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Abstract

The active appearance model (AAM) is a powerful
method for modeling deformable visual objects. One of the
major drawbacks of the AAM is that it requires a training set
of pseudo-dense correspondences over the whole database.
In this work, we investigate the utility of stereo constraints
for automatic model building from video. First, we pro-
pose a new method for automatic correspondence finding in
monocular images which is based on an adaptive template
tracking paradigm. We then extend this method to take the
scene geometry into account, proposing three approaches,
each accounting for the availability of the fundamental ma-
trix and calibration parameters or the lack thereof. The per-
formance of the monocular method was first evaluated on a
pre-annotated database of a talking face. We then compared
the monocular method against its three stereo extensions us-
ing a stereo database.

1. Introduction

The active appearance model (AAM) [9] is a powerful
method for modeling deformable visual objects, coupling
a compact parametric representation with an efficient gen-
erative alignment method. As such, the method has found
applications in many image modeling, alignment and track-
ing problems, for example [16, 21, 23].

To build the AAM’s generative model, a pseudo-dense
set of annotations is required for each training image. This
is a major drawback of the method as manual annotations of
large databases is both tedious and error prone. Although
there are a number of methods for automatic correspon-
dence finding, most are lacking in two respects. Firstly,
the groupwise methods that are commonly employed usu-
ally ignore the sequential nature of images in video. Sec-
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ondly, despite generally modeling a non-rigid 3D object, no
constraint on 3D geometry is enforced, which is the conse-
quence of using monocular images.

In this paper, we present contributions on two fronts.
Firstly, we demonstrate that embedding automatic corre-
spondence finding within an adaptive tracking paradigm can
yield good results. Secondly, we extend this method to ac-
count for the epipolar geometry which must be adhered to
by stereo images. We begin with an overview of related
work in Section 2. The adaptive template paradigm for cor-
respondence finding is presented in Section 3. Extensions of
this method to stereo sequences are then presented in Sec-
tion 4. In Section 5, we describe our experiments and ana-
lyze the results. We conclude in Section 6 with a summary
of our results and directions of future work.

2. Related Work

There has been a significant amount of research over the
years to automatically find pseudo-dense correspondences
across images of the same class for building AAMs. These
methods can be broadly categorized into either feature or
image based approaches.

Feature based approaches, for example [6, 13], find cor-
respondences between salient features in the image by ex-
amining the local structure of the features. The advantage of
this approach is that feature comparisons and calculations
are relatively cheap. The downside however is twofold.
Firstly, there may be insufficient salient features in the ob-
ject to build a good appearance model. Secondly, as the fea-
ture comparisons generally consider only local image struc-
ture, the global image structure on which the AAM is then
modeled is ignored, and hence, the model built using anno-
tations found in this manner may be suboptimal.

Image based methods, for example [2, 7], find dense cor-
respondences across images by learning a warping function
which minimizes some type of error measure between the
intensities of the images. The main advantage of this ap-
proach is that the global structure of the image is taken into
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account, better mimicking the AAM for which the corre-
spondences will be used later. The main drawback of this
approach is that to accurately represent the shape variations
of the visual object, the warping function will generally
need to be parametrized using a large number of landmarks.
This, in turn, leads to a very large optimization problem
which is slow to optimize and prone to terminating in local
minima.

There has been comparatively little research in building
AAMs from image sequences. In [24], the authors track the
most salient features independently throughout a sequence.
Although this method can be computationally cheap, it is
essentially a feature based approach, suffering from the
drawbacks described above. Even sparser is the attempt
to incorporate scene geometry into the model building pro-
cess. The utility of such an approach has been investigated
in model fitting, however. In [14], for example, the fidelity
of AAM fitting was improved by simultaneously fitting to
a number of images of the same scene using independent
AAMs linked by a pre-learnt 3D shape model.

