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Abstract

The efficiency and robustness of a vision system is of-
ten largely determined by the quality of the image features
available to it. In data mining, one typically works with
immense volumes of raw data, which demands effective al-
gorithms to explore the data space. In analogy to data min-
ing, the space of meaningful features for image analysis is
also quite vast. Recently, the challenges associated with
these problem areas have become more tractable through
progress made in machine learning and concerted research
effort in manual feature design by domain experts. In this
paper, we propose a feature mining paradigm for image
classification and examine several feature mining strate-
gies. We also derive a principled approach for dealing with
features with varying computational demands. Our goal is
to alleviate the burden of manual feature design, which is a
key problem in computer vision and machine learning. We
include an in-depth empirical study on three typical data
sets and offer theoretical explanations for the performance
of various feature mining strategies. As a final confirma-
tion of our ideas, we show results of a system, that utilizing
feature mining strategies matches or outperforms the best
reported results on pedestrian classification (where consid-
erable effort has been devoted to expert feature design).

1. Introduction
Feature design is a key problem in computer vision and

machine learning as it can largely determine the perfor-
mance of a vision system. Informative features capture the
essence of an image pattern and reliable feature extraction
facilitates a wide range of tasks such as detection, match-
ing, recognition, tracking, and more generally any learning
task in the image domain. Feature extraction is essentially
a dimensionality reduction problem with the goal of finding
meaningful projections of the original data vectors. A good
feature should be (1) informative, (2) invariant to noise or a
given set of transformations, and (3) fast to compute. Also,
in certain settings (4) sparsity of the feature response, either
across images or within a single image, is desired.

Figure 1. Example faces from the [4] database, and useful features for
face detection discovered by feature mining (generalized Haar features de-
scribed in Section 4). Note how many features have interesting, often
symmetric patterns that to some degree resemble the structure of faces.
Although these seem intuitive, they would be challenging to design.

Given an image, for example of a face, there are a
plethora of ways to extract features, e.g. mean, variance,
edges, gradients, filter responses, color features, geometric
features, etc. and each can be computed at every position in
the image with different sized windows, or pooled locally
or globally over the entire image. The field continues to see
significant advances in feature design; some recent work
in feature design includes efforts in interest point detection
and description, including the SIFT detector/descriptor [14]
and improved versions of the Harris corner detector [15].
Interesting work in feature design also continues in specific
domains, e.g. pedestrian detection [5] and tracking [3].

Though shown to be useful in various low-level, mid-
level, and high-level vision tasks, existing features [5, 14,
15] are often good only in specific domains. One still needs
to spend a considerable amount of time adapting and com-
bining these features to specific problems. Such ‘expert de-
sign’ can require significant domain knowledge and insight
to the problem. Still, most algorithms using these features
remain far from perfect.

Another trend is to learn features automatically from
training samples. Examples include work in dimensional-
ity reduction, such as PCA or ICA, and approaches based
on sparsity [17]. [13] advocates the use of a convolutional
neural network, where feature extraction is implicitly per-
formed by early layers of the network. In [11], the au-
thors propose to automatically discover a sequence of im-
age operations that results in useful features for classifica-
tion. These methods, while promising, often tend to have
restricted forms for learned features (typically linear) and
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have not proven to be universally applicable.
We use the term feature mining to refer to the task of

organizing and exploring large, possibly infinite, spaces of
heterogeneous features. The aim of feature mining is to
automatically discover meaningful features and to allevi-
ate the burden of manual feature design. In this work, we
introduce the feature mining paradigm and the concept of
the data driven feature space. We also derive a principled
approach for dealing with features with varying computa-
tional demands. We show experimental results on a num-
ber of typical data-sets [4, 5, 16], giving insight into the
structure of the data driven feature space and various strate-
gies for exploring it. We draw heavily from learning theory,
and show both theoretical and empirical results of working
with very large numbers of heterogenous features. Based
on this study, we summarize some general principles for
mining features efficiently and effectively. As a final con-
firmation of our ideas, we show results of a system, that
utilizing feature mining strategies matches or outperforms
the best reported results on pedestrian classification (where
considerable effort has been devoted to expert feature de-
sign) [5, 16].

