
Image Classification with Segmentation Graph Kernels

Zaı̈d Harchaoui ∗

LTCI
CNRS & Télécom Paris

46, rue Barrault
75634 Paris cedex 13, France

zaid.harchaoui@enst.fr

Francis Bach
Center for Mathematical Morphology

Ecole Nationale Supérieure des Mines de Paris
35, rue Saint-Honoré

77305 Fontainebleau, France
francis.bach@mines.org

Abstract

We propose a family of kernels between images, defined
as kernels between their respective segmentation graphs.
The kernels are based on soft matching of subtree-patterns
of the respective graphs, leveraging the natural structure
of images while remaining robust to the associated seg-
mentation process uncertainty. Indeed, output from mor-
phological segmentation is often represented by a labelled
graph, each vertex corresponding to a segmented region,
with edges joining neighboring regions. However, such im-
age representations have mostly remained underused for
learning tasks, partly because of the observed instability of
the segmentation process and the inherent hardness of in-
exact graph matching with uncertain graphs. Our kernels
count common virtual substructures amongst images, which
enables to perform efficient supervised classification of nat-
ural images with a support vector machine. Moreover, the
kernel machinery allows us to take advantage of recent ad-
vances in kernel-based learning: i) semi-supervised learn-
ing reduces the required number of labelled images, while
ii) multiple kernel learning algorithms efficiently select the
most relevant similarity measures between images within
our family.

1. Introduction

Image classification as a machine learning task enjoys
numerous applications, such as image retrieval or object
recognition. Images are naturally high-dimensional data,
which demands mandatory pre-processing targeted towards
dimensionality reduction. Most techniques require a pre-
processing step, which can be global as in color histogram
binning [3], or local through feature extraction [20]. We are

∗Part of this work was done during an intership of the first author at
Centre de Morphologie Mathématique of École Nationale Supérieure des
Mines de Paris.

then left with a trade-off between the extreme cases of low-
level/high-level or high-level/low-level pre-processing and
subsequent analysis.

Convolutional nets and graph-transformer networks
managed this trade-off by merging both steps in a single
end-to-end process while achieving excellent performances
on benchmarks [19]. As emphasized in [13], robust em-
pirical results of non-convex architectures thus far are in
contrast with a lack of theoretical analysis on their per-
formances. Kernel-based methods such as support vector
machines (SVM) are simpler to analyze and more flexible
to use since they rely upon a convex minimization crite-
rion [29]. However, they are rather limited for processing
complex structured data such as images when used with
standard kernels such as the Gaussian kernel applied on
global features. Indeed, most applications of SVMs to im-
age classification rely on the extraction of a large set of
handcrafted features and learning on those features from a
large or very large dataset of labelled images [26]. Taking
into account the inner structure of images in a kernel-based
method would allow to significantly reduce the required
number of training images, while still benefitting from the
theoretical and practical advantages of kernel-based meth-
ods. In particular, recent advances in kernel-based learning,
such as multiple kernel learning [1] and semi-supervised
learning [4], may then be brought to bear in order to sim-
plify the learning procedure, by reducing the number of
hyper-parameters and the number of labelled examples.

An emerging line of research, consisting in designing
meaningful kernels on structured data, produced promis-
ing results in bioinformatics and natural language process-
ing [29]. Namely, graph kernels have recently received an
increased attention [9, 16], and showed good performances
for classification of small molecules [21]. We attempt here
to tackle the issue of image classification with kernel-based
methods, by using segmentation graphs obtained by mor-
phological segmentation. If enough segments are used, i.e.,
if the image (and hence the objects of interest) is over-

1-4244-1180-7/07/$25.00 ©2007 IEEE

segmented, then the segmentation enables to reduce the di-
mension of the image while preserving the boundaries of
objects. Image dimensionality goes from millions of pixels
down to hundreds of segments, with little loss of informa-
tion. Those segments are naturally embedded in a planar
graph structure. Our approach takes into account graph pla-
narity. The main theme of this paper is to feed kernel-based
learning methods with kernels measuring appropriate seg-
mentation graph similarity.

In Section 2, we present the segmentation algorithm that
we have used and the resulting graph representation of im-
ages. In Section 3, we review previous work on graph
matching for computer vision as well as on kernels for im-
ages, while in Section 4, we present our family of kernels
based on string and tree patterns of the graphs, with de-
tailed specifications for images detailed in Section 5. We
present experiments on several classification benchmarks in
Section 6, with in particular applications of semi-supervised
learning and multiple kernel learning.

