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Abstract

Linear Discriminant Analysis (LDA) is a popular statis-
tical approach for dimensionality reduction. LDA captures
the global geometric structure of the data by simultaneously
maximizing the between-class distance and minimizing the
within-class distance. However, local geometric structure
has recently been shown to be effective for dimensionality
reduction. In this paper, a novel dimensionality reduction
algorithm is proposed, which integrates both global and lo-
cal structures. The main contributions of this paper include:
(1) We present a least squares formulation for dimension-
ality reduction, which facilities the integration of global
and local structures; (2) We design an efficient model se-
lection scheme for the optimal integration, which balances
the tradeoff between the global and local structures; and
(3) We present a detailed theoretical analysis on the intrin-
sic relationship between the proposed framework and LDA.
Our extensive experimental studies on benchmark data sets
show that the proposed integration framework is compet-
itive with traditional dimensionality reduction algorithms,
which use global or local structure only.

1. Introduction

Dimensionality reduction has a wide range of applica-
tions in computer vision, statistical learning, and pattern
recognition [7, 12]. A well-known approach for supervised
dimensionality reduction is Linear Discriminant Analysis
(LDA) [9, 10]. It has been used widely in various applica-
tions, including face recognition and microarray expression
data analysis [1, 8]. Given a training data set, LDA captures
its global geometric structure by maximizing the between-
class distance and minimizing the within-class distance si-
multaneously, thus achieving maximum class discrimina-
tion.

Local geometric structure has recently received much at-
tention in dimensionality reduction [2]. The local structure

of a training data set may be captured by a Laplacian ma-
trix [5], which is constructed from an adjacency graph of
the data. (Details can be found in Section 3.) Laplacian
Eigenmaps [2] and Locality Preserving Projection (LPP)
[13] are nonlinear and linear dimensionality reduction algo-
rithms, respectively, which compute a (locality preserving)
low-dimensional manifold based on the graph Laplacian.

Structures of real-world data are often complex, and a
single characterization (either global or local) may not be
sufficient to represent the underlying true structures [6]. In
this paper, we propose a novel dimensionality reduction al-
gorithm, which integrates both global and local structures.
First, we present a least squares formulation for LDA, un-
der which the integration of global and local structures can
be modeled as a regularized least squares problem. More
specifically, LDA is regularized by a penalty term based
on the graph Laplacian. A tuning parameter is employed
to balance the tradeoff between global and local structures.
We thus name the proposed algorithm LapLDA. It is worth-
while to note that the idea of regularization has a rich math-
ematical history going back to Tikhonov [17], where it is
used for solving ill-posed inverse problems. Regularization
is the key to many other machine learning methods such
as Support Vector Machines (SVM) [18], spline fitting [19],
etc. The use of the graph Laplacian as the regularization has
been studied in [3] in the context of regression and SVM.

Second, we design an efficient model-selection algo-
rithm to estimate the optimal tuning parameter involved in
the integration framework. For high-dimensional data, the
computational cost of solving a regularized least squares
problem may be high. Our theoretical analysis shows that
the regularization in the least squares formulation only takes
place on a small size matrix. Based on this analysis, we
develop an efficient algorithm for the estimation of the op-
timal tuning parameter from a given candidate set. Third,
we present a detailed theoretical analysis on the intrinsic
relationship between LapLDA and uncorrelated LDA [21].
(Uncorrelated LDA is an extension of classical LDA to deal
with the singularity problem [15].) We show that under a

1
1-4244-1180-7/07/$25.00 ©2007 IEEE



mild condition, LapLDA based on a specific Laplacian ma-
trix is equivalent to ULDA. This equivalence relationship
provides new insights into the proposed integration frame-
work.

We present extensive experimental studies to evaluate
the effectiveness of LapLDA using six benchmark data sets,
in comparison with ULDA and LPP, which use global or lo-
cal structure only. The six data sets used in the evaluation
cover a wide range of dimensions. They also reflect signif-
icant variations of the structure of data. For example, the
use of local structure (in LPP) achieves better classification
performance than the use of global structure (in ULDA) in
some data sets, while it is not the case in other data sets.
We observe, however, that the proposed integration frame-
work outperforms both LPP and ULDA in all test date sets.
This implies that global and local structures can be com-
plementary to each other, even though one of them may be
more important than the other one. These results validate
the value of the integration of global and local structures in
the proposed framework.

