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Abstract

We introduce an exemplar model that can learn and gen-

erate a region of interest around class instances in a train-

ing set, given only a set of images containing the visual

class. The model is scale and translation invariant.

In the training phase, image regions that optimize an ob-

jective function are automatically located in the training im-

ages, without requiring any user annotation such as bound-

ing boxes. The objective function measures visual similarity

between training image pairs, using the spatial distribution

of both appearance patches and edges. The optimization is

initialized using discriminative features.

The model enables the detection (localization) of mul-

tiple instances of the object class in test images, and can

be used as a precursor to training other visual models that

require bounding box annotation.

The detection performance of the model is assessed on

the PASCAL Visual Object Classes Challenge 2006 test set.

For a number of object classes the performance far exceeds

the current state of the art of fully supervised methods.

1. Introduction
The objective of this work is object class detection, i.e.

identifying class instances and their spatial extent. Since

2003 there has been a tremendous improvement in object

classification performance, i.e. classifying an image as pos-

itive if it contains one or more instances of the object class,

as is demonstrated by the striking increases in scores for the

Caltech 101 test set (e.g. see [24]) and the high performance

on the PASCAL Visual Object Classes (VOC) Challenge

classification task [7]. However, detection has not reached

such levels of performance – a consequence of the greater

difficulty of the task – though there have been notable im-

provements for several classes (e.g. pedestrians [5, 19], bi-

cycles, cars, motorbikes, etc. [17, 18, 20]).

We have two goals here: the first is to learn a region

of interest (ROI) for class instances in weakly supervised

training data, i.e. given only a set images known to contain

instances of an object class, determine the scale and position

of the instance in each image. The second goal is to learn

a class model from these ROIs that can be used to detect

instances of the object class in (unseen) test images.

The first problem requires a method of measuring vi-

sual similarity across the set of training images in order to

“tease out” the class instance in each image. Several pre-

vious methods have cast this as an optimization problem,

fitting a generative model – for example LOCUS [23] and

the Constellation model [8] optimize model likelihood. We

also formulate the problem as one of optimization, but with

a more general model than those of [8, 23]. LOCUS is lim-

ited by its use of the EM algorithm, since this depends on

a good initialization. It can succeed provided the class in-

stance is sufficiently large compared to image clutter, does

not vary significantly in scale over the image set (since only

a limited range of scales are tried), and is unoccluded. We

represent the class by a set of exemplars, with each exem-

plar recording the spatial layout of appearance patches and

edges. The visual similarity between images is measured

using the hierarchical spatial histogram method of [10, 13],

but here generalized to apply to a ROI, rather than an en-

tire image, and also to include edges as well as appear-

ance patches. We demonstrate much larger scale variabil-

ity than is achieved in LOCUS, using discriminative visual

feature [3, 6] to initialize the optimization, and also greater

robustness to missing instances in the training data than ex-

hibited by previous methods [1, 2].

The second problem, that of learning a detector given the

ROI, is explored in two ways. First, we use the exemplar

model as a detector. Previously exemplar models have been

used for classification [24]. Second, we demonstrate that

the ROIs determined in the training set may be used to train

other models, and illustrate this with an SVM based region

classifier. Though any previous model that requires manual

bounding box annotation, such as [14, 18, 20], could now

be trained automatically in this manner.

The exemplar model is described in section 2, and the

learning algorithm in section 3. We then describe the

method of detection on new images in section 4. The detec-

tion models are tested in section 5 on both the standard ‘Cal-

tech 4’ datasets used by [8], and also on the far more chal-

lenging PASCAL VOC 2006 set. In section 6, we discuss
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Figure 1. An exemplar image and a corresponding class instance

in a car side training set. The hierarchical representation and cost

function measure the spatial correspondence between sparse visual

words and dense edge distributions. Some corresponding visual

words and edges are highlighted.

straightforward extension of our model, and show some pre-

liminary results.

2. The Exemplar Model
The model for each class consists of a set of exemplars

obtained from ROIs around the object class instances in the

training images. Each exemplar represents the spatial layout

of visual words and edge directions in the region using a

hierarchical spatial histogram. The spatial correspondence

between an exemplar and a target image region can then

be assessed by a level-weighted distance [13] between the

histograms representing the exemplar and target. Figure 1

illustrates this correspondence. Implementation details are

given in section 2.2, but first we describe how the model is

learnt.