2. Morphological segmentation graphs

Among the many methods available for the segmenta-
tion of natural images [23, 30, 5], we chose to work within
the watershed transform framework [23], which allows a
fast segmentation of large images into a given number of
segments. First, given a color image, a gray-scale gradient
image is computed from oriented energy filters on the LAB
representation of the image, with two different scales and
eight orientations [22]. Then, the watershed transform is
applied to this gradient image, and the number of resulting
regions is reduced to a given number p (p = 100 in our
simulations) using the hierarchical framework of [23]. We
finally obtain p singly-connected regions, together with the
planar neighborhood graph. An Example of segmentation
is shown in Figure 1.

We have chosen a large value of p because our similarity
measure implicitly relies on the fact that images are mostly
over-segmented, i.e., the objects of interest may span more
than one segment, but very few segments span several ob-
jects. This has to be contrasted with the usual (and often
unreached) segmentation goal of obtaining one segment per
object. In this paper, we always use the same number of
segments; a detailed analysis of the effect of choosing a dif-
ferent number of segments, or a number which depends on
the given image, is outside the scope of this paper.

In the remaining of the paper, all images will be repre-
sented by a segmentation graph, i.e. an undirected labelled
planar graph, where each vertex is one singly connected re-
gion, with edges joining neighboring regions. Since our
graph is obtained from neighboring singly connected re-
gions, the graph is planar, i.e., it can be embedded in a
plane where no edge intersects [7]. The only property of
planar graphs that we are going to use in this paper is the

fact that for each vertex in the graph, there is a natural no-
tion of cyclic ordering of the vertices (see Figure 5). An-
other typical feature of our graphs is their sparsity: indeed,
the degree (number of neighbors) of each node is usually
small, and the maximum degree typically does not exceed
10.

There are many ways to assign labels to regions, based
on shape, color or texture, leading to highly multivariate la-
bels, which is to be contrasted with the usual application
of structured kernels in bioinformatics or natural language
processing, where labels belong to a small discrete set. Our
family of kernels simply require a simple kernel k(�, �′) be-
tween labels � and �′ of different regions, which can be any
positive semi-definite kernel [29], and not merely a Dirac
kernel which is commonly used for exact matching in bioin-
formatics applications. We could base such a kernel on any
relevant visual information; in this paper, as shown in Sec-
tion 5, we considerred kernels between color histograms
of each segment, as well as weights corresponding to the
size (area) of the segment. Note that our family of kernels
could also take into account kernels between labels defined
on edges of the graphs.

3. Previous work

The idea of matching graphs for the purpose of image
classification has a long history in computer vision, and
has been investigated by many authors [28, 10]. However,
the general graph matching problem is especially hard as
most of the simple operations which are simple on strings
(such as matching and edit distances) are NP-hard for gen-
eral undirected graphs. Namely, while exact graph match-
ing is unrealistic in our context, inexact graph matching is
NP-hard and subgraph matching is NP-complete [7]. Hence
most work so far has focused on finding ingenious approx-
imate solutions to this challenging problem [14]. An inter-
esting line of research consists in overcoming graph match-
ing problems by projecting graphs on strings by the so-
called seriation procedure [28], and then use string edit dis-
tance [11] as a proxy to graph edit distance.

Designing kernels for image classification is also an ac-
tive research topic. The work of [3] investigated image
classification with kernels on color histograms. The bag-
of-pixels kernels proposed in [15, 6] compare color distri-
bution of two images by using kernels between probabil-
ity measures, and was extended to hierarchical multi-scale
settings in [6, 18]. A different approach, taking into ac-
count the non-exchangeability of pixels in an image, is the
one of [25] where the edit distance between two graphs is
directly plugged into a kernel to defined a similarity mea-
sure between graphs. Last, kernels between shock graphs
for pedestrian detection designed in [31] were an attempt to
capture the topological structure of images.

Our method efficiently circumvents the graph matching

problem by soft-matching tree-walks, i.e. virtual substruc-
tures of graphs, in order to obtain kernels computable in
polynomial time. Our kernels keep the underlying topolog-
ical structure of graphs by describing them through tree-
walks, while in graph seriation the topological structure
somehow fades away by only keeping one particular sub-
string of the graph. Moreover our kernels encompasses lo-
cal information, by using segment histograms as local fea-
tures, as well as global information, by summing up all soft
matchings of tree-walks.