2. Linear Discriminant Analysis

Given a data set X consisting of n data points
{x1, x2, · · · , xn} ∈ R

d, classical LDA computes an op-
timal linear transformation G ∈ R

d×r that maps the data
onto a lower-dimensional subspace as follows:

xj ∈ R
d → xL

j = GT xj ∈ R
r(r < d).

Let X be partitioned into k classes as X =
[X1,X2, · · · ,Xk], where Xi ∈ R

d×ni , and ni denotes the
size of the i-th class. In discriminant analysis [10], three
scatter matrices, i.e., within-class, between-class, and total
scatter matrices are defined as follows:

Sw =
1
n

k∑
i=1

∑
x∈Ci

(x − c(i))(x − c(i))T , (1)

Sb =
1
n

k∑
i=1

ni(c(i) − c)(c(i) − c)T , (2)

St =
1
n

n∑
j=1

(xj − c)(xj − c)T , (3)

where x ∈ Ci implies that x belongs to the i-th class, c(i) is
the centroid of the i-th class, and c is the global centroid. It
is easy to verify that St = Sb + Sw.

The scatter matrices Sw, Sb, and St can also be ex-
pressed as follows:

Sw = HwHT
w , Sb = HbH

T
b , St = HtH

T
t , (4)

where matrices Hw, Hb, and Ht are given by

Hw =
1√
n

[X1 − c(1)e(1)T
, · · · ,Xk − c(k)e(k)T

], (5)

Hb =
1√
n

[
√

n1(c(1) − c), · · · ,
√

nk(c(k) − c)], (6)

Ht =
1√
n

(X − ceT ), (7)

and e(i) for all i and e are vectors of all ones with appro-
priate lengths. It follows that the trace of Sw measures the
within-class cohesion, while the trace of Sb measures the
between-class separation. In the lower-dimensional sub-
space resulting from the linear transformation G, the scat-
ter matrices Sw, Sb, and St become GT SwG, GT SbG, and
GT StG, respectively.

An optimal transformation G∗ would maximize the
between-class distance and minimize the within-class dis-
tance simultaneously. In classical LDA, G∗ is commonly
computed by minimizing tr((GT SwG)−1GT SbG), where
tr(·) denotes the trace of a matrix [11]. This is equivalent to
solving the following optimization problem:

G∗ = arg max
G

{
tr((GT StG)−1GT SbG)

}
, (8)

due to the fact that St = Sb + Sw. The optimization prob-
lem in Eq. (8) is equivalent to finding all the eigenvectors
x that satisfy Sbx = λStx, for λ �= 0 [10]. The optimal
G∗ can be obtained by applying an eigen-decomposition on
the matrix S−1

t Sb, provided that St is nonsingular. There
are at most k − 1 eigenvectors corresponding to nonzero
eigenvalues, since the rank of Sb is bounded from above by
k − 1. Therefore, the reduced dimension of classical LDA
is at most k − 1.

For high-dimensional data where the sample size may be
smaller than the feature dimension, St can be singular and
classical LDA fails. Many LDA extensions (see [21] for
an overview) have been proposed in the past to overcome
the singularity problem, including PCA+LDA, regularized
LDA, Uncorrelated LDA (ULDA), null space LDA, etc.

3. Laplacian Linear Discriminant Analysis

In this section, we propose a novel least squares frame-
work for dimensionality reduction, which integrates global
and local geometric structures. The local structure is in-
corporated into the framework through the graph Laplacian,
which can be considered as a regularization term in the least
squares formulation. Interestingly, there is a close relation-
ship between the proposed formulation and LDA as shown
in Section 4 below. We thus name the algorithm LapLDA,
which stands for Laplacian LDA.