3. Adaptive Template Tracking

In video databases, it is advantageous to assume that
the change in the objects appearance between consecutive
frames is small. As such, a deformable template annotated
in the first frame can be propagated through the sequence by
sequentially finding the small perturbations in the warping
and lighting function which brings each frame to the next
one in the sequence.

There are difficulties here, however, regarding how to
treat the changes in the object’s appearance throughout the
sequence. Although the object’s appearance in the previous
frame is usually a good approximation to that of the cur-
rent frame, small misalignments in the fitting process can
accumulate throughout the sequence, leading to the drift-
ing phenomenon. There are a number of approaches to the
template update problem which minimize drifting, for ex-
ample [19, 20, 25]. In this work, we follow the approach
in [19], where the object’s texture is modeled as a weighted
sum of an initial template and the texture from the most re-
cent image:

T(x) = γT0(x) + (1 − γ)Tt−1(x). (1)

The parameter γ ∈ (0 . . . 1) is a grounding factor which
reduces drifting whist allowing the template to adapt to the
current object’s texture.

Apart from this template adaptation process, we also ac-
count for global changes in lighting between the template
and the object in the current frame using the linear model:

t(x;q) = αT(x) + β, (2)

where t(x;q) is the texture model to be fitted to the current
image and q = (α, β) are the global lighting parameters.

To fit the template to the current image, we minimize the
following cost function:

C = CD + wSCS , (3)

where CD is a data term which measures the similarity
between the warped image and the template and CS is a
smoothing term which penalizes complex deformations in-
duced by the warping function. The smoothing weight wS

regularizes the trade off between these two terms in the total
cost.

3.1. The Data Term

To account for differences in appearance between the
template and the image, the data term is chosen to be a ro-
bust penalization of the pixel-by-pixel difference:

CD =
∑
x∈Ω

ρ (E(x);σ) , (4)

where Ω is the template’s spatial domain and

E(x) = t(x;q) − I(W(x;p)) (5)

is the texture residual at pixel x. Here, I(W(x,p)) is the
texture of image I warped back to the reference frame at
location x using the warp W(x;p), parameterized by a set
of landmarks p = [x1; . . . ;xn]. To simplify notation in the
following, a pixel location in the reference frame warped
onto the image will be written as:

�x = W(x;p) (6)

As a robust penalizer, we use the Geman-McClure func-
tion:

ρ(r;σ) =
r2

σ2 + r2
, (7)

which has been used extensively for optical flow estima-
tion [3, 4]. For the choice of the scaling parameter σ, we
follow the work in [22] and assume a contaminated Gaus-
sian distribution for the residuals. With this, the authors
derive σ from the median of the absolute residuals:

σ = 1.4826 med (|E(x)|) (8)

which they claim to tolerate almost 50% of outliers when
the assumption holds.

As the relationship between the parameters p and the im-
age pixels is generally nonlinear, minimizing Equation (3)
requires a general-purpose nonlinear optimizer. Since we
assume the object’s appearance changes only by a small
amount between frames, the estimate of the warp and light-
ing parameters from the previous frame is assumed to lie
within the quadratic region of the cost function of the cur-
rent frame. As such, we use the Gauss-Newton method,



which can be expected to exhibit superlinear if not quadratic
convergence baring the assumptions hold [10]. To allow
the use of the robust error function in the Gauss-Newton
method, we follow the approach in [1] and replace the data
term in Equation (4) with:

CD =
∑
x∈Ω

�
(
E(x)2;σ

)
(9)

and the robust error function with:

�(r;σ) =
r

σ2 + r
. (10)

This requires only that the error function is symmetric,
which is satisfied by the Geman McClure function.

With this formulation, the gradient and Gauss-Newton
Hessian of the data term are given by:

gD =
∑
x∈Ω

�′(E(x)2)JD(x)TE(x) (11)

HD =
∑
x∈Ω

�′(E(x)2)JD(x)T JD(x), (12)

where �′(E(x)2) is the derivative of the reformulated robust
error function and

JD(x) =
[
−∇I(�x)

∂�x
∂p

,T(x), 1
]

(13)

is the Jacobian at x. Here, ∇I is the spatial gradient of
the current image, ∂�x

∂p is the derivative of the warped pixel
locations with respect to the landmarks, and the last two
columns are the components of the Jacobian pertaining to
the global lighting and bias q (see Equations (2) and (5)).

