called kernel trick
[15]. However, none of the kernel-based methods and their
original prototypes explicitly consider the local structure of
the manifold in which the patterns possibly reside. To ex-
plore the local structure, some nonlinear techniques have
been developed, such as Isomap [16], LLE [14], and Lapla-
cian eigenmaps [3]. They do give impressive performance
on some benchmark data set. The transformation, however,
is always implicit and is defined only on the training data
set. So, it is unclear how to analytically evaluate the im-
ages of data points from the testing data set, which prohibits
them from being applied in some pattern recognition prob-
lems.

Based on Laplacian eigenmaps, the locality preserving
projections (LPP) was recently proposed to model the local
manifold structure [7]. The manifold structure is modelled
by using a nearest-neighborhood graph that keeps the neigh-
borhood relationship. In projection process, LPP faithfully
considers this graph structure. LPP inherits the locality
preserving property of Laplacian eigenmaps via the adja-
cency graph. Further, LPP avoids the out-of-sample prob-
lem. When LPP is applied to face recognition, the method is

called Laplacianfaces [8]. However, when performing LPP
in under-sampled situation, the singularity problem arises.
At this time, LPP can’t be applied directly. To cope with
this singularity problem, the common method is to perform
an intermediate dimensionality reduction procedure using
PCA [8]. However, the problem is that after performing
PCA, can LPP still preserve the local information of origi-
nal data set? Note that PCA is a global projection method,
which may blend the local structure of data points. More-
over, the optimal value of the reduced dimensionality of
PCA is difficult to determine. Besides, LPP is not inherently
designed for discrimination. Since, even if the neighbor-
hood is preserved in the lower-dimensional space, it is not
easy to separate classes that have large spread and overlap
with each other, LPP will not necessarily discover the most
important manifold for discrimination problems. So, the
discriminant locality preserving projections was also pro-
posed by combining Fisher’s criterion with LPP [17]. How-
ever, this method still suffers from the SSS problem.

In this paper, we propose a new approach, called lo-
cal and weighted maximum margin discriminant analysis
(LWMMDA), to performing discrimination. LWMMDA
is to find projections that maximize the distances between
different classes while minimize the distances between the
data points within a same class. Unlike MMC and NMMC,
the local information between different classes and the
neighborhood information of the data points within a same
class are incorporated into LWMMDA, which make LWM-
MDA more accurate in finding the discriminative informa-
tion. The locality is modelled by constructing adjacency
matrices, which is motivated by the idea of LPP. So, LWM-
MDA shares some similar properties with LPP such as ex-
plicitly considering the nonlinear manifold structure of the
data set, although LWMMDA is essentially a linear projec-
tion method. LWMMDA is also defined on both the training
and the testing data set, and not sensitive to outliers. How-
ever, the objective functions of LWMMDA and LPP are to-
tally different. LWMMDA produces orthogonal basis while
the basis of LPP is non-orthogonal. The non-orthogonality
makes LPP difficult to reconstruct a data point. Computa-
tionally, LWMMDA completely avoids the SSS problem.
Further, we develop an efficient and stable algorithm for
performing LWMMDA by coupling the QR decomposition
into LWMMDA framework. The algorithm for performing
LWMMDA is theoretically established. The incremental
property of the QR technique makes LWMMDA desirable
in high-dimensional and dynamic databases, since perform-
ing the QR decomposition can work well when the training
data are incremental. Finally, the LWMMDA algorithm can
be transformed into the nonlinearly-related feature space F
straightforwardly.



2. Local and weighted maximum margin dis-
criminant analysis

Suppose that x1, . . . , xn is a set of p-dimensional sam-
ples of size n, which belong to C classes. The number of
samples in class c is nc satisfying

∑C
c=1 nc = n. We use

xc
i to denote the ith sample in class c for i = 1, . . . , nc,

c = 1, . . . , C. In the generic problem of subspace learning,
we wish to find a linear transformation V ∈ R

p×q that maps
each vector xi in the p-dimensional space to a vector yi in
the lower q-dimensional space by yi = VTxi. Given some
optimal criterion, a good V will make yi “represent” xi well.
We first consider a particular case that the p-dimensional
data points are mapped to a line, i.e., yi = vTxi, where the
transformation v is a vector. Since the magnitude of v is of
no real interest, we let it be unitary norm.

