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Abstract
This paper proposes an approach to simultaneously de-

tect and segment objects of a known category. Edgelet fea-
tures are used to capture the local shape of the objects. For
each feature a pair of base classifiers for detection and seg-
mentation is built. The base segmentor is designed to pre-
dict the per-pixel figure-ground assignment around a neigh-
borhood of the edgelet based on the feature response. The
neighborhood is represented as an effective field which is
determined by the shape of the edgelet. A boosting algo-
rithm is used to learn the ensemble classifier with cascade
decision strategy from the base classifier pool. The simul-
taneousness is achieved for both training and testing. The
system is evaluated on a number of public image sets and
compared with several previous methods.

1. Introduction
Accurate delineation (i.e. segmentation) and detection of

objects of one or more known classes is of fundamental in-
terest in computer vision and needed for a number of higher
level tasks. Traditionally, one would segment an image by
one of the various region segmentation methods and then
try to classify the regions as belonging to one of the desired
classes. This approach works well when objects of inter-
est have relatively homogeneous properties in some image
attributes such as intensity, color or texture. However, for
many common objects of interest, e.g. humans, the surfaces
are not uniform and the texture can be arbitrarily complex.
In such cases, no effective algorithms for bottom-up seg-
mentation have been devised; existing methods tend to over
or under segment an image. If objects of interest are mov-
ing, motion-based segmentation can be more reliable, but
even here, merging of motion blobs with adjacent objects
and with shadows and reflections can be problematic. We
focus on static image analysis in this paper.

In recent years, methods for direct detection of objects
have become popular. The best know example is perhaps
that of face detection by Viola and Jones [24] where no prior

segmentation is applied; rather, the image is scanned by
windows of various size and a determination as to the pres-
ence of the desired object is made in this window. While
such methods show good performance at the detection level,
object delineation is not very precise; typically a bounding
box which contains the object as well as some of the back-
ground is detected. A more accurate delineation process
may then be applied inside the bounding box, as in [19].
We argue that better results can be obtained if the object
models for segmentation and detection are built simultane-
ously; furthermore, the process is more efficient as the two
may share many common feature computations.

(a) (b)

(c) (d)

Figure 1. Local shape features in [9, 13, 14]: a) Edgelets selected
for people [14]; b) Boundary fragments selected for cows [9]; c)
Feature responses of a face [13]; d) Feature responses of a cow [9].

In this work, our objective is to simultaneous detect and
delineate objects of a known category. The features used
in the classifiers are shape features. In some existing work,
discriminative local shape features, such as contour frag-
ments in [9, 13], and edgelet in [14], are selected by boost-
ing algorithm to model the appearance of the objects, see
Fig.1. The selected features lie on the object boundary; their
responses on the query image help to delineate the object.
Based on this observation, we design the base classifiers for
detection and segmentation from local shape features, and
learn cascade structured classifier by boosting the base clas-
sifiers.
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1.1. Related Work
The main difference between general image segmenta-

tion methods, e.g. [25], and the segmentation of objects
of a known class is the use of the prior knowledge, i.e.
an object model, of the concerned class. In addition to
guiding segmentation, the object models also function as
discriminative models for recognition and detection, e.g.
[1, 5, 9, 7, 6, 12, 22, 17], or generative models for pose
estimation, e.g. [8]. In this work, we address the problem of
simultaneous detection and segmentation.

Many of the recent efforts build object models based on
some image features, other than color value or gray inten-
sity. The use of features enables us to focus on informa-
tive and discriminative image cues. The features could be
global, e.g. the edge template in [27], or local, e.g. the rect-
angle feature in [24]. Global features are relatively sensitive
to partial occlusions compared to local ones. The properties
that the features try to capture mainly include: 1) color, e.g.
the mixtures of Gaussian color model in [7, 13], and the
kernel density estimation of color distribution in [11]; 2)
texture, e.g. the texton in [7]; and 3) shape, e.g. the part tem-
plates in [4], the boundary or contour fragments in [9, 13],
the simplified SIFT descriptors in [6], and the edgelets in
[14].

When global features are used, the object models are
sometimes equal to the features, e.g. the edge template mod-
els in [27, 11]. When local features are used, we need some
way to organize the features to form the object models.
Many existing methods use random field (RF) approaches,
e.g. the Layout Consistent Conditional Random Field in
[1], the Located Hidden Random Field in [6], the texton
based CRF in [7], the pose-specific MRF in [8], the Picto-
rial Structure enhanced MRF in [17]. The algorithms used
to infer the RF models include loopy belief propagation, se-
quential tree-reweighted message passing, and graph cuts.
These techniques are computationally expensive. Some
other methods use star-shaped models to organize the lo-
cal features, e.g. the Boundary-Fragment-Model in [9], and
the Implicit Shape Model in [19, 22]. These models can be
inferred by Hough Transformation much more efficiently.
However, these methods usually assume a fixed object size
so that the solution space is highly restricted. Some of these
methods, e.g. [5, 1, 9, 6, 7, 12, 11, 17], result in simultane-
ous detection and segmentation.