Figure 1. An example of natural image (left), and its segmentation
mosaic (right) obtained by using the median RGB color in each
segmented region. The associated segmentation graph is depicted
in light green

4. Segmentation graph kernels

In this section, we present our family of kernels for
planar labelled graphs; we consider two planar labelled
graphs, G and H with vertex sets VG and VH and edge
sets EG and EH. We assume that we have labelling func-
tions �G : VG �→ L and �H : VH �→ L from the vertex sets
to a set of labels L. In this paper, the label set will be a large
continuous multivariate set (e.g., histograms of colors and
segment areas).

4.1. Paths and walks

Given a graph G, a walk is a finite sequence of neighbor-
ing vertices, while a path is a walk such that all its vertices
are distinct. See Figure 2 and Figure 3 for an enumera-
tion of paths and walks for a given undirected graph. Paths
and walks are similar notions with different intuitive inter-
pretations and computational properties. On the one hand,
paths corresponds to the intuitive notion of substrings of a
graph, but most operations involving the set of substrings
of a graph leads to NP-hard problems [7]. On the other
hand, walks are slightly less intuitive as they can go back
and forth along the graph, but they readily lead to efficient
polynomial time algorithms, as we now present.

4.2. Walk kernels

Let us denote Wp
G (resp. Wp

H) the set of walks of length
p in G (resp. H). We assume that we are given a basis ker-
nel on labels k(�, �′). The p-th order walk kernel kp

W(G,H)

Figure 2. Enumeration of paths from a graph, ordered by lengths.
Each color represents a different label.

Figure 3. Enumeration of walks from a graph, ordered by lengths.
Each color represents a different label. Walks lying within the box
are actually paths.

between G and H is defined as

kp
W(G,H) =

∑

(r1, . . . , rp) ∈ Wp
G

(s1, . . . , sp) ∈ Wp
H

p∏

i=1

k(�G(ri), �H(si)).

When the basis kernel is a Dirac kernel (a situation usu-
ally referred to as exact matching), kp

W(G,H) is exactly the
number of common walks between G and H [9]. The gen-
eral formulation above allows soft matching of walks, cru-
cial in image applications, thanks to the basis kernel k(�, �′).

In order to compute the walk kernels, several algorithms
are available. We present a dynamic programming approach
which allows nice generalization to subtree patterns for pla-
nar graphs. Alternative formulations based on matrix inver-
sions and product graphs [16, 34] do not readily allow the
same flexibility of selecting given walk lengths. Let Wp

G(r)
(resp. Wp

H(s)) denote the set of walks in G (resp. H) start-
ing at vertex r (resp. s). We denote by kp

W(G,H, r, s) the
sum defining kp

W(G,H) restricted to walks starting at r and
s in each graph, i.e.,

kp
W(G,H, r, s) =

∑

(r1, . . . , rp) ∈ Wp
G(r)

(s1, . . . , sp) ∈ Wp
H(s)

p∏

i=1

k(�G(ri), �H(si)).

Let NG(r) (resp. NH(s)) denote the set of neighbors of r
in G (resp. of s in H). The following proposition shows

Figure 4. Examples of tree-walks from a graph. Each color repre-
sents a different label.

that these kernel values can be computed recursively in a
dynamic programming framework.

Proposition 1 The kernel values kp
W(G,H, r, s) can be re-

cursively computed through:

kp
W(G,H, r, s)=k(�G(r), �H(s))

∑

r′ ∈ NG(r)
s′ ∈ NH(s)

kp−1
W (G,H, r′, s′).

The recursion is initialized by k1
W(G,H, r, s) =

k(�G(r), �H(s)). The final value of the kernel is then:

kp
W(G,H) =

∑

r ∈ VG

s ∈ VH

kp
W(G,H, r, s).

4.2.1 Tree-walk kernels

Using walks to measure similarities between graphs might
not be discriminative enough, and the natural extensions
from substrings to subtrees can be carried through as well
in the “walk world”. A α-ary tree-walk (also referred to as a
subtree-pattern in this paper) of G is defined as any rooted,
directed α-ary tree whose vertices are vertices of G, such
that if they are neighbors in the tree pattern, they must be
neighbors in G as well1. As for walks, a vertex may appear
several times within the tree-walk. Yet, siblings vertices
in the tree-walk must correspond to distinct vertices in the
original graph. See Figure 4 for examples of tree-walks of
a given graph.