3.1. Graph Laplacian

Given a data set {xi}n
i=1, a weighted graph can be con-

structed where each node in the graph corresponds to a data
point in the data set. The weight Sij between two nodes xi

and xj is commonly defined as follows:

Sij =

{
exp(−‖xi−xj‖2

σ ) xi ∈ NK(xj) or xj ∈ NK(xi)
0 otherwise

(9)

where both K and σ > 0 are parameters to be specified,
and xi ∈ NK(xj) implies that xi is among the K nearest
neighbors of xj [2]. Let S be the similarity matrix whose
(i, j)-th entry is Sij . To learn an appropriate representation
{zi}n

i=1 with preserved locality structure, it is common to
minimize the following objective function [2]:∑

i,j

‖zi − zj‖2Sij . (10)

Intuitively, ‖zi − zj‖, the distance between two data points
will be small if Sij is large, i.e., xi and xj are close to each
other in the original space. Thus the locality structure is
preserved.

Define the Laplacian matrix L as L = D − S, where
D is a diagonal matrix whose diagonal entries are the col-
umn sums of S, that is, Dii =

∑n
j=1 Sij . Note that L is

symmetric and positive semidefinite. It is easy to verify that

1
2

n∑
i=1

n∑
j=1

‖zi − zj‖2Sij = tr(ZLZT ), (11)

where Z = [z1, · · · , zn].

3.2. The Least Squares Framework

The proposed least squares formulation for dimension-
ality reduction incorporates the local structure information
via a regularization term defined as in Eq. (11). Mathemat-
ically, LapLDA computes an optimal weight matrix W ∗,
which solves the following optimization problem:

W ∗ = arg min
W

{‖XT W − Y ‖2
F + λtr(WT XLXT W )}

(12)

where || · ||F denotes the Frobenius norm [11] of a matrix,
λ ≥ 0 is a tuning parameter, Y is a class indicator matrix
defined as follows [22]:

Y (ij) =




√
n
nj

−
√

nj

n , if yi = j

−
√

nj

n , otherwise
(13)

yi is the class label of xi, nj is the sample size of the j-th
class, and n is the total sample size of the data. Here we

assume that the data matrix X has been centered (of zero
mean, i.e.,

∑n
i=1 xi = 0). The indicator matrix Y (of zero

mean) is chosen so that XY = nHb, which leads to the least
squares formulation of LDA as shown in the next section.
It is easy to verify that the optimal solution to LapLDA is
given by

W ∗ =
(
λXLXT + XXT

)+
nHb, (14)

where M+ denotes the pseudo-inverse [11] of M .

3.3. Efficient Model Selection

The tuning parameter λ in Eq. (12) plays an important
role in LapLDA, which is generally selected from a large
set of candidates via cross-validation. However, for high-
dimensional data, the sizes of XLXT and XXT are large,
thus cross-validation is computationally prohibitive. In the
following, we propose an efficient algorithm for the estima-
tion of the optimal value of λ from a large search space, thus
facilitating efficient model selection for LapLDA.

Assuming the data X ∈ R
d×n has been centered, we

have Ht = 1√
n
X . It follows that the solution to LapLDA in

Eq. (14) can be expressed as follows:

W ∗ = (nλHtLHT
t + nSt)+nHb

=
(
Ht(λL + In)HT

t

)+
Hb. (15)

Let Ht = UΣV T be the SVD of Ht, where Ht ∈ R
d×n,

U ∈ R
d×d, V ∈ R

n×n, and Σ ∈ R
d×n. Denote t =

rank(Ht). Let U1 ∈ R
d×t and V1 ∈ R

n×t consist of the
first t columns of U and V , respectively. Let the square
matrix Σt ∈ R

t×t consist of the first t rows and the first t
columns of Σ. We have

Ht = UΣV T = U1ΣtV
T
1 . (16)

It follows from Eq. (15) that

W ∗ = U

( (
ΣtV

T
1 (λL + In)V1Σt

)−1 0
0 0

)
UT Hb

= U1

(
ΣtV

T
1 (λL + In)V1Σt

)−1
UT

1 Hb.

For cases where the data dimension (d) is much larger than
the sample size (n), the matrix

ΣtV
T
1 (λL + In)V1Σt ∈ R

t×t

is much smaller than the matrix

Ht(λL + In)HT
t ∈ R

d×d

in the original formulation, thus dramatically reducing the
computational cost. Note that for cases where the sample
size is much larger than the data dimension, the original
formulation is more efficient.