Recently, the boosting based framework proposed by Vi-
ola and Jones [24] has been successfully applied to detect
some object categories, e.g. faces [24, 15] and pedestrians
[14]. The cascade decision strategy makes the boosted en-
semble classifiers very efficient for multi-scale object detec-
tion. Unlike the random field approaches and the constel-
lation approaches, boosting methods encode the shape of
the objects by including a number of local features within
the sample window. The relative positions of these local

features represent the shape implicitly. Although some ex-
isting methods, e.g. [9, 7], use boosting as feature selector
for segmentation, as far as we know, none of them learn the
ensemble classifier as a direct segmentor. In this work, we
propose a unified framework to learn cascade classifier for
simultaneous detection and segmentation.

1.2. Outline of Our Approach
Following our previous work [14], we design our clas-

sifiers based on edgelet features. Compared to other local
shape features, the main advantages of the edgelets are: 1)
they consider both the magnitude and the direction of the
edge; 2) they are parametric shapes which are not object
class dependent; and 3) the computation of edgelets is ef-
ficient. Although color and texture are potentially useful
cues, they are not used here, as we want to investigate the
effect of shape features for object segmentation and seg-
mentation in this work.

For training, first a large feature pool is built. For each
feature in it, a pair of base classifiers for detection and seg-
mentation is learned. A variation of the real AdaBoost algo-
rithm [28] is used to select good features from the pool. We
formulate the segmentation as binary classification prob-
lem. The input is an image sample and a pixel location
within the sample window; the output is the figure-ground
prediction. We define an effective neighborhood of each
edgelet feature. The figure-ground distribution is learned
within this neighborhood. The final boosted ensemble clas-
sifier with a cascade decision strategy works as a detector
as well as a segmentor, i.e. given the input image, after one
round of scanning, the outputs are the locations of the ob-
jects and the pixel level segmentation masks. The proposed
approach is general and not restricted by object type. Our
main contributions are: 1) the design of the base segmentors
based on local shape features; and 2) a boosting algorithm
for simultaneous learning of detector and segmentor.

We evaluate the detection and segmentation performance
of our system on several public data sets, the UIUC car im-
age set [21]1, the car images of Caltech101 set [10]2, the
car images of TU Darmstadt set [22]3, the USC pedestrian
set [14]4, and some data collected by us. The experimental
results show that the detection performance of our method
is comparable to the-state-of-art detection methods, while
the segmentation outperforms the existing methods.

The rest of the paper are organized as follows: section
2 describes the design of the base classifiers for detection
and segmentation; section 3 gives our boosting algorithm;
section 4 shows experimental results; and some conclusions
and discussions are given in the last section.

1http://l2r.cs.uiuc.edu/ cogcomp/Data/Car/
2http://www.vision.caltech.edu/Image Datasets/Caltech101/
3http://www.pascal-network.org/challenges/VOC/databases.html#TUD
4http://iris.usc.edu/ bowu/DatasetWebpage/dataset.html



2. Design of the Base Classifiers
In the boosting framework, one base classifier is build

for each simple feature. In our case, we use edgelet features
[14]. An edgelet can be seen as a function from the image
space to a real valued range, . Based on
the feature , we learn the base classifier for detection
and the base classifier for segmentation , i.e. a pair of
classifiers sharing the same feature.

2.1. Base Classifier for Detection
The base detection classifier is a function from the im-

age space to a real valued object/non-object classifica-
tion confidence space. Given a labeled sample set

, where is the image patch, and
is the class label of , the base detection classifier is
learned as a piecewise function:

(1)

where , is the bin number (in our exper-
iments ), is a smoothing factor [28], and
is the probability distribution of the feature value for posi-
tive/negative samples, implemented as a histogram:

(2)

2.2. Base Classifier for Segmentation
The base segmentation classifier is a function from the

space to a real valued figure-ground classification
confidence space, where is the 2D image coordinate
space, i.e. . In general, a local feature
only contributes to the shape around its neighborhood. It
is not efficient to predict the state of the feet from a edgelet
falling on the head-top. Based on this observation, we de-
fine the effective field of an edgelet based on a saliency de-
cay function. This is motivated by the tensor voting method
for shape grouping [26]. As shown in Fig.2(a), is a point
on an edgelet feature, whose normal and tangent are

known, is a neighbor of , and is the arc of the
osculating circle at that goes through . Let be the
Euclidean distance between and , and be the angle
between and . The effect of on is defined by