If we denote by T p,α
G (resp. T p,α

H) the set of α-ary tree
patterns of G (resp. H) of depth p, then, as in the defi-
nition of the walk kernel, the tree-walk kernel kp,α

T (G,H)
is defined as the sum over all subtree-patterns in Tp,α(G)
and all subtree-patterns in Tp,α(H) (sharing the same tree
structure) of the products of the basis kernels between cor-
responding individual vertices of the subtree-patterns. Note
that in the context of exact matching, investigated in [9],

1In this paper, we consider α-ary trees with at least one and less than
α children per node, but the framework could easily be restricted to full
α-ary trees, i.e., with exactly 0 or α children per node.

Figure 5. Enumeration of neighbor intervals of size two.

this kernel simply counts the number of common subtree-
patterns. Note also that, as long as the basis kernel is a
positive semi-definite kernel, the resulting tree-walk kernel
is also a positive semi-definite kernel as well [29].

In order to derive an efficient dynamic programming for-
mulation, we now need to restrict the set of subtrees. In-
deed, if d is an upper bound on the degrees of the vertices in
G and H, then at each depth, the q-ary subtree-pattern may
go through any subsets of size α of the set of neighbors of
a given vertex, and thus the matching complexity would be
O(d2α) (O(dα) for each of the two graphs). We restrict
the allowed subsets of neighbors in a subtree-pattern, by re-
quiring that these subsets are intervals for the natural cyclic
ordering of the neighbors of a given vertex (this is possible
because the graph is planar). See Figure 5 for an enumera-
tion of the intervals of size α = 2. For a given vertex r in
G (resp. s in H), we denote by Iα

G(r) (resp. Iα
H(s)) the

set of non empty intervals of length at most α around r in
G (resp. around s in H). In the remaining of the paper,
we assume that all our subtree-patterns (referred to as tree-
walks from now on) are restricted to intervals of neighbors.
Let kp,α

T (G,H, r, s) denote the sum over all tree patterns
starting from vertex r in G and s in H.

The following proposition shows that the recursive dy-
namic programming formulation of Proposition 1 can be
extended to tree-walk kernels:

Proposition 2 The kernel values kp,α
T (G,H, r, s) can be

recursively computed through:

kp,α
T (G,H, r, s) = k(�G(r), �H(s)) ×

∑

I ∈ Iα
G(r)

J ∈ Iα
H(s)

∏

r′ ∈ I
s′ ∈ J

kp−1,α
T (G,H, r′, s′).

where we sum for I and J such that card(I)=card(J).

The final kernel is then obtained as:

kp,α
T (G,H) =

∑

r ∈ VG

s ∈ VH

kp,α
T (G,H, r, s).

The above equation defines a dynamic programming re-
cursion which allows to efficiently compute the values of

kp,α
T (G,H, ·, ·) from p = 1 to any desired p. It relies upon

the initialization k1,α
T (G,H, r, s) = k(�G(r), �H(s)) for r

a segment of G and s a segment of H.
Finally, note that when α = 1 (intervals of size 1), the

tree-walk kernel reduces to the walk kernel [27].

4.3. Running time complexity

Given labelled graphs G and H with nG and nH vertices
each and maximum degrees dG and dH, we assume that the
kernel between labels k(�, �′) can be computed in constant
time. Hence the total cost of computing k(�G(r), �H(s))
for all r ∈ VG and s ∈ VH is O(nGnH).

For walk kernels, the complexity of each recursion in
Proposition 1, is O(dGdH). Thus, computation of all q-th
walk kernels for q � p needs O(pdGdHnGnH) operations.

For tree-walk kernels, the complexity of each recur-
sion of Proposition 2, is O(α2dGdH). Therefore, com-
putation of all q-th α-ary tree walk kernels for q � p
needs O(pα2dGdHnGnH) operations, i.e. leading to
polynomial-time complexity.

5. Engineering segmentation kernels

In order to apply the family of kernels described in Sec-
tion 4 to image classification, we first need to specify the
kernels between segments and then set the various parame-
ters (depth p, arity of the tree α).