4. Relationship between LapLDA and ULDA

In this section, we show a close relationship between
LapLDA and Uncorrelated LDA (ULDA) [21], which was
recently proposed as an extension of classical LDA to deal
with the singularity problem. One key property of ULDA
is that the features in the transformed space are uncorre-
lated, thus ensuring minimum redundancy among the fea-
tures in the reduced subspace. It was shown [21] that the
transformation of ULDA consists of the first q eigenvectors
of S+

t Sb, where q = rank(Sb). We show in the following
that LapLDA with a specific Laplacian matrix is equivalent
to ULDA under a mild condition C1:

rank(St) = rank(Sb) + rank(Sw), (17)

which has been shown to hold for many high-dimensional
data sets [23].

4.1. An Important Property of Condition C1

Let Ht = UΣV T = U1ΣtV
T
1 be the SVD of Ht as

defined in Eq. (16). Denote B = Σ−1
t UT

1 Hb ∈ R
t×k. Let

B = P Σ̃QT (18)

be the SVD of B, where P and Q are orthogonal. Define

H = U

(
Σ−1

t P 0
0 Id−t

)
. (19)

The following result is crucial for the equivalence relation-
ship between LapLDA and ULDA [22]:

Theorem 4.1. Let St, Sb, Sw, Ht, Hb, and H be defined as
above. Let t = rank(St) and q = rank(Sb). Assume condi-
tion C1 in Eq. (17) holds. Then H in Eq. (19) diagonalizes
the scatter matrices as follows:

HT StH =
(

It 0
0 0

)
, HT SbH =

(
Σb 0
0 0

)
, (20)

HT SwH =
(

Σw 0
0 0

)
, (21)

where

Σb =
(

Iq 0
0 0

)
, Σw =

(
0 0
0 It−q

)
. (22)

4.2. LapLDA based on a Specific Laplacian Matrix

We construct the following similarity matrix S using the
class label information:

Sij =
{

1
n�

if xi, xj are from the �-th class
0 otherwise

(23)

where n� is the size of the �-th class. It can be verified that

XLXT = nSw. (24)

Therefore, the optimal solution to LapLDA in Eq. (14) can
be expressed as

W ∗ =
(
λXLXT + XXT

)+
nHb

= (λSw + St)+Hb. (25)

Following the definition of H in Eq. (19), we have

UT SwU

=

(
Σ−1

t P 0
0 Id−t

)−T

HT SwH

(
Σ−1

t P 0
0 Id−t

)−1

=

(
ΣtP 0

0 Id−t

) (
Σw 0
0 0

) (
P T Σt 0

0 Id−t

)

=

(
ΣtPΣwP T Σt 0

0 0

)
. (26)

We can thus express the optimal weight matrix in Eq. (25)
as follows:

W ∗ = (λSw + St)+Hb

=
{

U

(
Σ2

t 0
0 0

)
UT + λU(UT SwU)UT

}+

Hb

= U1

(
λΣtPΣwPT Σt + Σ2

t

)−1
UT

1 Hb

= U1Σ−1
t P (λΣw + It)

−1
PT Σ−1

t UT
1 Hb

= U1Σ−1
t P (λΣw + It)

−1
PT B

= U1Σ−1
t P (λΣw + It)−1Σ̃QT , (27)

where the second equality follows since U is orthogonal,
the third equality follows since Hb lies in the null space of
St, the fourth equality follows since P is orthogonal, and
the last two equalities follow from the definition of B and
Eq. (18).

4.3. Equivalence between LapLDA and ULDA

It can be verified from Theorem 4.1 that Σ̃Σ̃T = Σb, that
is,

Σ̃ =
(

Iq 0
0 0

)
.