A related area of study is feature selection, where the
goal is to pick a ‘good’ subset of features from some larger
set of candidate features [2, 8, 10]. Feature selection meth-
ods can be divided into three types [2]: (1) wrapper methods
that judge the quality of a subset of features by the perfor-
mance of a trained classifier, (2) filter methods which assign
a score to each feature, and (3) embedded methods where
feature selection is a natural part of the learning method.
Note that in this terminology the popular AdaBoost algo-
rithm [7] can be used as an embedded method for feature
selection [22]. In feature mining the goal is not to pick a
subset of features from a larger set but rather to explore and
model the entire space of features. Feature mining and fea-
ture selection are in this sense compatible.

Finally, [9] used the term feature mining in reference to
search for evolving physical phenomenon in scientific data.
Our framework bears similarity to this in name only, in fact
[9] is a specialized technique for data mining.

2. Features and Supervised Learning
We focus on the role of features in the context of clas-

sification. The general goal in supervised learning is to
learn a function from inputs to desired outputs that gener-
alizes well to unseen data. One can attempt to learn such
a function directly from the data in the representation in
which it is given; however, this often makes the problem in-
tractable either because the chosen classifier does not have
the representational power to encode the function or be-
cause the amount of training data needed is prohibitive (see
Figure 2). In many real problems such as detection, tracking
and recognition, considerable thought and effort have been

Figure 2. Toy example – the marginal distributions on x1 and x2 give lit-
tle information about class membership, but classification becomes a sim-
ple thresholding given the feature x1−x2. Here designing a useful feature
or learning a classifier directly on the original data is simple. However, in
many real problems such as detection, tracking and recognition, consid-
erable thought and effort have been given to both designing meaningful
features and choosing the classifiers. We use the term feature mining to
refer to the task of organizing and exploring large spaces of heterogeneous
features with the ultimate aim of discovering meaningful features.

given to both designing meaningful features and choosing
the classifiers.

For the remainder of this paper we will use Discrete Ada-
Boost [7] as our classifier. Using feature mining we gener-
ate many potential candidate features, AdaBoost then com-
bines a subset of the mined features into the final classifier.
Arguably, feature mining would be even more significant
for techniques that for computational or theoretical reasons
do not deal well with large feature sets, e.g. support vector
machines [21] or neural networks.

2.1. Discrete AdaBoost

We begin with a brief review of AdaBoost [7]. Given
N labeled training examples (xi, yi) with yi ∈ {−1, 1}
and xi ∈ X , and an initial distribution D1(i) over the
examples, AdaBoost combines a number of weak classi-
fiers ht to learn a strong classifier H(x) = sign(f(x)).
Here f(x) =

∑T
t=1 αtht(x). The training error εtrain =∑

i D1(i)1(yi 6= H(xi)) is bounded by

εt =
X

i

Dt(i)1(yi 6= ht(xi)) (1)

εtrain ≤
TY

t=1

Zt =

TY

t=1

2
p

εt(1− εt), (2)

where T is the number of weak classifiers, εt is the error
of each weak classifier on the distribution Dt it was trained
on, and 1 is an indicator function. See Figure 3 for details.

The VC dimension [21] of a classifier H , V C(H), can
be used to derive a loose upper bound on the expected test
error of H . Roughly speaking, εtest(H) � εtrain(H) +
V C(H). Schapire et al. [18] further showed a bound on
AdaBoost test error by analysis of the margin, which can
very roughly be linked to VC dimension in the following
manner: V C(H) ≈ O(

√
d/m) where d is the VC dimen-



Given: N labeled training examples (xi, yi) with yi ∈ {−1, 1} and
xi ∈ X , and an initial distribution D1(i) over the examples.
For t = 1, ..., T :

• Train a weak classifier ht : X → {−1, 1} using distribution Dt.

• Calculate the error of ht : εt =
PN

i=1 Dt(i)1(yi 6= ht(xi)).

• Set αt = − 1
2

log (εt/(1− εt)).