5.1. Kernel between segments

There are plenty of choices for defining relevant fea-
tures for segment comparisons, ranging from median color
to sophisticated local features [20]. We chose to focus on
RGB color histograms since previous work [12] thoroughly
investigated their relevance for image classification, when
used on the whole image without any segmentation. This
allows us to fairly evaluate the efficiency of our kernels to
make a smart use of segmentations for classification.

Experimental results of kernels between color his-
tograms taken as discretized probability distributions P =
(pi)N

i=1 were given in [12]. In this paper we focus on the
χ2-kernel defined as follows: the symmetric χ2-distance
between two distributions P and Q is defined as

d2
χ(P,Q) =

N∑

j=1

(pi − qi)2

pi + qi
,

and the χ2-kernel is defined as kχ(P,Q) = e−µd2
χ(P,Q),

with µ a free parameter to be tuned. Following results
of [12] and [8], since this kernel is positive semi-definite,
it can be used as a basis kernel. If we denote P� the his-
togram of colors of region labelled by �, then it defines a
kernel between labels as k(�, �′) = kχ(P�, P�′).

Moreover, in order to avoid too strong diagonal domi-
nance of the obtained kernel matrices (a usual issue with
kernels on structured data [33]) and to ensure the positive
semi-definiteness of the kernel, it is customary to include a
constant term λ that controls the maximal value of k(�, �′).
We thus use the following kernel:

k(�, �′) = λe−µd2
χ(P�,P�′),

with free parameters λ, µ.

5.2. Segments weighting scheme

It is natural to give more weight in the overall sum to
massive segments than to tiny ones. Hence we incorporate
this into the segment kernel as:

k(�, �′) = λAγ
� Aγ

�′e
−µd2

χ(P�,P�′),

where A� is the area of the corresponding region; γ is an
additional free parameter in [0, 1] to be tuned.

5.3. Parameters

For each kernel, the values for several parameters need to
be appropriately tuned. In practical applications, this is usu-
ally done by cross-validation. While this is no major issue
for problems with few parameters, in our case it is manda-
tory to adapt a wise strategy in order not to be overwhelmed
by the parameter tuning phase. To reduce this number while
gaining deeper knowledge about our kernels, we decided to
fix two of them in advance. The coefficient µ in the kernel
k(�, �′) between segment histograms is fixed to the optimal
value suggested by [12]. Note that this value is different for
histograms on the full image than histograms on regions:
indeed, µ is taken larger for histograms on regions as colors
in regions are usually more homogeneous and the matching
can then be made “harder”.

The coefficient λ penalizing longer walks was chosen
equal to 0.75. In particular the choice of λ was guided by
the behavior of the resulting Gram matrix (indeed λ = 0.75
was the best value for the least diagonally dominant Gram
matrices). This leaves the following parameters to be tuned,
as summed up in the table below:

Kernel free param. fixed param.
Histogram µ
Walk p µ, λ, α = 1
Tree-walk p, α > 1 µ, λ
Weighted tree-walk p, α > 1, γ µ, λ

5.4. Multiple kernel learning

In this paper we have defined several families of kernels,
kernels based on histograms on the full image, walk ker-
nels of different lengths, and tree-walk kernels of different

depths and arities. Those kernels provide access to different
information regarding images and in those learning settings
where heterogeneous data sources (and kernels) are avail-
able, it has proved advantageous to i) consider linear com-
binations of the kernels corresponding to each source, and
ii) learn these linear coefficients from data, a framework re-
ferred to as multiple kernel learning [1]. More precisely, if
we have m kernels k1, . . . , km, then in a single optimiza-
tion problem, the optimal linear combination

∑m
j=1 ηjKj

together with the optimal classifier are jointly learned. One
attractive feature of those methods is the sparsity of the
learned linear combination, i.e. only a small subset of the
kernels kj are retained. In this paper, we have used the pub-
licly available code of [2], with m = 100 kernels corre-
sponding to various settings of the parameters. See Sec-
tion 6 for empirical results, both in terms of improved pre-
diction accuracy and selection of kernels.