2.1. Learning the exemplar model

Suppose we know the model, and wish to detect a class

instance in a target image. This can be done by a search for

a ROI in the target image that matches well with one of the

exemplars, i.e. as a minimization of the distance between

the exemplars and target region as the target region is var-

ied. We define the following cost function to measure this

similarity:

C
D

=
∑

X

(d(Xw, Y w))+α (d(Xe, Y e))+β
(A−µ)2

σ2
(1)

where Xw and Xe are the hierarchical spatial histograms of

visual words and edge directions, respectively, in the exem-

plars, and Y is similarly defined for the target image ROI.

The sum is over the set of exemplars X of the model. A
is the aspect ratio of the target region, µ and σ are the as-

pect ratio average and variance, respectively, of the exem-

plar ROIs. The cost C
D

is a weighted sum of three terms:

the pair wise distance between the visual words of the tar-

get region and exemplar, the pair wise distance between the

edge directions of the target region and exemplar, and a cost

for the aspect ratio of the target region deviating from the

average aspect ratio. The distance function used is defined

below.

The detection problem involves finding the target region

that minimizes C
D

. We now turn to learning the exemplar

set model from training images. Suppose we are given a set

T of N training images, we wish to find the region in each

training image which best matches with regions in the other

training images. These regions will define the exemplar set.

This is equivalent to the detection problem above, where

now we must learn the regions in all images simultaneously.

The cost function is then a sum of distances between all

pairs of training examples

C
L

=
∑

X∈T

∑

Y ∈T

(d(Xw, Y w))+ α (d(Xe, Y e))+ β
(A−µ)2

σ2

(2)

and we wish to find the region in each training image such

that C
L

is minimized.

Thus, learning the model involves: (i) automatical loca-

tion of the exemplar regions from the training set; and (ii)

selecting the value of the parameters α, β and learning the

parameters µ and σ. Examples of learnt models are given in

figure 2. The learning algorithm is given in section 3.

Distance functions. It is well known that distances may be

strongly corrupted by the presence of an outlier, i.e. in this

case an example image not containing an instance of a cate-

gory object, or a missed detection. Instead of histogram in-

tersection we use a (squared) χ2 distance since then a single

training image has a limited influence on the model. This

follows from the fact that the cost function (2) is additive

and the contribution of each exemplar is bounded by a con-

stant. Note, that other costs with this robustness property

could be used, for example the Jensen-Shannon divergence.

So,

d(x, y) = (χ2(x, y))2

where χ2(x, y) =
∑ (xi−yi)

2

xi+yi

. In our experiments, the sum

of squared χ2 distances outperformed the sum of χ2 dis-

tances as well as the Jensen-Shannon divergence.

Discussion. The model records the feature’s position rel-

ative to the ROI. This may be compared to recording the

relative position of “object parts” with respect to the model

centroid and scale in the manner of the Implicit Shape

Model [14] or star model [9]. These latter models repre-

sent the variation in feature position over different class in-

stances. In the case of the constellation model [8], espe-

cially, this has a high cost in learning. In our approach,

learning the feature position variation is avoided by the

use of multiple exemplars, and correspondence is handled

by the pyramidal spatial histograms. We are bringing to-

gether three previous ideas: (i) the generalized Hough

Implicit Shape model of Leibe et al. [14] using sparse

appearance patches, (ii) the edge/boundary representation

of [17, 18, 20], and (iii) correspondence matching using a

hierarchical spatial histogram [10, 13]. Our representation



of edge information is dense, and use of the spatial pyramid

means that we are able to capture a bag of orientations at

the lowest level [22], with stronger spatial correspondences

represented by the higher levels. Modelling the aspect ratio

is not essential for the method, but improves the precision

of the object’s bounding box for the PASCAL VOC evalua-

tion.

2.2. Implementation details

Appearance patches. The image features are detected us-

ing the Hessian-Laplace [17] operator, and described by a

rotation variant SIFT descriptor [15]. The SIFT descriptors

are then vector-quantized using k-means into visual words

[21]. This procedure is performed over all training images,

which includes images containing class instances as well as

a database of (mostly) non-class images.

Edge directions. To construct a histogram of edge direc-

tions we use the Canny edge detector to compute the edges.

Eight different directions are extracted, edges with the same

direction and opposite gradient are unified (i.e. contrast sign

is ignored). For an efficient implementation, an integral im-

age of edge density is computed for each direction. The

integral images allow quick computation of edge direction

histograms over rectangular regions.