• Set Dt+1(i) = Dt(i) exp (−αtyiht(xi))/Zt,
where Zt = 2

p
εt(1− εt) is a normalization factor.

Output the the strong classifier H(x) = sign (f(x)), where
f(x) =

PT
t=1 αtht(x).

Figure 3. Discrete AdaBoost

sion of each weak classifier and m is the number of training
samples. Note that the test error does not depend on the
number of weak classifiers. Thus, general tactics for train-
ing AdaBoost are to: (1) increase the number of training
samples, (2) reduce training error and (3) reduce the com-
plexity of the weak classifiers.

As is typical [22], we compute each weak classifier from
a single feature. Here we use decision stumps (thresholded
features). Extending the feature mining paradigm to real
valued weak classifiers remains for future work.

2.2. Computational Complexity of a Feature

We begin with a simple extension to AdaBoost that al-
lows us to deal with features of heterogenous computational
complexity in a principled manner. Suppose that the aver-
age amount of computation needed to evaluate a feature is
known. Given two features with similar error it is natural
to favor the faster one. Below we derive a modified update
rule for AdaBoost that takes into account features’ compu-
tational complexity. As far as we know, no such approach
has been proposed in the literature, possibly because exist-
ing systems use features of homogeneous type and com-
putational complexity. As we will show, in the context of
feature mining this rule proves crucial.

Recall from Equation (2) that the upper bound on Ada-
Boost training error is εtrain ≤

∏T
t=1 Zt, where Zt =

2
√

εt(1− εt). In every stage t of learning, AdaBoost se-
lects the weak feature that minimizes Zt (i.e. has the lowest
error εt). Now suppose each feature ft takes ct ‘units’ of
time to compute, and we wish to train a classifier that uses a
total of T units of time. In the standard setting ct = 1 for all
features, and AdaBoost selects a total of T weak classifiers.

The key to updating AdaBoost’s greedy selection rule
in this setting is to introduce the notion of a partial fea-
ture (which, like an imaginary number, is for mathemati-
cal convenience only). For every feature ft with an error
bound of Zt and complexity ct, define the partial feature f ′t
as having an error bound of Z ′

t = Z
1/ct

t and complexity
c′t = 1. Selecting ct copies of f ′t reduces the upper bound
by

∏ct

t=1 Z ′
t = Zt, i.e. selecting ct copies of f ′t is exactly

the same as selecting one copy of ft, both in terms of com-
putational cost and effect on upper bound. In other words,
the reduction in the upper bound of the error per unit time
from feature ft can be characterized as Z

1/ct

t .
This leads to the the following update rule for AdaBoost:

Select the feature ft with computation cost ct and error
εt which minimizes

Z ′
t = Z

1/ct

t = (2
√

εt(1− εt))1/ct . (3)

This rule is intuitive. Two features, fa
1 and f b

1 , which each
reduce the upper bound by Z1 and have cost c1 = 1, are
for all intents identical to a single feature f2 with Z2 =
Z2

1 and cost c2 = 2. Note however, that after selecting
fa
1 there is no guarantee that f b

1 exists, so the choice of fa
1

may be suboptimal – this is of course the nature of a greedy
algorithm. Nevertheless, as we show in Section 4, greedily
minimizing Z ′

t in every stage of the AdaBoost procedure is
very effective.

3. Feature mining
In this section we elaborate on the concept of feature

mining, in which our goal is to minimize the human effort
needed to explore and organize the vast space of possible
features for image classification.

3.1. Parameterized Feature Space P

Let X be our data space. We begin with the concept
of a parameterized feature space. The parameterized fea-
ture space P for a given class of features is simply a hu-
man designed space of features, where each feature f ∈ P
is a function f : X → {−1, 1}. For simplicity, we as-
sume real valued features are transformed to binary ones by
thresholding. For example, given X = Rn, a possible pa-
rameterized feature space is Ppoly where each feature is a
polynomial computed over x ∈ Rn, e.g. f1(x) = 3x2

1 + x2

or f2(x) = x1.73
3 x11. Note that P may be infinite, as is

the case for the example above. We make no assumptions
about the parametrization of f , for example the represen-
tation may have variable length, and there may be multiple
parameterizations for the same feature or set of features.