(3)

where is the length of the arc , and
is the curvature, is a constant which controls the decay
with high curvature, and is the scale of analysis, which
determines the size of the effective field. Note that is
the only free parameter. In practice, is quantized to five

values, 2, 4, 6, 8, 10, according to the size of our training
samples, and the normal orientation of the edgelet point is
quantized to six bins, . So there
are overall 30 bases of the effective field, see Fig.2(b) for
some examples. For a point edgelet, denote by the
effective field of the -th point, then the effective field of the
whole feature is defined by

(4)

(a) (b)

Figure 2. Effective field of edgelet point: a) definition of decay
function; b) examples of bases of effective field.

The learning of the base segmentation classifier is similar
to that of detection. For the positive training samples, their
segmentation ground-truth are given as binary masks. Let

, where is the segmentation
mask that has the same dimension as . Assume that the
effective field of a feature has been determined (how to
optimize the shape of the effective field will be described in
section 3), the base segmentation classifier is learned
as a piecewise function:

(5)
where , is the bin number for segmentation
(in our experiments ), and is the feature
value histogram of figure/ground pixels weighted by the ef-
fective field:

(6)
In practice, both and are implemented as look-up-
table. The difference is that each bin of is a real valued
scalar, while each bin of is a real valued matrix.

3. Boosted Ensemble Classifier
Let be the base classifier pool that consists of the base

classifier pairs built from all possible edgelets. Each ele-
ment in the pool is a pair of base detector and segmentator,
i.e. . We use a variation of boosting algorithm
to learn an ensemble classifier from as a strong detector
and segmentor. The original cascade structure by Viola and
Jones [24] has three levels of classifiers: the base classifier



(or weak classifier), the strong classifier (or layer), and the
cascade classifier. The base classifiers give weak predic-
tions. The strong classifier combines the predictions of the
base classifiers to make better decision. The cascade con-
sists of a series of strong classifiers, each of which accepts
most positive samples and reject as many negative samples
as possible. It is the cascade structure that makes the detec-
tor efficient.

We modify the original cascade structure to eliminate the
concept of layers, so that the learning becomes one integral
boosting procedure. The function of the layers is to reject
non-object samples, which can be implemented at the base
classifier level. Let be the -th base detection classi-
fier, and be the partial sum of the first base detection
classifiers, i.e.

(7)

Our modified cascade consists base detection classifiers,
, and threshold , a sample is classified

as object iff

(8)

This structure can be seen as a special case of the nested
cascade proposed in [20] and the soft cascade in [18]. One
common advantage of these variations is the discriminative
information obtained by the base classifiers are inherited
along the cascade.

One important feature of a boosting algorithm is the evo-
lution of weights. For traditional detection problems, each
sample is assigned a real valued weight representing
its importance or difficulty. During the boosting procedure,
the weights of the misclassified samples are increased while
those of the correctly classified samples are decreased, so
that more and more attention is given to the difficult part of
the sample space. For segmentation, not only do the diffi-
culties of different samples vary, but also the difficulties of
different positions of the same sample are different. Hence,
for a positive sample, we assign a weight to each
of its pixels. During the boosting procedure, the weights for
segmentation are evolved as the same way of the weights for
detection.

At each boosting round, the best base classifier pair is
selected from , where two components need to be op-
timized, the edgelet feature and the effective field. The
edgelet features are enumerated in the feature pool and the
effective field is defined by the shape of its edgelet and the
parameter . As we allow different ’s for different points
in one edgelet, for a point edgelet there are possible
field shapes. When the sample size is , there are over-
all 857,604 possible edgelets [14]. It is too expensive to do
brute force search in this Cartesian space. We separate the
optimization in two steps: first search for the best edgelet

with a default value, and then search for the best con-
figuration. The optimization of the configuration is done
in a greedy way. At one time, the of one edgelet point
is modified, while the others are fixed. Fig.3 gives the full
algorithm of simultaneous learning of detector and segmen-
tor. The output of this algorithm is an ensemble classifier
with a cascade decision strategy for detection. As segmen-
tation is a symmetric classification problem, we take the de-
fault threshold to be zero, i.e. the pixel of is classified
as figure, iff

(9)

In practice, we use the prior figure-ground distribution as
the first base segmentation classifier .