Hierarchical spatial pyramid histogram. The edge distri-

bution histogram uses the representation of [13] as a pyra-

mid with three levels, uniformly weighted. The dimension-

ality of the edge histogram is (1 + 4 + 16) × 8 = 168.

The (spatial) histogram of visual words also uses the rep-

resentation of [13] but extended to also include the scale of

the Harris-Laplace feature. For every spatial bin at each

level there are two scale bins. So, for example, if the pyra-

mid has two spatial levels (L = 0, 1) then there are 5 spatial

bins in the original model and 10 scale–spatial bins in our

model. Visual words are assigned to the scale bins using

soft assignment, and are weighted by their discriminability

D for the given class. Here discriminability, i.e. how much

a particular visual word w is relevant to the class, is com-

puted by a likelihood ratio discriminability function [6],

D(w) ∼
#class labelled images containing w

#images in database containing w
. (3)

where the database will mostly contain non-class images.

We will give examples of these datasets in the experiments

of section 5. Only the top 256 most discriminative visual

words are used. The appearance patches are represented by

a pyramid histogram Xw with four levels. The top level

L = 0 representing a bag of words is ignored (weighted

0) since the visual words used were preselected. The other

three levels are weighted 1, 1, and 2 respectively. Note that

inclusion of the feature scale in the representation means

that a correspondence requires similar spatial position and

similar spatial scale.

Initialization

1 Calculate the discriminability of visual words using

all features in the training images using (3).

2 Initialize the ROI in each training image by a bound-

ing box of the 64 most discriminative features.

Iterative minimization

3 Find the image and a displacement of the ROI in that

image so that the cost function (2), with β = 0, is

lowered the most.

4 Reinitialization by detection. Construct a model from

training images where the cost function converges,

and search for the class instance in the remaining

training images.

Refinement

5 Enlarge the ROI in the training images by 10%

6 Calculate the discriminability of visual words using

only the features inside the ROI by (3).

7 Execute iterative minimization using new set of dis-

criminative visual words.
Table 1. Overview of the learning algorithm.

Cost function parameters. The parameter α is manually

chosen so that the χ2 distance of sparse feature histograms

and dense edge histograms are of approximately the same

magnitude. We choose β = 0.1. Both parameters α and

β are fixed across all categories. Note, their values can be

learnt by cross-validation if more extensive annotation data

is available.

3. Learning algorithm

Here we describe how the model representation is learnt

automatically from a set of training images. We will use the

object classes cars and bicycles (with training images from

the PASCAL VOC 2006 set) as our running example.

We are given a set of training images, and no other in-

formation (i.e. no positional or segmentation for the class

instance). Learning proceeds in a number of stages, as out-

lined in table 1. The first stage provides an initial estimate of

a class instance region in each training image. To achieve

this, discriminative visual words are learnt for the object

class (from the training and a negative set), and their distri-

bution in each image determines the initial region estimate.

In the second stage, a cost function using the model repre-

sentation to measure visual similarity between the regions

is optimized over the region’s position (aspect ratio is not

considered in this stage, i.e. β = 0). In a final refinement

stage, discriminative words are re-learnt, based on words

within the current region estimates, as well as the aspect

ratio parameters µ and σ. The cost function incorporates

these words and parameters for the final optimization.

Initialization. The ROIs are initialized as a bounding box

of the 64 most discriminative features [3]. The number is

not crucial, we have observed the same performance using
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Figure 2. Examples of the exemplar representation for cars side

(top) and bicycles (bottom). Models show the spatial distribution

of edges and appearance patches. In each case the images below

the model show samples from the training images with the auto-

matically learnt ROIs overlaid.

32 – 128 of the most discriminative features. Discriminabil-

ity is measured using the likelihood ratio discriminability

function D of (3), and provides a ranking of the visual

words. The top ten most discriminative visual words for

various classes are shown in figure 3.

Optimization. In each image, a number of new positions

for the ROI are hypothesized. The hypotheses are generated

from the current ROI position by translation, and isotropic

and anisotropic scaling. At each iteration one image is se-

lected so that the new position of the ROI minimizes the

cost function. The ROI in this image is then updated to the

new position. Note, that the cost function can be calculated

efficiently (by a sliding window update using the integral

images), since only one image is updated at a time. When

the cost function is trapped in a local minima, a ROI that

increases the cost function the least is taken. In such a case,

an image containing that region cannot be updated for an-

other N/2 steps (where N is a number of training images)

to avoid returning to the same local minima. The progress

of the cost error against the number of iterations is plotted

in figure 4.