Following [8], we use a piecewise affine function for the
warping where the landmarks are triangulated and the mo-
tion of pixels within the same triangle are assumed to ex-
hibit affine motion with the same parameters. This warp-
ing function gives significant computational savings over
other methods such B-splines or thin plate splines. Since
the warped location of each pixel depends only on the land-
marks making up the triangle containing it, only entries
of the gradient and Hessian pertaining to these landmarks
need to be updated in each component of the sum’s in equa-
tions (11) and (12).

3.2. The Smoothing Term

Without any constraint on landmark deformation, the op-
timization is likely to terminate in a local minima. The pur-
pose of the smoothing term CS in Equation (3) is, hence,
to penalize complex deformations. Taking inspiration from
variational optical flow estimation [5], we penalize the dif-
ferences between landmark deformations as follows:

CS =
n−1∑
i,j

κij‖(xi − x0
i ) − (xj − x0

j )‖2, (14)

where x0
i is the pixel location in the image from which the

deformation of landmark xi is measured, and

κij =
exp

(
− ‖x0

i−x0
j‖2

2ν2
s

)
∑n−1

j exp
(
− ‖x0

i−x0
j‖2

2ν2
s

) (15)

is a weighting term which encourages points which are
close to each other to deform in a fashion more similar
than those which are further apart. Also, rather than mea-
suring deformation from the shape in the reference frame,
the anisotropic deformation of a linear object is better ac-
counted for by measuring deformation from the previous
frame.

As the smoothing term is quadratic in the landmark lo-
cations, the Gauss-Newton Hessian of this term is fixed and
can be precalculated as follows:

HS =
n−1∑
i,j

κij

[
Jx(i, j)TJx(i, j) + Jy(i, j)TJy(i, j)

]

(16)
where the kth entry of the smoothing term’s Jacobian in the
x-direction is given by:

Jx(i, j)k =




1 if k = 2i
−1 if k = 2j
0 otherwise

, (17)

and similarly for Jy . With this, the gradient is as follows:

gS =
n−1∑
i,j

κij [Jx(i, j),Jy(i, j)] (xi −xj −x0
i +x0

j) (18)

Finally, using equations (11), (12), (16) and (18) for
the expressions of the gradient and Hessians, the Gauss-
Newton parameter updates are given by:

[∆p; ∆q] = −H−1g, (19)

with

g = gD + wS [gS ;0] (20)

H = HD + wS

[
HS 0
0 0

]
, (21)

where the zeros result because the smoothing term is not
dependent on the lighting parameters.

4. Tracking with Stereo Constraints

When the database consists of stereo sequences, we can
further constrain the tracking process using the scene’s ge-
ometry. Here, we consider three cases. In the first case,
we assume that nothing is known about the geometry of the



scene. Secondly, we assume that the fundamental matrix
relating the stereo pairs is known. Finally, we assume that
we also know the intrinsic camera parameters. In all these
cases, we assume that an initial estimate of a landmark cor-
respondences in the stereo pair of the first frame is available.

4.1. Initial Correspondence Refinement

The initial estimate of the landmark correspondences are
obtained from a manual annotation of the stereo pair of the
first frame in all sequences. This process is usually error
prone as it depends on a subjective decision about loca-
tions which are most similar. In this section, we describe
a method used to refine the initial landmark estimates such
that they better correspond. To this end, we propose mini-
mizing the following cost function:

C = CC + wSCS + wECE , (22)

where CC is a data term, CS is a smoothing term and CE is
an epipolar constraint. We assume that the landmarks in one
of the stereo pairs are fixed and optimize over the landmarks
in the other image only, using the Gauss-Newton method.