It follows that

P Σ̃ = [Pq, Pt−q]Σ̃ = [Pq, 0], (28)

where Pq consists of the first q columns of P . It follows
from Theorem 4.1 that the first q diagonal entries of the
matrix Σw are zero. Thus

(It + λΣw)−1Σ̃ = Σ̃. (29)



Combining Eqs. (27, 28,29), we have

W ∗ = U1Σ−1
t P (It + λΣw)−1Σ̃QT

= U1Σ−1
t P Σ̃QT

= [U1Σ−1
t Pq, 0]QT . (30)

On the other hand, the optimal solution to ULDA consists
of the top eigenvectors of S+

t Sb. We can decompose S+
t Sb

as follows:

S+
t Sb

= U

(
(Σ2

t )
−1 0

0 0

)
UT HbH

T
b

= U

(
(Σ2

t )
−1UT

1 HbH
T
b U1 0

0 0

)
UT

= U

(
Σ−1

t BBT Σt 0
0 0

)
UT

= U

(
Σ−1

t P 0
0 I

) (
Σb 0
0 0

) (
P T Σt 0

0 0

)
UT ,

where the last two equalities follows from Σb = Σ̃Σ̃T and
B = Σ−1

t UT
1 Hb = P Σ̃QT . Thus, the optimal transforma-

tion of ULDA is given by

G∗ = U1Σ−1
t Pq, (31)

since only the first q diagonal entries of Σb are nonzero.
The K-Nearest-Neighbor (K-NN) algorithm based on the

Euclidean distance is commonly applied as the classifier
in the dimensionality reduced space of LDA. If we apply
W ∗ for dimensionality reduction before K-NN, the matrix
W ∗ is invariant of any orthogonal transformation, since
any orthogonal transformation preserves all pairwise dis-
tances. Thus W ∗ is essentially equivalent to [U1Σ−1

t Pq, 0]
or U1Σ−1

t Pq, as the removal of zero columns does not
change the pairwise distance either. Thus LapLDA is equiv-
alent to ULDA.

5. Experiments

In this section, we experimentally evaluate LapLDA in
terms of classification accuracy on six benchmark data sets.
5-fold cross-validation is used in LapLDA for model selec-
tion. The Nearest-Neighbor (NN) algorithm is employed
for classification. We set K = 5 and σ = 1 for the con-
struction of the similarity matrix S defined in Eq. (9).

5.1. Data Set

We use various types of data sets (see Table 1 for
more details) in the experiment, including text documents
(20Newsgroups1), images (USPS [14]), and several other
data sets from UCI Machine Learning Repository [16] such
as Soybean, Waveform, Satimage, and Letter. The random
partitions of the data into training and test sets with fixed
sizes are used in the evaluation below.

1http://people.csail.mit.edu/jrennie/20Newsgroups/

Data Set Training Test Sample size Dim Class

USPS 750 2250 3000 256 10
20Newsgroups 240 960 1200 8298 4

Waveform 300 900 1200 40 3
Satimage 300 3300 3600 36 6

Letter(a-m) 260 3640 3900 16 13
Soybean 150 412 562 35 15

Table 1. Statistics of the test data sets.

5.2. Efficiency

To evaluate the efficiency of the algorithm, we apply
LapLDA to 20Newsgroups, which has the largest number of
dimensions among all data sets used in the experiment. Ta-
ble 2 shows the computational time (in seconds) of LapLDA
for different sizes of the candidate set, ranging from 1 to
1024. It is clear that the cost of LapLDA grows slowly as
the candidate size increases. Because of the improved effi-
ciency of the proposed LapLDA algorithm, it is practical to
select the optimal value of λ from such a large candidate set.
In the following experiment, we choose the optimal value of
the tuning parameter from a candidate set of size 1024.

5.3. Classification Performance

In the following comparative study, we compare
LapLDA, which integrates both global and local structures,
with ULDA and LPP, which use either global or local struc-
ture only. For each data set, we randomly partition the data
into a training set and a test set (with a fixed training and
test sizes). To give a better estimation of classification ac-
curacy, the partition procedure is repeated 30 times and the
resulting accuracies are averaged. Detailed description for
the partition is presented in Table 1.

The classification accuracies of the 30 different parti-
tions for all six data sets are presented in Figure 1. We also
report the mean accuracy and standard deviation of the 30
different partitions for each data set in Table 3. It is clear
from the presented results that LapLDA outperforms LPP
and ULDA for all of the six data sets used in the experiment.
This conforms to our motivation of integrating both global
and local geometric structures in LapLDA to improve di-
mensionality reduction and classification.