Sometimes, the optimization procedure does not con-
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Figure 4. The cost function against the number of iterations while

learning the car side category. The circular marker denotes the

minimum.

verge for individual images. Such a situation typically oc-

curs when the initialization is bad (e.g. due to the presence

of multiple instances of the object in the image, or simply

by an unlucky co-occurrence of features not relevant to the

object – see figure 5). However, those images can easily be

identified as their distance to other images is significantly

larger than the distances between most image pairs. In these

cases the ROI is reinitialized by detection in that image: a

new ROI is sought for in the image, not only in vicinity of

the current ROI, but over the whole image. This search is

done efficiently by detection of the model defined by ROIs

in the other images (i.e. minimizing the cost function C
D

of (2)). If this search fails, then the image is rejected as an

outlier from the training set. The regions remaining at the

end of the algorithm (i.e. those not rejected) are the exem-

plar model learnt for this class.

Refinement. At the start of the optimization the discrim-

inability of visual words is estimated from whole training

images, since there is no information about the location of

the objects within the images at that stage. For this reason,

some background features not directly related to the object

are included as well. In the refinement stage, the discrim-

inability of visual words using (3) is re-estimated only from

those words within the ROIs (enlarged by 10%) found in

the previous step. Another optimization step is executed

with the new values of D, and, consequently, a potentially

different set of discriminative words. Aspect ratio µ and σ
learnt in the previous step are also used.

Computational cost. One iteration of the minimization

process involves computing pyramid histograms for the

newly proposed locations of the ROI, and computing dis-

tances of those new descriptors to the other training images

used in optimization. This has complexity O(N2), where

N is the number of training images. On a 2GHz machine,

our MATLAB implementation of the learning process takes

3-7 minutes to complete for 15-20 training images (less than

0.5 sec per iteration).

Discussion. The underlying assumption of the learning

method is that the object class whose model we are try-

ing to learn has similar appearance (visual and spatial) in



Figure 3. The top 10 most discriminative visual words for various classes of the PASCAL VOC 2006 image set.

(1) (2) (3) (4) (5) (6) (7)
Figure 5. Three stages of the optimization process from top to bottom: initialization, after 100 iterations, after reinitialization by detection.

The first four columns show 4 example training images (from 17 used) of car rear, the last three columns show 3 example training images

(from 19 used) of the bike left category. The first column shows an example, where the ROI quickly converges to the class instance, whereas

in columns 3–4 reinitialization by detection is needed for the convergence. The discriminative features provide very good initialization for

the bicycle class, unless there are multiple instances of the class in the image.

all images. The algorithm finds similar regions in the set

of training images and their description is then used as a

class model. As usual in such learning algorithms, if there

is insufficient variability in the background of the positive

training images, then it can be incorporated as part of the

class model. A common example is shadows under cars,

where part of the road is included in the car side model.

We find that the edge features are quite helpful in identify-

ing background dissimilarity and limiting the growth of the

class instance regions.

4. Detection

Having learnt the exemplar model we now describe how

it may be used to detect a class instance in a new (test) im-

age. We consider two cases. In the first the exemplar model

is used both to determine the ROI of class instances and to

make a decision on whether there is an instance there or

not. In the second case the ROIs generated by the exemplar

model are used to train a different recognition method – in

the example here a SVM.

4.1. Using the exemplar model

The detection is formulated as a cost function minimiza-

tion, essentially identical to the function minimized in the

learning phase. To efficiently find all local minima of the

cost function, i.e. possible locations of (multiple) instances

of the object, a hypothesize and locally optimize approach

is adopted. Individual visual words (features) are used to

generate a hypotheses for the class instance location. Then

the location is refined by minimizing the cost function (1)

over a ROI search, initialized from the hypothesis.