To cover multi-scale objects, the classifier is applied to
the input images at different scales and positions, and re-
sulting responses are clustered so that multiple responses
corresponding to one object are merged.

4. Experimental Results
We applied this approach to three object categories,

frontal/rear view pedestrians, side view pedestrians, and
side view cars. These are important types of objects for
many applications, such as visual surveillance, driving as-
sistance system, and human computer interaction. Quantita-
tive results on both detection and segmentation are reported.

4.1. Results on Frontal/Rear View Pedestrian
First we evaluate our method on walking or standing

people of frontal or rear viewpoint. We collected 2,000
positive samples and 6,000 negative images from the MIT
pedestrian set [29] and the Internet. The positive samples
are resized to pixels. We randomly select 600 posi-
tive samples and label their segmentation ground-truth man-
ually. We use a polygon to delineate the object, however,
the boundary pixels are sometimes ambiguous and can not
be classified clearly. Hence we mark a two pixel width do-
not-care (DNC) boundary, see Fig.4.

Figure 4. Samples for frontal/rear view pedestrian: the first row
is the image samples; the second row is the segmentation ground-
truth (The grey pixels are do-not-care).

The DNC pixels are ignored in both training and testing.
This strategy is similar to that in [7]. To evaluate segmenta-
tion, four fifths of the 600 samples are used as training data,
the rest one fifth is used as testing data. So our data set for



Given the initial sample set , and a negative images set;
Set the algorithm parameters: the maximum base classifier number , the positive passing rates , the target false alarm rate

, the relative importance of detection to segmentation , and the threshold for bootstrapping ;
Initialize the sample detection weights for all samples, the sample segmentation weight fields

for all positive samples, the current false alarm rate , and ;

Construct the base classifier pool, , from the edgelet features;
while and do

1. Search for the best edgelet

(a) For each pair in , generate the effective field for segmentation with a default value of (=4), calculate
and by Equ.1 and Equ.5 respectively. and are calculated under the weight distributions and
respectively;

(b) Select by

(10)

where
2. Search for the best shape of the effective field. For each point of the edgelet, set , find the best value that

minimizes the criteria in Equ.10.

3. Update sample weights by

(11)

and normalize and to p.d.f.

4. Select the threshold for the partial sum , so that a portion of positive samples are accepted; and reject as many
negative samples as possible;

5. Remove the rejected samples from . If the remaining negative samples are less than percent of the original, recollect
by bootstrapping on the negative image set.

6.
Output as the cascade classifier for detection and segmentation.

Figure 3. Algorithm of simultaneously learning of detector and segmentor. In our experiments, , , , and
. The setting of is similar to the original cascade’s layer acceptance rates. The cascade is divided into 20 segments, the

lengthes of which grow gradually. The base classifiers at the end of the segments have positive passing rate of , and the other base
classifiers have passing rate of .

frontal/rear pedestrian contains 1,880 positive training sam-
ples, 480 of which have segmentation ground-truth, and 120
test samples with segmentation ground-truth. The learned
classifier consists of 360 features. Fig.5 shows the first few
selected features and their learned segmentors. They are
evenly distributed and correspond to natural body parts.

We evaluated the segmentation accuracy for frontal/rear
pedestrians on the 120 testing samples. An precision-recall
(PR) curve is generated by changing the threshold for seg-
mentation, see Fig.6. As the articulation effect is not very
strong from this viewpoint, we achieve the highest accuracy
on this class, the equal error rate (EER) is about .
(The segmentation accuracy is calculated at the pixel level.)
We evaluate the detection performance on another test set,
USC pedestrian set A [14], which has 205 images with 313

humans. Fig.7 shows the PR curves. It can be seen that our
detector is comparable to that in [14]. Some example results
are shown in Fig.10.

4.2. Results on Side View Pedestrian
We also evaluated our method on walking or standing

people of left profile viewpoint. We treat the side view
pedestrians and frontal/rear view pedestrians as two cate-
gories, as their appearance are too different to included in
one cascade detector. Similar to the case of frontal/rear view
pedestrians, we collected 2,000 positive samples of left pro-
file view pedestrians and 6,000 negative images from the
Internet. The positive samples are resized to pix-
els. The segmentation ground-truth are labeled manually
for 600 randomly selected positive samples, four fifths of
which are used for training, and one fifth for testing. The



learned classifier consists of 560 features. The PR curve of
segmentation for left profile view pedestrians is shown in
Fig.6. The articulation effect from this viewpoint is signifi-
cant. This category has the largest intra-class variation. Our
method achieves a EER of about .