We can observe from Figure 1 that ULDA outperforms
LPP on USPS, 20Newsgroups, and Waveform, while LPP
outperforms ULDA on Satimage and Letter. This implies
that the relative importance of global and local structures
depends on specific applications. For example, in USPS,
20Newsgroups, and Waveform, the global structure may
play a more important role for the classification, while
in Satimage and Letter, the local structure may contain
more important information. However, in all these cases,
LapLDA outperforms both ULDA and LPP. This implies
that global and local structures can be complementary to
each other, even though one of them may dominate the



Size 1 2 4 8 16 32 64 128 256 512 1024
Time 8.78 8.86 8.91 9.20 9.73 10.23 11.31 13.64 18.66 28.41 49.25

Table 2. Computational time (in seconds) of LapLDA for different sizes of the candidate set using 20Newsgroups.

LapLDA LPP ULDA
Data Set mean std mean std mean std

USPS 84.52 0.89 77.87 1.44 81.57 0.94
20Newsgroups 80.34 1.56 50.25 3.67 77.33 2.12

Waveform 80.35 1.78 65.89 1.87 72.50 2.25
Satimage 83.47 1.46 80.18 1.26 75.15 1.41

Letter (a-m) 80.24 1.18 79.20 1.26 75.26 1.49
Soybean 86.61 2.76 84.24 2.48 85.15 2.53

Table 3. Comparison of classification accuracies (in percentage)
of LapLDA, LPP, and ULDA. The mean and standard deviation of
30 different partitions are reported.

other one in certain applications. Therefore, integrating
both global and local structures in LapLDA may be ben-
eficial. This explains why LapLDA may outperform both
LPP and ULDA by a large margin, which is the case for
USPS and Waveform.

It is interesting to note that all three algorithms achieve
comparable performance on Soybean (see Figure 1). This
implies that in certain cases such as Soybean, global and
local structures may capture similar information and inte-
grating both structures does not help.

6. Discussion

In this paper, we mainly focus on the case where all train-
ing examples are labeled. Semi-supervised learning, which
occupies the middle ground between supervised learning (in
which all training examples are labeled) and unsupervised
learning (in which no labeled data are given), has received
increased interest in recent years, particularly because of
application domains in which unlabeled data are plentiful,
such as images, text, and bioinformatics [4, 20, 24, 25]. The
proposed least squares framework can be naturally extended
to deal with unlabeled data, as graph Laplacian is defined on
all data points (labeled and unlabeled) [3].

We have conducted a preliminary study to evaluate semi-
supervised LapLDA using both labeled and unlabeled data
on the USPS handwritten digits. The result is summarized
in Figure 2, where the x-axis denotes the number of unla-
beled data points used in the training set per class and the
y-axis denotes the classification accuracy on a separate test
set. We tested four different cases when different numbers
of labeled data points per class were used. We can observe
from Figure 2 that the use of unlabeled data does help to
improve the performance of LapLDA.

7. Conclusions

We propose in this paper a novel least squares formula-
tion of LDA, called LapLDA, for dimensionality reduction
and classification. LapLDA integrates both global and local
geometric structures, where the local structure is captured
by the graph Laplacian. An efficient model selection algo-
rithm is also presented to estimate the optimal integration
model specified by a tuning parameter. A further theoretical
analysis on the intrinsic relationship between LapLDA and
ULDA is presented. We evaluate the proposed LapLDA al-
gorithm on a collection of benchmark data sets in terms of
classification accuracy. LapLDA is competitive with both
ULDA and LPP in all cases. This validates the integration
of both global and local structures in LapLDA.

The current work focuses on linear dimensionality re-
duction. This may be less effective when there is nonlinear-
ity in the data. One of our future work is to extend LapLDA
to deal with nonlinear data using kernels.
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Figure 1. Comparison of LapLDA, LPP, and ULDA in classification accuracy using six benchmark data sets. The x-axis denotes 30
different partitions into training and test sets.