Given a parameterized feature space P , we need some
way of sampling or searching the space for meaningful fea-
tures. However, a priori, we have no notion of where to look
in the space, e.g. all the useful features may be concentrated
in a small region of the parameter feature space. We also
lack a measure of distance between features – in the case of
a fixed length representation standard vector norms could
be used but there is little reason to believe this would yield
meaningful measures of distance. The problem becomes
even more challenging given multiple heterogenous feature
types P1, ...,Pk, e.g. in the case of image filter responses,
gradient histograms, edges, etc.



Figure 4. Toy data with 3 features shown. Features f1 and f2, with the
circle and square decision boundaries respectively, are of fundamentally
different types yet they agree on most of the data points shown. Using
feature set {f1, f3} should lead to a lower overall classification error than
using {f1, f2} even though individually f2 has lower error than f3.

Due to these challenges working directly with P can be
challenging. Typically, through careful and systematic de-
sign an appropriate set of features is chosen from P for use
within classification.

3.2. Data Driven Feature Space F

Here we introduce the concept of a data driven feature
space. The key idea is to represent each feature indepen-
dently of its parametrization. Instead, each feature is char-
acterized by its response to the data, which captures all the
relevant information about the feature. There is a countless
number of possible parameterized feature spaces, however,
given the data there is a unique data driven feature space F .

As before, let (xi, yi) with yi ∈ {−1, 1} and xi ∈ X be
the N labeled training examples. We characterize a feature
f by its response to the data:

Ω(f) =
(
f(x1), ..., f(xN )

)
∈ {−1, 1}N = F . (4)

Thus Ω : P → F . In an abuse of notation we will use
f ∈ F instead of Ω(f) ∈ F . In the toy example shown in
Figure 4, features f1 and f2, with the circle and square deci-
sion boundaries respectively, are of fundamentally different
types yet they agree on most of the data points shown. That
is Ω(f1) ≈ Ω(f2).

A natural measure of the informativeness of a single fea-
ture is Zt = 2

√
εt(1− εt) (2), where εt (1) is its weighted

error on the training data. If the computation time ct of a
feature is given, the informativeness of a feature is given
according to (3) as Z ′

t = Z
1/ct

t .
Measuring how informative a set of features is not as

straightforward. Referring back to Figure 4, we can see
that using feature set {f1, f3} should lead to a lower overall
classification error than using {f1, f2} even though individ-
ually f2 is more informative than f3. Intuitively, this occurs
because f1 and f2 have a very similar response to the data.
We formalize this below.

3.3. A Metric for F

We derive the following metric in the context of discrete
AdaBoost. The concepts, as well as the metric, should be

generally applicable although in specific contexts more ap-
propriate metrics may be devised. Again, for notational
simplicity we use f in place of Ω(f).

We begin with some notation. Given two features f1 and
f2, let w00 be the fraction of data where both f1, f2 are
incorrect, given distribution Dt:

w00 =

NX

i=1

Dt(i)1(yi 6= f1(xi))1(yi 6= f2(xi)). (5)

Likewise let w01 be the fraction of data where f1 is incorrect
and f2 correct, and similarly for w10 and w11. Note that
w00 + w01 + w10 + w11 = 1.

Recent work [20] formalized the concept of complemen-
tary features. This was in the context of a lower bound on
the error of any weak classifier ft+1 chosen at step t + 1
given the error εt of a classifier ft chosen as step t. We
reproduce the proof here for clarity, changing notation:

εt+1 =

NX

i=1

Dt+1(i)1(yi 6= ft+1(xi))

=
NX

i=1

Dt(i) exp (−αtyift(xi))

Zt
1(yi 6= ft+1(xi))

=
NX

i=1

Dt(i)e−αt

Zt
1(yi 6= ft+1(xi))1(yi = ft(xi))

+

NX

i=1

Dt(i)eαt

Zt
1(yi 6= ft+1(xi))1(yi 6= ft(xi))