For the data term, we utilize the color constancy assump-
tion, commonly used in stereo matching:

CC =
∑
x∈Ω

�
(
[αCI1(x) + βC − I2(�x)]2 ;σ

)
, (23)

where � is given in Equation (10), αC and βC are global
lighting parameters, I1(x) is the texture of the fixed image
at location x and I2(�x) is its stereo pair at the warped pixel
location. The robust penalization is required to account for
texture differences which arise from the warping process
and differences in noise between the images. The Jacobian
of the color constancy term takes the following form:

JC(x) =
[
−∇I2(�x)

∂�x
∂p

, I1(x), 1
]
. (24)

The gradient and Gauss-Newton Hessian then take the same
form as Equations (11) and (12), substituting JD for JC .

The deformation complexity between the stereo pairs is
penalized as described in Section 3.2. The only difference
here is that the reference landmarks from which deforma-
tion is computed are the landmarks in the fixed image rather
than the previous image in the sequence.

To encourage the landmarks to adhere to scene geometry,
the following epipolar constraint is used:

CE =
n−1∑

i

(
x̃T

i Fx̃0
i

)2
, (25)

where F is the fundamental matrix, x̃i is the homogeneous
point of the ith landmark [xi; yi; 1] and x̃0

i is that of the cor-
responding point in the fixed image. The squared term is re-
quired to ensure the cost of this constraint is positive. This

is effectively a soft constraint on the epipolar geometry of
the landmarks. As the weight wE tends to infinity, this term
becomes a hard constraint. In practice, wE is chosen to be
a suitably large constant.

If the fundamental matrix relating the stereo pairs is
known, the gradient and Gauss-Newton Hessian take on
particularly simple forms. As this constraint is quadratic
in xi, the Gauss-Newton Hessian of this term is fixed:

HE =
n−1∑

i

JE(i)T JE(i), (26)

where the kth entry of the epipolar Jacobian is given by

JE(i)k =




F0x̃0
i if k = 2i

F1x̃0
i if k = 2i+ 1

0 otherwise

, (27)

with Fl denoting the lth row of F. The gradient of this con-
straint is then:

gE =
n−1∑

i

(
x̃T

i Fx̃0
i

)
JE(i)T (28)

If F is unknown, we must optimize both over the land-
marks as well as the fundamental matrix. However, opti-
mizing in the space of fundamental matrices is non-trivial.
Nonetheless, for a given set of landmarks in both images,
an estimate of F can be easily obtained using the 8-point
algorithm [18]. As such, the derivative of the fundamental
matrix with respect to the landmark locations can be found
through finite differences:

∂F
∂xi

=
ψ(. . . , xi + δ, . . .) − ψ(. . . , xi − δ, . . .)

2δ
, (29)

where δ is a suitably small constant and ψ is the 8-point
algorithm, taking as its input a set of corresponding land-
marks and returning a fundamental matrix. With this, the
kth entry of the epipolar constraints’ Jacobian is now given
by:

ĴE(i)k = x̃T
k

∂F
∂p(k)

x̃0
k + JE(i)k. (30)

The form of the gradient and Gauss-Newton Hessian are
still those given in Equations (28) and (26), but now the
Hessian is no longer fixed.

With the forms given above for the gradient and Hessians
of each term, the gradient and Hessian of the cost function
in Equation (22) can be computed by a weighted sum of
the gradient and Hessians of the individual terms, with their
entries reordered appropriately.



4.2. Unknown Fundamental Matrix

There may be scenarios where the fundamental matrix
relating the stereo images in the sequence is not available.
This may be the case if the cameras are moving or the in-
trinsic parameters change throughout the sequence, for ex-
ample when zooming. For this, we propose minimizing the
following cost function:

C = CD1 +CD2 +wCCC +wS(CS1 +CS2)+wECE (31)

for every frame in the sequence, with respect to landmarks
in both images, p1 and p2, as well as six global lighting
parameters. Here, CD1 and CD2 take the form of the data
term in Equation (9), where the templates and landmarks
used in Equation (5) are unique to each of the images in
the stereo pair. CS1 and CS2 are smoothing terms given in
Equation (14), one for each set of landmarks.