The local and weighted maximum margin criterion
(LWMMC) is proposed as follows:

J = β

C∑
c=1

C∑
d=1

(mc − md)2Bcd

− (1 − β)
C∑

c=1

nc∑
i=1

nc∑
j=1

(yc
i − yc

j)
2W c

ij , (1)

where β ∈ [0, 1] is a parameter controlling the tradeoff be-
tween the first and the second term, yc

i denotes the projec-
tion of xc

i , mc is the mean of the projections of the samples
belonging to class c, i.e., mc = 1

nc

∑nc

i=1 yc
i , W c

ij is the
weight of the edge that connects data points xc

i and xc
j , and

Bcd is the weight between two mean vectors of classes c
and d: µc(= 1

nc

∑nc

i=1 xc
i ) and µd(= 1

nd

∑nd

i=1 xd
i ). Here,

we are motivated by the utilization of graph as introduced in
LPP. Specifically, from the graph perspective we represent
the nc samples of class c, i.e., xc

1, . . . , xc
nc

, by a weighted
undirected graph Gc = (Vc, Ec), where Vc denotes a set of
nodes that correspond to all the nc data points, and Ec de-
notes the edges that connect pairwise points with the weight
W c

ij . Likewise, the C mean vectors µc, c = 1, . . . , C, can
also be represented by a graph; and the weights are given
by Bcd. One reasonable definition of the weight matrix W c

is given by

W c
ij = exp(−‖xc

i − xc
j‖2/τ), (2)

where τ is a positive parameter, and ‖ · ‖ is the Euclidean
norm in R

p. In this paper, the parameter τ is set to be the
maximal distance between pairwise data points within each
class. Similarly, the weight matrix B can be defined as

Bcd = exp(−‖µc − µd‖2/τ). (3)

Maximize the objective function (1) equals to maximize
the first term and minimize the second term simultane-
ously. The first term is a distance measure between different

classes. Maximize it is an attempt to make different classes
as far as possible. One interesting trick introduced here is
that different classes are not processed equally. In other
words, we pay special attention to the two mean vectors,
say µc and µd, that are close each other. A heavy weight
is put between µc and µd to ensure that their projections
mc and md are far away. As a result, it is easier to classify
different classes, since even the originally close classes are
transformed far away. The second term of the objective (1)
is a distance measure within each class. Minimizing it is
an attempt to make the data points of a same class as close
as possible and meanwhile preserve the local structure of
each class. That is, if xc

i and xc
j within a same class are

close then yc
i and yc

j are close as well, since it will incur a
heavy penalty if (yc

i − yc
j)

2 is large. The weight W c
ij also

deemphasize the atypical samples of a class, which make
LWMMC robust to outliers. In a word, the first term of
the objective function reflects between-class distance, while
the second term reflects within-class distance. Maximiz-
ing the objective function seeks to maximize the “average
margin” between different classes and meanwhile preserves
the structure of each class. The property of preserving
the structure of each class may be beneficial when using
a nearest-neighbor classifier for discrimination. The param-
eter β is adjusted to balance the between-class distance and
the within-class distance. The larger the β is, the more score
the between-class get. β can be chosen by cross-validation.

By some algebraic operations, it follows that the first
term of the objective function

C∑
c=1

C∑
d=1

(mc − md)2Bcd

=
C∑

c=1

C∑
d=1

(
1
nc

nc∑
i=1

yc
i −

1
nd

nd∑
i=1

yd
i

)2

Bcd

=
C∑

c=1

C∑
d=1

(
1
nc

nc∑
i=1

vTxc
i −

1
nd

nd∑
i=1

vTxd
i

)2

Bcd

=
C∑

c=1

C∑
d=1

(
vTµc − vTµd

)2
Bcd

= 2
C∑

c=1

C∑
d=1

vTµcBcdµ
T
c v − 2

C∑
c=1

C∑
d=1

vTµcBcdµ
T
d v

= 2vTMDMTv − 2vTMBMTv

= 2vTM(D − B)MTv, (4)

where the p × C matrix M = [µ1, . . . , µC ], and D is a
diagonal matrix whose entries are row (or column, notice
the symmetry of B) sums of B, i.e., Dcc =

∑C
d=1 Bcd.