=
1

2(1− εt)
w10 +

1

2εt
w00 (6)

Since AdaBoost selected the best feature at time t, the error
of ft+1 on distribution Dt must be at least εt; in other words
w10 + w00 ≥ εt. Combining with (6) gives the bound:

εt+1 ≥
ε2t + (1− 2εt)w00

2εt(1− εt)
. (7)

The smaller w00, the better feature f1 given f2, and vice
versa, so w00 reflects complementarity of two features. In
this work we describe how to transform this notion into
a measure of distance between features in the data driven
space. We need to make sure the distance between a feature
and itself is zero. We achieve this by:

d(f1, f2) =
1− w00 − w11

1− w11
=

w01 + w10

w01 + w10 + w00
. (8)

If Ω(f1) = Ω(f2), we have w00 + w11 = 1 and so
d(f1, f2) = 0. d ranges from 0 to 1, and it measures the
ratio of samples with exactly one error to samples with at
least one error. Note that distance between features in F
is unrelated to any notion of distance in P; also d(f1, f2)
depends entirely on the data. d is defined everywhere un-
less w11 = 1, i.e. two features are identical and correct on



Figure 5. Illustration of the space P and the corresponding data driven
space F . Our task if to explore and organize the feature space to find an
optimal set of features. At bottom the features are shown organized into
various static and dynamic representations Q.

all training points (although the existence of such features
makes a given data set trivial).

The standard L1 distance expressed in this notation is:

L1(f1, f2) =
N∑

i=1

Dt(i)|f1(xi)− f2(xi)|

= 2(w01 + w10) = 2(1− w00 − w11). (9)

d differs from L1 by a normalization factor of 2(1 − w11).
The effect of this is that two features f1 and f2 with high ac-
curacy can still have a distance near 1 so long as they rarely
make mistakes in the same places. This property makes d
well suited for our needs.

It can be shown that d satisfies all the conditions of a
metric: (1) d is symmetric, (2) non-negative, (3) d(f1, f2) =
0 iff f1 = f2, and (4) d satisfies the triangle inequality.
(1) and (2) are easily verified, (3) follows because w00 +
w11 = 1 iff f1 and f2 are the same feature in the data driven
feature space. We give a brief sketch of the proof of (4).
Given three features f1, f2, f3, define w000, ..., w111 in an
analogous manner to w00, ..., w11. Rewriting d(f1, f2) =
1− w000+w001

1−w110−w111
, and similarly for d(f2, f3) and d(f1, f3),

one can verify that d(f1, f2)+d(f2, f3) ≥ d(f1, f3) for any
choice of w000, ..., w111.

We always compute d over the initial distribution D1,
(Dt for t > 1 is not available unless we are actually training
AdaBoost); this works well in practice. Note also that any
pairwise measure cannot with perfect accuracy predict the
utility of sets of three or more features. Finally, note that
d is distinct from the classic diversity measures of a set of
classifiers [12], most notably in that it is a metric.

3.4. Exploring and Organizing the Feature Space

The input to a feature mining strategy is a data set, along
with a number of possibly heterogeneous P1, ...,Pk, col-
lectively referred to as P . Again, F = {Ω(f)|f ∈ P} is
the corresponding data-driven feature space. F provides a

measure of quality for each feature as well as a meaningful
metric over features. Feature mining is the process of ex-
ploring and organizing P by exploiting the metric structure
of F and whatever structure P may have.

For reasons already statedP is difficult to work with. For
example, it is not feasible that AdaBoost, during every stage
of training, examine every possible feature in P . Therefore,
we wish to organize the features into a representationQ that
is more useful. Q can either be static, i.e. simply a fixed col-
lection of features, or in addition have dynamic operations
associated with it, e.g. a functions that generates a feature’s
neighbors. A staticQ should contain a useful set of features
for a given task, while a dynamic Q should in addition be
efficiently searchable. Figure 5 shows an illustration.