The term CC is a color constancy term similar to that in
Equation (23), however both images are now warped to the
reference frame:

CC =
∑
x∈Ω

ρ
(
[αCI1(�u) + βC − I2(�v)]2 ;σ

)
, (32)

where �u are the warped pixel locations as given in Equa-
tion (6) with the warp parameterized by p1 = [u1; . . . ;un],
the landmark locations in the first image of the stereo pair.
Similarly, �v is that of the second image. The effect of this is
that the Jacobian of this term takes a slightly different form
from that in Equation (24):

JC(x) =
[
∇I1(�u)

∂�u
∂p1

−∇I2(�v)
∂�v
∂p2

, I1(�u), 1
]
. (33)

The term CE is an epipolar constraint similar to that in
Equation (25), however, now the landmarks in both images
are variables:

CE =
n−1∑

i

(
ṽT

i Fũi

)2
, (34)

where ũi is the homogeneous coordinate of ui and simi-
larly for ṽi. As described in Section 4.1, for the case where
F is unknown, we can find the derivative of this matrix with
respect to the landmarks using finite differences (see Equa-
tion (29)). The Jacobian of this term is now twice as long,
as we need to optimize over landmarks in both images, and
takes the form:

JE(i)k =




Mk + F0ũi if k = 2i
Mk + F1ũi if k = 2i+ 1
Mk + ṽi

TF0 if k = 2n+ 2i
Mk + ṽT

i F1 if k = 2n+ 2i+ 1
Mk otherwise

, (35)

where Fl denotes the lth row and Fl the lth column of F and

Mk = ṽT
k

∂F
∂p(k)

ũk. (36)

4.3. Unknown Camera Calibration

When the fundamental matrix throughout the sequence
is known, we can use exactly the same cost function as that
in Section 4.2. The only difference here is in the evalua-
tion of the gradient and Hessian of the epipolar constraint.
Since the fundamental matrix is known, the kth entry of the
epipolar Jacobian in Equation (35) becomes:

ĴE(i)k = JE(i)k −Mk (37)

4.4. Known Scene Geometry

When the camera calibrations as well as the fundamen-
tal matrix are known, the projection matrices for each cam-
era can be found [12]. With these, a set of 3D landmarks
p3D can be found from the refined 2D landmarks (see Sec-
tion 4.1). Propagating these 3D landmarks throughout the
sequence is advantageous for a number of reasons. Firstly,
optimization needs only be performed over 3D landmarks
rather than two sets of 2D landmarks, leading to a more
efficient fitting process. Secondly, the smoothing term in
Equation (14) is invariant to translation, which, when ex-
tended to 3D, has the effect that it is scale invariant in the
image plane as well. Finally, as the geometry of the scene is
known, we can do away with the epipolar constraints used
in the methods described in Sections 4.2 and 4.3.

In this scenario, we propose minimizing the following
cost function:

C = CD1 + CD2 + wCCC + wSCS (38)

where CD1 and CD2 are data terms defined in Equation (9)
for each image, CC is the color constancy term in Equa-
tion (32) and CS is a smoothness term as defined in Equa-
tion (14). The difference between these terms and the ones
described previously is that here they depend on the 3D
landmarks of the model, rather than the two sets of 2D land-
marks. For example, the Jacobian of the data term in Equa-
tion (13) is now given by:

JD(x) =
[
−∇I(�x)

∂�x
∂p2D

∂p2D

∂p3D
,T(x), 1

]
, (39)

where ∂p2D

∂p3D is the derivative of the 2D landmarks with re-
spect to the 3D landmarks.