Likewise, the second term of the objective function can be



reduced as

C∑
c=1

nc∑
i=1

nc∑
j=1

(yc
i − yc

j)
2W c

ij

= 2
C∑

c=1

vTXc(Ec − W c)XT
c v, (5)

where the p × nc matrix Xc = [xc
1, . . . , xc

nc
], and Ec is a

diagonal matrix with the entries Ec
ii =

∑nc

j=1 W c
ij . If write

X = [X1, . . . , XC ], E = diag(E1, . . . , EC), and W =
diag(W 1, . . . ,WC), then (5) can be rewritten as 2vTX(E−
W )XTv. Now, maximizing the objective (1) is converted to
solve:

arg max
v

vTXHXTv (6)

subject to vTv − 1 = 0, (7)

where H = βA(D − B)AT − (1 − β)(E − W ), and A is

a block diagonal matrix diag
(

1
n1

1n1 , . . . ,
1

nC
1nC

)
, where

1nc
is an nc-dimensional vector with all entries being one.

Here, we use the equation M = XA. Now, v can be im-
mediately solved by using the Lagrangian multiplier tech-
nique. That is, the transformation vector v is given by the
leading eigenvector of XHXT, associated with the largest
eigenvalue. More generally, the q columns of the trans-
formation matrix V are the first q largest eigenvectors of
XHXT. Note that H is a symmetric matrix. So, the matrix
V obtained is an orthogonal transformation.

2.1. LWMMC/ QR: an efficient algorithm for
LWMMC via QR-decomposition

Maximizing LWMMC by diagonalizing the p × p ma-
trix XHXT is still time consuming in real world applica-
tions, since the dimensionality of the samples p is usually
large. This occurs frequently in pattern classification, for
example face recognition, gene expression data, and web
document classification, in which the dimensionality can be
up to several thousand. Besides, diagonalizing large matrix
directly may give rise to attendant problem of numerical
accuracy. To alleviate the computational demand, an effi-
cient and effective algorithm for solving LWMMC, namely
LWMMC/QR, is presented in this subsection.

By using the incomplete Cholesky decomposition [15],
we know that the data matrix X can be QR-decomposed
as X = QR where Q ∈ R

p×t has orthonormal columns,
R ∈ R

t×n is an upper triangular matrix, and t = rank(X)
is the rank of X. If we, for the time being, suppose that
the optimal transformation matrix V can be expressed as
V = QT for some T ∈ R

t×q having TTT = Iq (since V has
unitary columns), then the original problem of computing V

is converted into computing T such that

T = arg max
TTT=Iq

tr
(

TT(QTXHXTQ)T
)

, (8)

where Iq is the q-dimensional identity matrix and “tr” de-
notes the trace operator. On the other hand, on account of
QTQ = It, we have

QTXHXTQ = QTQRHRTQTQ = RHRT. (9)

Note that RHRT is of size t × t, which has much smaller
size than that of XHXT, since usually t � p. The T is thus
computed as the q eigenvectors of RHRT, associated with
the q largest eigenvalues. As a result, the optimal solution
of V is V = QT.

The relationship between LWMMC/QR and LWMMC
are stated in the following theorem.
Theorem 1. Let X = QR be the QR-decomposition of
X, and T be the matrix whose columns are the eigenvec-
tors of RHRT, with the corresponding eigenvalues sorted
in decreasing order. Let V = QT; that is, V is the opti-
mal transformation matrix obtained from LWMMC/QR al-
gorithm. Then the columns of V are just the leading eigen-
vectors of XHXT with the same eigenvalues.