In the literature, people often systematically choose a
subset of features Q from P without a careful study of the
feature space. Feature selection methods [2, 8, 11] can also
be used to pick a subset of features if P is not too large,
however, they cannot be used to build a dynamic Q, nor
do they exploit any structure P may have. Finally, in work
in the vein of [19, 1], the authors manually construct a dy-
namic Q so that it can be searched efficiently during ev-
ery stage of AdaBoost using evolutionary search strategies.
These are examples of feature mining strategies; here we
treat the concepts more generally.

We conclude with an outline of the desired properties
static and dynamic Q should have, and some basic ideas
of how to construct Q. Details of the actual strategies we
implemented are given in Section 4. Neither the guidelines
below nor the implemented strategies are meant to be ex-
haustive, in fact we expect more sophisticated feature min-
ing strategies and representations to be proposed.

Typically, given a new data set little is known about the
feature space, including the quality and diversity of avail-
able features. Unless additional information about P is
given, the process of exploring P must begin with ran-
dom sampling, but as more of the space is explored the
sampling can become more refined. For example, given
a series of elements f1, ..., fk ∈ P and corresponding
Ω(f1), ...,Ω(fk) ∈ F , we could try to predict the next sam-
ple to draw from P . Furthermore, if P is somewhat smooth,
that is if a small (possibly discrete) perturbation in a feature
f results in a small change in Ω(f), then steepest descent
search can be used to refine existing features.

To create a static Q, representative samples can be
stored, in general these samples should be both informative
(Equation 1) and diverse (Equation 8). One way to achieve
this is to maximize a scoring function of the form:

J(Q) =
X

fi∈Q

Z(fi) + β
X

fi 6=fj

d(fi, fj), (10)

where d(fi, fj) is the metric defined before, and β balances
the informativeness and complementarity of the features.



An alternative is to cluster the features using the metric d
(again, in an entirely data driven way), and keep represen-
tative features with a bias toward informative features.

Instead of working with a staticQ,Q can be constructed
so it is efficiently searchable. The idea is to do this once, so
that during training of an algorithm like AdaBoost, which
requires multiple features, each feature can be obtained ef-
ficiently. For example, using d we can create a hierarchi-
cal representation Q of the space, which can be searched
efficiently by traversing the hierarchy. Although not guar-
anteed to find the optimal feature, such an approach can be
orders of magnitude faster than a brute force search in ev-
ery stage of training. Other, more complex methods may
prove useful, e.g. learning a mapping Ω−1 : F → P , such
that Ω−1(ω) gives a feature f where Ω(f) ≈ ω, if such a
feature exists. This is outside the scope of the present work.

4. Experiments
Here show experimental results on three data-sets [4, 5,

16]. The first is the MIT CBCL face data-set [4]. Although
aligned frontal face detection has essentially been solved
[22], this simple data-set is still useful for comparative stud-
ies. Recently, pedestrian detection has received much atten-
tion [5, 16, 23]; specifically there has been much interest
in designing more effective features for the task. Thus, this
challenging domain serves as a perfect test bed for feature
mining. Here, we use the two data-sets from [5] and [16].

Recall that our goal was to put little effort into designing
P , yet P must be large and complex enough to represent
diverse patterns. The fast to compute Haar wavelets [22]
are widely used in the community. Each Haar wavelet is
computed by summing the pixels of 2 to 4 weighted rectan-
gles. Here we introduce generalized Haar wavelets, which
are like the original Haars but with arbitrary configuration
and number of rectangles. Even for a 50x50 image patch
there areO(106) configurations for a single rectangle. With
multiple rectangles per Haar, P becomes quite vast. These
features are capable of representing some fairly interesting
patterns, see Figure 1.

Following the methodology from [6], we compute mul-
tiple channels or views of an image, and compute Haar
features over each channel. For the channels we use the
original image, gradient magnitude, channels from convo-
lution with a bank of Gabor filters, and the RGB color chan-
nels (given color information). We deem this a reasonable
amount of design for P , since implementing the above is
trivial given a standard image processing toolbox.

We report all our results using receiver operating char-
acteristic (ROC) curves, which plots true positives versus
false positives as the detection threshold is varied. Due to
inherent randomness in the experiments, we repeat each ex-
periment 10 times, changing the training data used, and ‘av-
erage’ the resulting ROC curves (see [16] for a discussion).