In detail, a hypothesis is a pair (w,R) of visual word w
and a rectangle R. The rectangle represents the ROI with

fixed relative position and scale with respect to the position

and scale of the visual word w. The pairs (w,R) are learnt

from the ROI of the exemplar images during the training

stage. Consider a particular visual word w. In the train-

ing images there will be a number of rectangles Ri associ-

ated with w – in a similar manner to a number of centroids

being associated with a part in the Implicit Shape Model

of [14]. Rather than learning a distribution over Ri, we ag-

gregate these into a single rectangle using mean-shift clus-

tering. This idea is similar to that of [16], and is illustrated

in figure 6. The uncertainty of the object location is then

handled by the iterative cost function minimization. This

approach exploits the rough localization provided by the

sparse appearance patches as well as the dense information

provided by the edge orientation histograms, which cannot

be directly used in the generalized Hough transform. The

hypothesis can be seen as a rough localization of an “aver-

age” class instance given an object part (a visual feature).

The local optimization can be seen as adapting the location

given the intra-class variation of the specific instance.

It is clear that not all hypotheses are created equally. For

example, hypotheses originating from visual words that are

either common in non-class images, or often appear in class

images but at different locations, etc., are unlikely to pro-

vide a good estimate of object location. We measure the

quality of a hypothesis (w,R) by a score proportional to

the likelihood ratio D given in (3), and the number n(w,R)



Off line (learning phase)

Relative position of the visual word

Relative position of the ROI

Detection

Hypothesis Iterative minimization

Figure 6. Top two rows: learning the ROI associated with a visual

word related to a visual word representing a wheel of the car –

in this case the relative positions of the ROI (car) with respect to

the visual word (wheel) gathered over the exemplar images (left)

and quantized (right). Bottom row: in the detection phase, a de-

tected wheel gives a rough hypothesis of car location (left) which

is iteratively refined (right).

of exemplar images consistent with the hypothesis, and in-

versely proportional to the number #w of appearances of

the visual word w in the exemplar images. This defines the

strength S of a hypothesis as

S(w,R) = D(w)
n(w,R)

#w
. (4)

The 20 strongest hypotheses are tested on each image dur-

ing the detection. The cost function of hypothesized detec-

tions is thresholded and non-maxima suppression is applied

before the hypothesis is accepted.

On a typical 2GHz machine the detection (MATLAB im-

plementation) takes about 25 seconds per test image for a

20-exemplar model.

Performance results for detection using this model are

given in section 5. We next illustrate the fact that the ex-

emplar model learnt as in section 3 can be used to train a

different type of model. We consider the problem of class

confusion and learn a model targetted at this.

4.2. Using other models

We use the exemplar model to provide ROIs, which then

can be used for training any model. Detections in images

labeled as class positive provide positive examples, detec-

tions in images labeled as class negative provide negative

examples.

To illustrate the idea, here we train an SVM (using SVM

light [11]). The features used for the SVM are spatial his-

tograms of visual words, similar to those used in the de-

tection model – the difference being that no preprocessing

regarding disciminativity of the visual words is done – all

visual words are used, all have equal weight. In the testing

phase, all detections are re-ranked by the SVM score.

We show in section 5 that this model reduces the class

confusion that occurs when two different classes share ap-

pearance patches as well as their spatial distribution, such

as for bicycles and motorbikes.

Note the SVM model could not be used for detection

directly (i.e. without the exemplar model first providing

ROIs), though it could be used to classify the images.

5. Experiments
In this section, we assess the performance of the model

on standard datasets: the PASCAL VOC 2006 detection

challenge, and the Caltech 4.

5.1. PASCAL VOC 2006
The PASCAL VOC 2006 Detection Challenge [7] re-

quires participants to predict the bounding boxes and con-

fidence values for any instances of 10 possible classes de-

tected in a test image. The classes and number of train-

ing and test images are listed in [7]. The confidence values

are used to generate a precision/recall curve, and success is

measured by the average precision of this curve.

For our experiments, we use six categories, and for

these the following aspects are learnt: car (left, right, rear,

frontal), bicycle (left, right), bus (left, right, frontal), mo-

torbike (left, right), cow (left, right), and sheep (side). We

randomly select 15-20 training images per aspect (where

possible) to train the model. The test results combine the

detections from all aspects of each category. We use a vo-

cabulary of 3000 visual words clustered over training im-

ages of the PASCAL VOC 2006 [7] set.

For the PASCAL evaluation it is necessary to provide a

bounding box for each detection. During training we also

learn the relation between our final ROI and the provided

bounding box in the training data. Note, the bounding box

information is not used to train the exemplar model at any

stage.