6. Experiments

6.1. Experimental setting

Experiments have been carried out on both Corel14 [3]
and Coil100 [24] datasets. Our kernels were put to the test
step by step, going from the less sophisticated version to the
most complex one. Indeed, we compared on a multi-class
classification task performances of the usual histogram ker-
nel (H), the walk-based kernel (W), the tree-walk kernel
(TW), the weighted-vertex tree-walk kernel (wTW) and
the combination of the above by multiple kernel learning
(M). We report here their performances averaged in an outer
loop of 5-fold cross-validation. The hyperparameters are
tuned in an inner loop in each fold by 5-fold cross-validation
(see Section 6.3 for further details). Coil100 consists in a
database of 7200 images of 100 objects in a uniform back-
ground, with 72 images per object. Data are color images of
the objects taken from different angles, with steps of 5 de-
grees. Corel14 is a database of 1400 natural images of 14
different classes, which are usually considered much harder
to classify. Each class contains 100 images, with a non-
negligible proportion of outliers.

6.2. Features from segmentation

Each image’s segmentation outputs a labelled graph with
100 vertices, with each vertex labelled with the RGB-color
histogram within each corresponding segment. We used 16
bins per dimension, as in [12], yielding 4096-dimensional
histograms. Note that we could use LAB histograms as
well. Average vertex degree was around 3 for Coil100 and
5 for Corel14. In other words segmentation graphs are very
sparsely connected.

6.3. Free parameter selection

For the multi-class classification task, the usual SVM
classifier was used in a one-versus-all setting [29]. For each
family of kernels, hyper-parameters corresponding to ker-
nel design and the SVM regularization parameter C were
learned by cross-validation, with the following usual ma-
chine learning procedure: we randomly split the full dataset
in 5 parts of equal size, then we consider successively each
of the 5 parts as the testing set (the outer testing fold), learn-
ing being performed on the four other parts (the outer train-
ing fold). Trying out different values of the free param-
eters on the outer training fold, computing the prediction
accuracy on the corresponding testing fold, repeating five
times for each of the five outer folds, averaging performance
and select the best hyper-parameter and reporting its perfor-
mance leads to an optimistic estimation of the prediction
performance [17]. It is preferable to consider each outer
training fold, and split those into 5 equal parts, and learn
the hyper-parameters using cross-validation on those inner
folds, and use the resulting parameter, train on the full outer
training fold with this set of hyperparameters (which might
be different for each outer fold) and test on the outer testing
fold. The prediction accuracies which we report (in particu-
lar in the boxplots of Figure 6) are the prediction accuracies
on the outer testing folds. This two-stage approach leads to
more numerous estimations of SVM parameters but provide
a fair evaluation of performance.

In order to choose the values of the free parameters, we
use values of free parameters on the finite grid below:

Parameter Values
γ 0.0, 0.2, 0.4, 0.6, 0.8
α 1, 2, 3
p 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
C 10−2, 10−1, 100, 101, 102, 103, 104

6.4. Results

Below are listed the respective performances in average
test error rates (on the five testing outer folds) in multi-class
classification of the different kernels. See Figure 6 for cor-
responding boxplots for the Corel14 dataset.

H W TW wTW M
Coil100 1.2% 0.8% 0.0% 0.0% 0.0%
Corel14 10.36% 8.52% 7.24% 6.12% 5.38%

Coil100 dataset Results on Coil100 dataset show that
our framework allows to reach state-of-the art performances
on simple tasks.

Corel14 dataset We have compared test error rate per-
formances of SVM-based multi-class classification with
histogram kernel (H), walk kernel (W), tree-walk kernel

H W TW wTW M

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

T
es

t e
rr

or

Kernels

Performance comparison on Corel14

Figure 6. Test errors for supervised multi-class classification on
Corel14, for Histogram, Walk, Tree-Walk, weighted Tree-Walk,
kernels and optimal Multiple kernel combination.

(TW), and the tree-walk kernel with weighted segments
(wTW). Our methods, i.e. TW and wTW clearly outper-
forms global histogram kernels and simple walk kernels.
This corroborates the efficiency of tree-walk kernels to cap-
ture the topological structure of natural images. Our weight-
ing scheme also seems to be reasonable.

Multiple kernel learning We first tried the combination
of histogram kernels with walk-based kernels, which did not
yield significant performance enhancement. This suggests
that histogram do not carry any supplemental information
over walk-based kernels: the global histogram information
is implicitly retrieved in the summation process of walk-
based kernels.