Confidence intervals are shown.

4.1. Feature Mining Strategies

We implemented a number of basic strategies. These are
meant to confirm our theoretical results and more generally
demonstrate the importance of feature mining.

• SYST Systematically designed ftrs. for face detection [22].

• RAND Randomly sampled features from P .

• GOOD The space is mined for informative features. Ran-
dom features are sampled from P , and the most informative
(according to Zt) are kept. Additionally, steepest descent
search in P is used to refine the best features. Specifically
given f ∈ P , we can generate a set of nearby f ′ ∈ P by
randomly perturbing the parameters of f , and keep the best
feature from the set. We enforce that no two features f1 and
f2 can have the same parametrization, however, no effort is
made to ensure d(f1, f2) > 0. Given that the space is large,
possibly infinite, the above process can be continued indefi-
nitely. In the experiments below, we generate and refine 1000
random candidate features per final feature.

• COMP The space is mined for informative, complementary
features. Here we exploit our metric on F and use a simple
online clustering algorithm, where each cluster is a sphere
of fixed size radius. Let Q denote the current set of selected
features. Features are sampled randomly from P , each new
feature can (1) become a new cluster center, (2) replace an
existing cluster center(s), or (3) be deemed as redundant.
Given a new feature f , let F denote all f ′ ∈ Q such that
d(f, f ′) < r. If (1) F is empty add f to Q, otherwise if (2)
the informativeness of f is greater than the informativeness
of any f ′ ∈ F , add f to Q and remove all f ′ ∈ F , oth-
erwise (3) discard f . The choice of the radius is based on
the desired number of final clusters. Again we used steepest
descent search to further optimize Q, and again we generate
and refine 1000 random candidate features per final feature.

During every stage t of AdaBoost training steepest de-
scent search can be used to further optimize a given feature
set Q based on the current distribution Dt. The steepest
descent search is the same as for generating the set GOOD,
except the distribution Dt is different. This gives rise to the
strategies STRAT+SRCH, where STRAT=RAND, GOOD, etc.
Additionally, we use STRAT+TC to denote that Z ′

t = Z
1/ct

t

(3) is used instead of Zt.

4.2. Comparative Results

The first set of experiments is meant to compare system-
atically designed features and the various feature mining
strategies define above. Results on the three data-sets are
shown in Figure 6a1. The ordering of the performance of

1Since there are 8 strategies, 3 data-sets, and 10 repetition of each, for
computational reasons we performed each of the 240 experiments using
only 15 weak classifiers, and each mining strategy was limited to 1000
features. The study nevertheless gives insight.



(a) Comparative studies. See text for discussion. (b) Complementary feature types.

Figure 6.

the feature mining strategies on each data-set is RAND ≺
GOOD ≺ COMP ≺ COMP+SRCH. This is as expected. One
interesting thing was how near COMP was to COMP+SRCH.
Coupled with the worse performance of GOOD, this serves
as a verification that the metric over F works well.

Although not shown, GOOD+SRCH, often did not work
as well since the candidate features for search were not di-
verse enough. RAND+SRCH, when used with a lot or ran-
dom features and deep search can be seen as a brute force
method for exploring F during each stage of boosting. In
terms of performance RAND+SRCH with a large number of
features did not greatly outperform COMP+SRCH.

The systematic features performed quite well on the face
data-set, but not nearly as well on the pedestrian data-sets.
This makes sense, since they were designed for face detec-
tion. In a separate experiment, not shown, it turns out that
the performance of RAND on the face dataset becomes simi-
lar to SYST if the number of features allowed for RAND is 10
times that of SYST. This implies one can forgo the design
stage for Haars given more computing time and the trivial
feature mining strategy RAND.

4.3. General Observations

Although we have already discussed the importance of
complementary features, complementary classes of features
are necessary for complementary features to exist. We per-
formed a simple experiment, with two different classes of
features: (1) Haars computed over the original image and
(2) Haars computed over the gradient magnitude image. It
turns out that using just n mixed features (of both types) is
better than either 2n features of type 1 or 2n features of type
2. ROC curves can be seen in Figure 6b.