The proof is omitted here because of limit of space.
This theorem shows that LWMMC/QR is equivalent to the
standard LWMMC. However, the LWMMC/QR provides a
computationally efficient and effective way for performing
LWMMC. The QR-decomposition for computing R is of
time complexity O(t2n). And solving the eigenvalue prob-
lem of RHRT has the complexity O(t3). The storage re-
quirement of the QR-decomposition is O(tn). By contrast,
the time complexity of diagonalizing XHXT is O(p3) in the
standard LWMMC. Both the time and storage complexity of
LWMMC/QR compare favorably with that of LWMMC in
the situation involving high-dimensional data set.

2.2. Learning LWMMC/ QR for discrimination

We call the discriminant analysis based on LWMMC/QR
as local and weighted maximum margin discriminant analy-
sis (LWMMDA). The algorithmic procedure of LWMMDA
is formally summarized as follows.

1. Compute the matrix H .

2. QR-decomposition. By using the incomplete
Cholesky decomposition technique, we decompose the
data matrix X = QR, where Q ∈ R

p×t has orthonor-
mal columns, the upper triangular matrix R ∈ R

t×n

has full row rank, and t = rank(X).

3. Eigenvalue decomposition. Solve the eigenvalue
problem RHRTt = λt.



4. Compute transformation matrix. Let λ1 ≥ · · · ≥ λq

be the eigenvalues of RHRT and t1, . . . , tq the corre-
sponding eigenvectors. Then the optimal transforma-
tion matrix V = QT, where T = [t1, . . . , tq].

5. Compute projections. For a data point x, its image in
the lower-dimensional space is given by

x �→ y = VTx. (10)

Specifically, for the training data set X, the lower-
dimensional embedding is

(y1, . . . , yn)T = XTV = (QR)TQT = RTT. (11)

Suppose that Xtest is the testing data set. By using
the columns of Q as a basis, Xtest can be decomposed
as Xtest = QRtest. Likewise, the lower-dimensional
representation of the testing data set is RT

testT. It can
be seen that the basis matrix Q in fact needs not be
computed in implementation.

As can be seen, the implementation of LWMMDA is fairly
straightforward. There is no need to compute any inverse
matrix. So, it is computationally efficient and stable.

2.3. Kernel LWMMDA

The idea of kernel LWMMDA is to first map the input
data into some new feature space F typically via a non-
linear function φ : R

p → F and then carry out a linear
LWMMDA in F using the mapped samples φ(xi). In im-
plementation, the mapping φ does not need to be computed
explicitly, while it and thus the space F are determined im-
plicitly by the choice of a kernel function k which calcu-
lates the dot product between two mapped samples φ(xi)
and φ(xj) in F by

k(xi, xj) = (φ(xi) · φ(xj)) . (12)

The commonly used kernel functions include dth-order
polynomial kernel, k(xi, xj) = (xi · xj)d, and Gaussian
kernel, k(xi, xj) = exp(−‖xi −xj‖2/σ) with width σ > 0.
Since the QR-decomposition of φ(X) = [φ(x1), . . . , φ(xn)]
only depends on the Gram matrix defined as K = (Kij)n×n

with elements Kij = k(xi, xj) [15], and so does the com-
putation of distances ‖xc

i − xc
j‖ and ‖µc −µd‖, LWMMDA

can be applied in the feature space F directly. The com-
putational complexity does not increase at all. This further
illustrates the powerful and flexible of the proposed method.

3. Experiments

In this section, we conduct several experiments to inves-
tigate the performance of LWMMDA for data visualization,
face recognition, and facial expression recognition.
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Figure 1. The handwritten digits from number 0 to 9 are mapped
onto a 2-dimensional subspace using PCA, MMC, LPP and LWM-
MDA, respectively.
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Figure 2. The handwritten digits from number 0 to 9 are mapped
onto a 2-dimensional subspace using kernel LWMMDA. The left-
center part of the top figure is enlarged in the bottom figure.