We ran the multiple kernel learning (MKL) algorithm
of [2] with 100 kernels (corresponding to all free parameter
settings in Section 6.3 except α = 2). As seen in Figure 6,
the performance increases as expected. It is also worth look-
ing at the kernels which were selected. We here give results
for one of the five outer cross-validation folds, where 5 ker-
nels were selected.

p, α, γ 10, 3, 0.6 7, 1, 0.6 10, 3, 0.3 5, 3, 0.0 8, 1, 0.0

η 0.12 0.17 0.10 0.07 0.04

It is worth noting that various values of γ, α and p are se-
lected, showing that each setting may indeed capture differ-
ent discriminative information from the segmented images.

6.5. Semi-supervised classification

Kernels allow us to tackle many tasks, from unsuper-
vised clustering to multi-class classification and manifold
learning [29]. To further explore the expressiveness of our

segmentation graph kernels, we give below the evolution of
test error performances on Corel14 dataset for multi-class
classification with 10% labelled examples, 10% test exam-
ples, and an increasing amount ranging from 10% to 80%
of unlabelled examples. Indeed, all semi-supervised algo-
rithms derived from statistically consistent supervised ones
see their test errors falling down as the number of labelled
examples is increased and the number of unlabelled exam-
ples kept constant. However, such experimental conver-
gence of the test errors as the number of labelled examples
is kept fixed and the number of unlabelled ones is increased
is much less systematic [4]. We used the publicly avail-
able code for the low density separation (LDS) algorithm
of [4], since it reached good performances on Coil100 im-
age dataset.

Since we are more interested in showing the flexibility
of our approach than the semi-supervised learning problem
in general, we simply took as a kernel the optimal kernel
learned on the whole supervised multi-classification task by
the multiple kernel learning method. Although this may
lead to a slight over-estimation of the prediction accuracies,
this allowed us to bypass the kernel selection issue in semi-
supervised classification, which still remains unclear and
under active investigation. For each amount of unlabelled
examples, as an outer loop we randomly selected 10 differ-
ent splits into labelled and unlabelled examples. As an inner
loop we optimized the hyperparameters, namely the regular-
ization parameter C and ρ the cluster squeezing parameter
(see [4] for details), by leave-one-out cross-validation. The
boxplots in Figure 7 shows the variability of performances
within the outer loop. Keeping in mind that the best test
error performance on Corel14 dataset of histogram kernels
is around 10% for completely supervised multi-class clas-
sification, the results are very promising; we see that our
kernel reaches this level of performance for as little as 40%
unlabelled examples and 10% labelled example.

7. Conclusion

We have presented a novel framework for image analy-
sis through tree-walk kernels defined on segmented images.
While the basis kernel allows to compare local information
carried by segments histograms, tree-walk kernels capture
the topological similarity of images. The result is a state-
of-the art method for image classification with competi-
tive performance on natural images as well as object image
datasets. Above all, our family of kernels for images paves
the way to the design of kernel-based methods for tackling
the large range of challenging image classification tasks.

Our work thus far has been limited to simple instances of
graph kernels for images and to classification tasks. There
are several natural extensions that should be taken advan-
tage of. First, we can easily handle sharper features such as
histograms of gradients as in [32] and integrate them with

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

T
es

t e
rr

or

Fraction of unlabeled examples

Influence of the unlabeled examples

Figure 7. Test error evolution for semi-supervised multi-class clas-
sification as the number of unlabelled examples increases.

multiple kernel learning. A similar integration of heteroge-
neous features could be achieved with kernels that act on
different information from the images, such as SIFT fea-
tures [20]. Second, one could exploit recent extensions
of kernels on structured data used in bioinformatics, such
as the non-tottering trick [21] and gap-weighted kernel on
strings [29]. Third, our kernel-based framework carries di-
rectly over clustering, semi-supervised classification, and
dimensionality reduction.

References

[1] F. R. Bach, G. R. G. Lanckriet, and M. I. Jordan. Multiple
kernel learning, conic duality, and the smo algorithm. In
Proc. ICML, 2004.

[2] F. R. Bach, R. Thibaux, and M. I. Jordan. Computing regu-
larization paths for learning multiple kernels. In Adv. NIPS
17, 2004.

[3] O. Chapelle and P. Haffner. Support vector machines for
histogram-based classification. IEEE Trans. Neural Net-
works, 10(5):1055–1064, 1999.

[4] O. Chapelle and A. Zien. Semi-supervised classification by
low density separation. In Proc. AISTATS, 2004.