It is interesting to observe the asymptotic performance of
a trained AdaBoost classifier as the number of weak clas-
sifiers increases for the various feature mining strategies.
The same question can be asked given the update rule in
equation (3) that explicitly takes computational time into
account. Results and discussion appear in Figure 7; overall
the test error rate converges 8 times faster and lower final
error is achieved.

Figure 7. Test error as a function of (a) the number of weak classifiers
and (b) computation time. In each case a log scale is used so the asymp-
totic performance can be seen. (a) Asymptotic performance of 3 different
strategies: RAND with 103 and 104 features and COMP+SRCH. Note that
the rate of convergence varies significantly between the strategies: by a
factor of 2 between RAND 103 and RAND 104, and by another factor of 2
between RAND 104 and COMP+SRCH. Also, the test error for RAND 103

converges to a higher value. (b) The computational cost of a Haar feature
with r rectangles is ct ≈ 1+r (we let r range from 1 to 4). Since a feature
with r + 1 rectangles has representational power strictly greater than with
r rectangles, without a constraint on time complexity AdaBoost tends to
choose features with the maximum r. Using the update rule which takes
time complexity into account, +TC, features with an average of r = 1.5
rectangles are chosen, for overall computational savings of an additional
factor of 2 for any given level of error.

Finally, we again address the question of overfitting.
Given that the space of features we’re exploring is so large,
by chance there will be features that spuriously fit the data
well. Technically speaking, by enlarging the space we are
increasing the VC dimension of the overall classifier, see
Section 2.1. In an experiment not shown due to lack of
space, we found that exploring the feature space more and
more thoroughly we could continue to improve training er-
ror, but not test error. However, at no point did test error
actually increase, meaning that too much exploration of the
feature space was not helping but also not explicitly hurting.
Using the update rule that favors faster features seemed to
slightly improve test error, which probably occurs because
the time complexity and VC dimension are correlated in this
case. However, more experiments are needed.



Figure 8. Results on 2 pedestrian detection data-sets. The thick black
ROCs represents our result, the other ROCs are results obtained by the
creators of each data-set. (a) Our results on the data from [5] essentially
match results obtained using Histogram of Gradient features for low false
positive rates. (b) Our results on data from [16] beat the results reported.

4.4. Application To Pedestrian Detection

The data-set in [5] is known to be challenging, for exam-
ple [23] showed that a cascaded classifier [22] with standard
Haar wavelets does not achieve reasonable performance.

We trained a cascaded classifier with 20 levels and fea-
tures mined from P as described above, using an identi-
cal training, bootstrapping and testing setup as [5]. We ap-
plied two feature mining strategies: (1) RAND+SRCH+TC
with a small number of initial features and (2) RAND+TC
with a very large number of candidates, giving similar re-
sults. In both cases using complementary channels and TC
were essential. Our results are shown in Figure 8a over-
layed on Figure 3b from [5]. For low false positives, our
results essentially match the best reported results obtained
using the Histogram of Gradient (HOG) features designed
specifically for this data. Note that P did not contain any
histogram features.

We also evaluated the same strategies on the pedestrian
data-set described in [16]. The best reported results in [16]
were obtained using SVM on features learned by a convo-
lution net. Our approach improves the error, our results are
shown in Figure 8b overlayed on Figure 5d from [16].

5. Conclusion
In this work we have aimed to lay out a general frame-

work for feature mining, grounding it in theory and sup-
porting it with experiments. Feature mining is meant to al-
leviate the effort and expertise necessary for feature design,
and ultimately serve as a foundation for systems that can
outperform those based on manually designed features.

The framework we propose also has its limitations, how-
ever. In particular, even though we greatly enlarge the fea-
ture space, the number of informative and diverse features
does not appear to increase beyond a certain point. Al-
though feature mining is helpful, we believe that to con-
tinue pushing the state of the art it will be necessary to learn
informative features directly from the data.
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