3.1. Data 2d-visualization

The experiment involves digit visualization. We use the
digit database, which are publicly available from S. Roweis’
web page (http://www.cs.toronto.edu/˜roweis/data.html).
This database contains 390 binary images of handwritten
digits from “0” to “9”, and each digit has 39 samples. The
digit images are of size 20 × 16 pixels, and is represented
by a 320-dimensional vector by lexicographic ordering of
the pixel elements. The handwriting of some digits are
somewhat illegible. These data points are mapped to a 2-
dimensional subspace using four methods: PCA, MMC,
LPP, and LWMMDA. The experimental results are depicted
in Fig. 1. As can be seen, the projections of PCA are spread
out since PCA aims at maximizing the variance. The classes
of different digits have a heavy overlap. On the other hand,
MMC and LPP yield more meaningful results. Clearly, the
LWMMDA produces much better projections than PCA,
MMC and LPP, since the clusters appears more compact.
Finally, we illustrate the projections obtained by 2th-order
polynomial kernel LWMMDA as shown in Fig. 2. The ker-
nel LWMMDA gives a slightly better projections, by ob-
serving that different classes are far away except the num-
bers “2” and “9”, and “3” and “8” are overlapped.
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Figure 3. The average recognition accuracies vs. reduced-
dimensionality on the UMIST database.
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Figure 4. The average recognition accuracies vs. β using LWM-
MDA on the UMIST database.

3.2. Face recognition using LWMMDA

The system performance of the proposed LWMMDA
method for face recognition is compared with Eigenfaces,
MMC, Fisherfaces, and Laplacianfaces methods, four of
the most popular methods in face recognition domain. To
perform face recognition, we first obtain the face subspace
from the training samples using these methods. Then fa-
cial images are represented by projecting onto the face sub-
space. Finally, we adopt the nearest-neighbor classifier to
identify new facial images, where the Euclidean metric is
used as the distance measure.

We conduct the experiment on the UMIST database. The
UMIST database consists of 564 images of 20 subject [6].
The face images of each person cover a range of poses from
profile to frontal views. Subjects vary with respect to race,
sex and appearance. Precropped versions (with a size of
92 × 112 and 256 grey levels per pixel) of the images may
also be made available from the same web site. In the exper-
iments, the cropped images are further down-sampled into
23 × 28 pixels. As a result, each image is represented by a



644-dimensional vector in face space. We randomly select
10 images of each individual with labels as the training set,
and the rest images in the database are for the testing set. We
perform ten rounds of experiments with random selection
of training data, and record the average results as the final
recognition accuracy. Fig. 3 shows the recognition accuracy
versus reduced-dimensionality by using various methods.

In using the Fisherfaces method, since there are at most
C − 1 nonzero generalized eigenvalues, we take the dimen-
sionality of the reduced space being C−1. The graph struc-
ture used in Laplacianfaces is based on 5-nearest-neighbors.
In general, the performance of LWMMDA method varies
with the value of parameter β. We show the best results
given by the optimal β. As can be seen, the LWMMDA
method outperforms the other methods. In Fig. 4, we eval-
uate the influence of β on the classification accuracy. Ten
rounds of experiments are tested, and the average result is
summarized, where the reduced-dimensionality is fixed at
20. We observe that too small or too large β will not result
in good recognition accuracy. So this, in turn, will depend
to a large degree on the data set at hand.

3.3. Facial expression recognition using LWMMDA

This subsection tests the performance of LWMMDA for
facial expression recognition. The experiment is performed
on Japanese female facial expression (JAFFE) database
[12]. There are 213 images posed by ten Japanese women
in the JAFFE database. Each subject has two to four images
for one of seven expressions: neutral, happiness, sadness,
surprise, anger, disgust and fear. The original facial images
are of the size 256 × 256 pixels, with 256 grey levels per
pixel. In the experiment, only the images covering six basic
facial expressions (excluding all neutral images) are cho-
sen as experimental data. Thus, there are 183 facial images
used.