[6] V. de Silva and J. Tenenbaum. Global versus local
methods in nonlinear dimensionality reduction. In
Advances in Neural Information Processing Systems,
pages 705–712, 2002. 1

[7] R. Duda, P. Hart, and D. Stork. Pattern Classification.
Wiley Interscience, 2nd edition, 2000. 1

[8] S. Dudoit, J. Fridlyand, and T. P. Speed. Comparison
of discrimination methods for the classification of tu-
mors using gene expression data. Journal of the Amer-
ican Statistical Association, 97(457):77–87, 2002. 1

[9] R. Fisher. The use of multiple measurements in tax-

onomic problems. Annals of Eugenics, 7:179–188,
1936. 1

[10] K. Fukunaga. Introduction to Statistical Pattern Clas-
sification. Academic Press, San Diego, California,
USA, 1990. 1, 2

[11] G. H. Golub and C. F. Van Loan. Matrix Computa-
tions. The Johns Hopkins University Press, Baltimore,
MD, USA, third edition, 1996. 2, 3

[12] T. Hastie, R. Tibshirani, and J. Friedman. The Ele-
ments of Statistical Learning : Data mining, Inference,
and Prediction. Springer, 2001. 1



0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Number of unlabeled data points per class

Cl
as

sif
ica

tio
n 

Ac
cu

ra
cy

l = 10

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Number of unlabeled data points per class

Cl
as

sif
ica

tio
n 

Ac
cu

ra
cy

l = 20

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

Number of unlabeled data points per class

Cl
as

sif
ica

tio
n 

Ac
cu

ra
cy

l = 40

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

Number of unlabeled data points per class

Cl
as

sif
ica

tio
n 

Ac
cu

ra
cy

l = 60

Figure 2. Effectiveness of semi-supervised LapLDA. The x-axis denotes the number of unlabeled data points per class used in the training
set and the y-axis denotes the classification accuracy on a separate test set. l denotes the number of labeled data points per class.

[13] X. He and P. Niyogi. Locality preserving projection.
In Advances in Neural Information Processing Sys-
tems, 2003. 1

[14] J. J. Hull. A database for handwritten text recognition
research. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 16(5):550–554, 1994. 5

[15] W. Krzanowski, P. Jonathan, W. McCarthy, and
M. Thomas. Discriminant analysis with singular co-
variance matrices: methods and applications to spec-
troscopic data. Applied Statistics, 44:101–115, 1995.
1

[16] D. Newman, S. Hettich, C. Blake, and C. Merz. UCI
repository of machine learning databases, 1998. 5

[17] A. N. Tikhonov and V. Y. Arsenin. Solutions of Ill-
posed problems. John Wiley and Sons, Washington
D.C., 1977. 1

[18] V. Vapnik. Statistical learning theory. Wiley, New
York, 1998. 1

[19] G. Wahba. Spline models for observational data. So-
ciety for Industrial & Applied Mathematics, 1998. 1

[20] W. Weston, C. Leslie, E. Ie, D. Zhou, A. Elisseeff,
and W. Noble. Semi-supervised protein classification

using cluster kernels. Bioinformatics, 21(15):3241–
3247, 2005. 6

[21] J. Ye. Characterization of a family of algorithms
for generalized discriminant analysis on undersam-
pled problems. Journal of Machine Learning Re-
search, 6:483–502, 2005. 1, 2, 4

[22] J. Ye. Least squares linear discriminant analysis. In
Proceedings of the 24th International Conference on
Machine Learning, 2007. 3, 4

[23] J. Ye and T. Xiong. Computational and theoretical
analysis of null space and orthogonal linear discrimi-
nant analysis. Journal of Machine Learning Research,
7:1183–1204, 2006. 4

[24] D. Zhou, O. Bousquet, T. Lal, J. Weston, and
B. Schölkopf. Learning with local and global consis-
tency. In Advances in Neural Information Processing
Systems, pages 321–328, 2003. 6

[25] X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-
supervised learning using Gaussian fields and har-
monic functions. In Proceedings of the 20th Interna-
tional Conference on Machine Learning, pages 912–
919, 2003. 6