[5] D. Comaniciu and P. Meer. Mean shift: a robust approach
toward feature space analysis. IEEE PAMI, 24(5):603–619,
2002.

[6] M. Cuturi, K. Fukumizu, and J.-P. Vert. Semigroup kernels
on measures. J. Mac. Learn. Research, 6:1169–1198, 2005.

[7] R. Diestel. Graph Theory. Springer-Verlag, 2005.
[8] C. Fowlkes, S. Belongie, F. Chung, and J. Malik. Spec-

tral grouping using the Nyström method. IEEE PAMI,
26(2):214–225, 2004.

[9] T. Gärtner, P. A. Flach, and S. Wrobel. On graph kernels:
Hardness results and efficient alternatives. In COLT, 2003.

[10] C. Gomila and F. Meyer. Graph based object tracking. In
Proc. ICIP, pages 41–44, 2003.

[11] D. Gusfield. Algorithms on Strings, Trees, and Sequences.
Cambridge Univ. Press, 1997.

[12] M. Hein and O. Bousquet. Hilbertian metrics and positive-
definite kernels on probability measures. In AISTATS, 2004.

[13] F.-J. Huang and Y. LeCun. Large-scale learning with svm
and convolutional nets for generic object categorization. In
Proc. CVPR, 2006.

[14] B. Huet, A. D. Cross, and E. R. Hancock. Graph matching
for shape retrieval. In Adv. NIPS, 1999.

[15] T. Jebara. Images as bags of pixels. In Proc. ICCV, 2003.
[16] H. Kashima, K. Tsuda, and A. Inokuchi. Kernels for Graphs.

MIT Press, 2004.
[17] R. Kohavi and G. John. Wrappers for feature subset selec-

tion. Artificial Intelligence, 97(1-2):273–324, 1997.
[18] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of

features: Spatial pyramid matching for recognizing natural
scene categories. In Proc. CVPR, 2006.

[19] Y. LeCun, F.-J. Huang, and L. Bottou. Learning methods
for generic object recognition with invariance to pose and
lighting. In Proc. CVPR, 2004.

[20] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. Int. J. Comp. Vision, 60(2):91–110, 2004.

[21] P. Mahé, N. Ueda, T. Akutsu, J.-L. Perret, and J.-P. Vert.
Extensions of marginalized graph kernels. In ICML, 2004.

[22] J. Malik, S. Belongie, T. K. Leung, and J. Shi. Contour and
texture analysis for image segmentation. Int. J. Comp. Vision,
43(1):7–27, 2001.

[23] F. Meyer. Hierarchies of partitions and morphological seg-
mentation. In Scale-Space and Morphology in Computer Vi-
sion. Springer-Verlag, 2001.

[24] S. Nene, S. Nayar, and H. Murase. Columbia object image
library: Coil, 1996.

[25] M. Neuhaus and H. Bunke. Edit distance based kernel func-
tions for structural pattern classification. Pattern Recogni-
tion, 39(10):1852–1863, 2006.

[26] E. Osuna, R. Freund, and F. Girosi. Training support vector
machines: an application to face detection. In CVPR, 1997.

[27] J. Ramon and T. Gärtner. Expressivity versus efficiency of
graph kernels. In First International Workshop on Mining
Graphs, Trees and Sequences, 2003.

[28] A. Robles-Kelly and E. Hancock. Graph edit distance from
spectral seriation. IEEE PAMI, 27(3):365–378, 2005.

[29] J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pat-
tern Analysis. Cambridge Univ. Press, 2004.

[30] J. Shi and J. Malik. Normalized cuts and image segmenta-
tion. IEEE PAMI, 22(8):888–905, 2000.

[31] F. Suard, V. Guigue, A. Rakotomamonjy, and A. Benshrair.
Pedestrian detection using stereo-vision and graph kernels.
In IEEE Symposium on Intelligent Vehicule, 2005.

[32] F. Suard, A. Rakotomamonjy, and A. Bensrhair. Object cate-
gorization using kernels combining graphs and histogram of
gradients. In Proc. ICIAR, 2006.

[33] J.-P. Vert, H. Saigo, and T. Akutsu. Local Alignment Kernels
for Biological Sequences. MIT Press, 2004.

[34] S. Vishwanathan, K. M. Borgwardt, and N. N. Schraudolph.
Fast computation of graph kernels. In Adv. NIPS, 2007.