We follow the work of Lyons et al. [12] to extract fa-
cial expression features. Specifically, 34 fiducial points are
manually marked on each facial image, and then we com-
pute the Gabor filter coefficients at the fiducial points. Af-
ter Gabor filtering, we combine the amplitude values at
the located fiducial points on each facial image into a la-
belled graph (LG) vector. Study shows that filter coeffi-
cients code facial expression better than geometric positions
of the fiducial points [12]. In the experiment, we adopt the
two-dimensional Gabor wavelet kernel:

gu,v(z) =
‖ku,v‖2

σ2
exp

(
−‖ku,v‖2‖z‖2

2σ2

)

×
(

exp(iku,vz) − exp
(
−σ2

2

))
, (13)

where z represents the location of a fiducial point and ku,v is
postulated as ku,v = kv exp(iφu). Here, u and v are given

Methods for FER Recognition rate (%)

Gabor + LDA 64.48
Gabor + CCA 67.21
Gabor + LWMMDA (β = 0.9) 78.35
Gabor + GDA 68.85
(polynomial kernel, d = 3)
Gabor + KCCA 70.49
(Polynomial kernel, d = 3)
Gabor + LWMMDA (β = 0.2) 78.14
(Polynomial kernel, d = 7)

Gabor + GDA 72.13
(Gaussian kernel, σ = 1e6)
Gabor + KCCA 77.05
(Gaussian kernel, σ = 1e6)
Gabor + LWMMDA (β = 0.8) 78.10
(Gaussian kernel, σ = 8e6)

Table 1. Comparison of average facial expression recognition us-
ing “leave-one-subject-out” cross validation on JAFFE databases.

by kv = π/2v (v ∈ {1, . . . , 5}) and φu = πu/6 (u ∈
{0, . . . , 5}) respectively, which denote the orientation and
scale respectively of the Gabor kernel. Hence, for each
facial image, the LG vector is of dimensionality 1020 (=
34 × 5 × 6), where five scales and six directions for Gabor
kernel are used. Using the extracted features, we then learn
a facial expression subspace by the proposed method, onto
which the facial expression images are projected.

The recognition results of the proposed method and
other two popular methods are listed in Table 1, where
the reduced-dimensionality is 5 and we apply the nearest-
neighbor classifier to identify new facial images into one of
the six basic expression categories. The results are evalu-
ated by using the “leave-one-subject-out” cross validation
strategy. That is, the facial images that belong to one sub-
ject are chosen as testing data and the remainder facial im-
ages are used as training data. We repeat this procedure for
all of the possible trials until every subject is used once as
testing data. The final recognition rate is calculated by aver-
aging all the recognition results. The system performance is
compared with the generalized discriminant analysis (GDA)
[1], kernel canonical correlation analysis (KCCA) [18] and
linear discriminant analysis [12] respectively, three of the
popular methods in facial expression classification. From
Table 1, we see that the proposed method achieves much
better performance than the other methods. For LWMMDA
and kernel LWMMDA, the influence of β on average fa-
cial expression recognition is illustrated in Fig. 5. We ob-
serve that the kernel LWMMDA achieves only a slightly
better results than linear LWMMDA. The reason could be
attributed to that the linear LWMMDA has already consid-
ered the nonlinear structure of the data set.
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Figure 5. The influence of β on average facial expression recogni-
tion when using linear and kernel LWMMDA on JAFFE database.

4. Conclusions

A new linear subspace learning method called LWM-
MDA to identify the underlying nonlinear manifold for dis-
crimination has been proposed in this paper. The projec-
tions are then obtained by maximize the average distance
between different classes while minimize the distances be-
tween the data points within a same class. LWMMDA takes
the local property of data points into account. LWMMDA
is computationally easy. It totally circumvents the singu-
larity problem. LWMMDA is straightforwardly extended
into reproducing kernel Hilbert space induced by a nonlin-
ear function φ. Two questions that need further investigate
are how to choose the value of β and how to determine the
intrinsic dimensionality of the manifold.
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