Figure 5. The first five features selected and their learned segmen-
tors. (the 0-th segmentor is the prior distribution.)
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Figure 6. Segmentation performance on the normalized samples.

Although there are many existing methods, e.g. [2], re-
port quantitative detection performance on side view pedes-
trians, as far as we know there is no appropriate public test
set for this task. Hence we collected our own test set, which
contains 136 images with 195 humans. Fig.8 shows the de-
tection PR curve of our method on this test set. Although
the test sets are not same, it can be seen that our method is
comparable to that in [2]. Some example results are shown
in Fig.10.

4.3. Results on Side View Car
Last, we evaluated our method on cars of left profile

viewpoint. We collected 1,800 positive samples of side
view cars and 6,000 negative images from the training set
of the UIUC car set [21] and the Internet. The car mod-
els included in this set are mainly small and mid-size cars
including sedans, pickups, vans, and SUVs. Most of the
intra-class variation is due to the variety of car models. The
positive samples are resized to pixels. The segmen-
tation ground-truth are labeled manually for 600 randomly
selected positive samples, four fifths of which are used for
training, and one fifth for testing. The learned classifier con-
sists of 480 features. The PR curve of segmentation for side
view cars is shown in Fig.6. Our method achieves a EER of
about .
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Figure 7. Detection PR curves for frontal/rear view pedestrian.
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Figure 8. Detection PR curves for left profile view pedestrian.

All the curves in Fig.6 are performance on the normal-
ized samples, where the size and position of the objects are
aligned. However, when searching in a real image, the slid-
ing window is usually not well aligned with the object. To
evaluate our method under this situation and compare with
others, we ran our system on two public test sets, the side
view car set of Caltech101 image set [10] with 123 images
and 123 cars, and the side view car set of TU Darmstadt
image set [22] with 50 images and 50 cars. Both of the two
sets are provided with segmentation ground-truth. These
sets are designed for object recognition task. Although the



object positions are not aligned, the object sizes are roughly
the same. This reduce the search space greatly. Our detec-
tor achieves detection accuracy, i.e. no missed object
and no false alarm, on these two sets. Another public set for
car is the UIUC car set [21], but no segmentation ground-
truth are provided for it. Although some existing methods
report segmentation results on this set, we do not test our
segmentor on it. Table.1 gives the comparison of our seg-
mentation method with some previous works. Note that all
the previous methods listed in Table.1 use a part of the sets
as training and test on the rest; while our method trains on
totally independent samples and uses the whole sets as test-
ing. It can be seen that our method outperforms the others.

Method TU Darmstadt Caltech101 UIUC

Winn & Shotton [1] - -
Kapoor & Winn [6] - -
Winn & Jojic [12] - -
Our method -

Table 1. The per-pixel figure-ground segmentation accuracy of
side view car. (The number with a means the testing is done
on a subset of the image set.)
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Figure 9. Detection PR curves on UIUC single-scale car test set.

We evaluate our car detector on the UIUC image set [21],
which contains two test sets: a single-scale set with 170
images and 200 cars which are roughly the same size, and
a multi-scale set with 108 images and 139 cars. This set
contains cars of both left and right profile views. We mir-
ror our left profile detector to get a right profile one, and
apply these two detectors on the images. Fig.9 shows the
PR curves of our method and some previous works on the
single-scale test set. Table.2 lists the comparison of EER on
both the single-scale and the multi-scale sets. It can be seen
that our method is comparable to the state-of-the-art meth-
ods, and less affected by the multi-scale situation than the
others. Some example results are shown in Fig.10.

Our program is coded in C++ using OpenCV functions.
The experiments are done with a 2.8G Hz 32-bit Pentium
PC. The training procedure needs about 72 hours. For
single-scale detection and segmentation, the speed is about
200ms per image. For multi-scale, it is about 600ms per
image.

Method Single-scale Multi-scale

Agarwal et al. [21]
Garg et al. [23] -
Leibe et al. [22] -
Shotton et al. [13] -
Fritz et al. [16] -
Kapoor & Winn [6] -
Mutch & Lowe [3]
Our method

Table 2. Detection equal-error rates on the UIUC car image set.

5. Conclusion and Discussion
We developed a method to simultaneously detect and

segment objects of a known category. Base detectors and
segmentors are designed based on the edgelet features.
Boosting algorithm is used to construct the cascade struc-
tured ensemble classifiers. Experimental results show that
our method is comparable to the state-of-the-art methods
for detection and outperforms the others for segmentation.

In this work, only the shape information is used. How-
ever, color and texture are very useful cues for image seg-
mentation and object detection. We plan to investigate to
use multiple complementary types of features to improve
the performance in our future work.
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