Exemplar model results. The results are presented in form

of the precision recall plots. Plots in figure 7 and the left

column of figure 8 show the detection performance of the

exemplar model alone. For some categories (car, motorbike,

cow, sheep), the result of our method are comparable to oth-

ers, for other categories (bus, bicycle), our method signifi-

cantly outperforms the current state of the art. The method

fails to learn a model for the ‘person’ category, probably

due to the articulations and significant class variability in

the PASCAL training set.

The method does not use the ground truth bounding box

in the training step and only a small number of training im-

ages are needed. We next investigate both of these.
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Figure 7. Precision–recall curves for classes from the PASCAL

VOC test set – bus, car, and sheep using the exemplar model. The

plots display results of PASCAL VOC 2006 participants for com-

parison.
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Figure 8. Precision recall curves for bicycles, motorbikes, and

cows. Left: results using the exemplar model alone; right: results

using an SVM trained on the regions generated by the exemplar

model.

Number of training images. Depending on the category,

the performance starts to decrease when the number of

training images falls below 15 images. The precision re-

Airplane Car Face Motorbike

AUC 0.995 0.993 1.000 0.999

EER 0.032 0.019 0.007 0.017
Table 2. Classification results for CALTECH 4. The same test

sets as [8] is used (but is not trained on Caltech images).

call curves still show high precision, but the recall decreases

and the average precision drops by 1-3% per training image

removed.

Using ground truth localization. An interesting question

is how much we lose by not using the ground truth bounding

box provided by the PASCAL VOC annotations. Two ex-

periments were conducted: first, the iterative learning pro-

cess is initialized by the bounding box of the object; sec-

ond, the bounding box of the object is taken as a ROI in

our model. We have compared the two cases on the car

rear category. In the first case, an identical model to our

proposed method was learnt. In the second case, the per-

formance decreased by 5.1%. Our explanation for the drop

in performance is that the bounding box does not align with

the informative features properly, and this negatively affects

both the hypothesis generation and optimization steps in the

detection phase.

SVM model results. Plots in the right column of figure 8

show the performance achieved training SVMs on top of

the exemplar model. For some categories, the results are

unchanged by the SVM re-ranking, as there was sufficient

discriminative information already present in the exemplar

model. However, the results for bicycles and motorbikes,

which are classes that are confused using the exemplar

model alone, are improved significantly. The differene be-

tween the left and right columns of figure 8 demonstrate

where the SVM models confers improvements.

5.2. Caltech

In these experiments, we use the same vocabulary of

3000 visual words trained on the PASCAL VOC 2006 train-

ing set. This makes the task more difficult, compared to [8],

as neither airplane nor face images are present in the visual

vocabulary construction. Such a situation is closer to a real

application, where it may not be possible to rebuild the vi-

sual vocabulary with every new class.

For the car and motorbike categories, models trained on

PASCAL 2006 are used. For airplane and face categories,

we have randomly selected exemplars (15 images each)

from the training set and learnt the model. On the Caltech 4

dataset, a classification experiment is carried out. The per-

formance is tested on the same test datasets as [8]. The

classification is performed on a test set of the desired class

plus background images (there is a different set of back-

ground images for the car set). The classification results are

summarized in table 2. The performance is comparable to

the state of the art. Note, that we are carrying out a more

difficult task of classification by detection.



Figure 9. Examples of automotically generated segmentations for the ‘solid’ classes using a graph cuts algorithm.

6. Extension - Automatic Segmentation

The learned localization of the object is sufficient to

compute image color statistics and apply a graph-cut algo-

rithm [4] in order to automatically segment the object out.

Examples of such segmentations are given in figure 9. Since

the model provides not only a localization, but also a weak

mapping between the target and exemplar images, the seg-

mentation can in principle be improved by using informa-

tion from the exemplars. For example, weak edges between

the object and a background of similar colour in the target

image can be strengthened using the learnt edge distribu-

tion, in the manner of ObjCut [12].

7. Conclusions

We have developed an algorithm for automatically learn-

ing regions of a set of training images that correspond to in-

stances of a common object class. Here, we have used these

regions, together with the representation used for learning,

to form an SVM object class detector. However, the learn-

ing algorithm could equally well be used as the starting

point for learning a different detection model, e.g. one of

the several models that currently requires a bounding box

to be provided in the training images [14, 18, 20]. It could

also be used to jump start algorithms which are currently

very expensive when they explore the entire image during

learning, e.g. the constellation model of Fergus et al. [8].
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