5. Experiments

To motivate our approach, we conducted two sets of ex-
periments. The first is an evaluation of the monocular track-
ing method described in Section 3. For this, we used the



FGNet talking face database1. In the second set of experi-
ments, we evaluate the utility of adding scene geometry into
the fitting process. For this, we used the stereo database
AVOZES [11]. In all experiments we set wC = 1, ν = 10,
and wE one order of magnitude larger than the typical total
pixel error.

5.1. Monocular Method

The FGNet talking face database is a sequence of 5000
annotated images with 68 landmarks out of which we used
the first 1000 to test the method described in Section 3. To
evaluate the quality of the found correspondences we built
a separate model for shape and texture. The shapes are first
registered using Procrustes alignment to remove rigid mo-
tion from the data. PCA is applied separately to shape and
texture to obtain their modes and magnitude of variation.
Assuming the distributions of both shape and texture fol-
low that of a degenerate Gaussian, the quality of the model
can be assessed through the compactness of the resulting
distribution [15]. This is approximated by the volume of
covariance:

Q =
N∑

i=1

λi, (40)

where λi is the eigenvalue of the ith mode of variation. To
avoid discarding different amounts of energy as noise in dif-
ferent trials, we use all non-zero eigenvalues. Unlike that
suggested in [15], however, we argue that the quality of a
model cannot be assessed through the shape or texture com-
pactness independently. This is because the parameter set-
tings at which Qs, the shape compactness, is optimal gen-
erally disagrees with that of Qt, the texture compactness.

0 100 200 300 400
Smoothing Weight

0
500

1000
1500
2000
2500

Sh
ap

e 
Va

ria
tio

n

(a)

0 100 200 300 400

Smoothing Weight

1x107

1.5x107

2x107

2.5x107

3x107

3.5x107

Te
xt

ur
e 

V
ar

ia
tio

n

(b)

0 100 200 300 400
Smoothing Weight

100000
150000
200000
250000
300000
350000
400000

Po
int

-to
-p

oin
t E

rro
r

Minimum

(c)

0 500 1000 1500 2000 2500

Shape Variation

1x107

1.5x107
2x107

2.5x107

3x107
3.5x107

Te
xt

ur
e 

Va
ria

tio
n Automatic

Manual

(d)

Figure 1. Monocular Tracking results:(a). Qs vs. wS (b). Qt vs.
wS (c). Total point-to-point error vs. wS (d). Qs vs. Qt.

1http://www.isbe.man.ac.uk/∼bim/data/talking
face/talking face.html

As such, we ran the monocular tracking algorithm on the
database at a number of different settings of the smooth-
ing weight wS , the results of which are shown in Figure 1.
Plots (a) and (b) illustrate the effect of different smoothing
weights on Qs and Qt, respectively. As expected, as wS is
increased,Qs improves but Qt degrades. Plot (c) illustrates
the effect of wS on the total point-to-point error in all im-
ages between the supplied annotations with those obtained
using our method. The optimal setting of the smoothing
weight, with respect to the supplied annotations, is clearly
visible as a minimum at wS = 23.84. Increasing wS be-
yond this value over-constrains the shape, leading to in-
creasing point-to-point error. The relationship between Qs

and Qt is illustrated in plot (d). It is worth noting here that
models built using some settings of wS actually exhibit bet-
ter compactness compared to that built using the supplied
annotations, confirming our observation that manual anno-
tation is subjective and prone to error.

5.2. Stereo Methods

The AVOZES database consists of stereo sequences of
20 speakers uttering a variety of phrases, with each se-
quence ranging from 90 to 120 frames in length. For ex-
periments in this section, we used four female and four male
subjects from the continuous speech section of the database.
The intrinsic and extrinsic camera parameters are supplied
with the database, allowing the fundamental and projection
matrices to be calculated. Annotations are not available for
this database however, and hence we use it in a comparative
setting between the monocular method and the three stereo
methods proposed in Section 4. In the following, we will
refer to the method in Section 3 as Method 1 and the three
stereo extensions in Sections 4.2, 4.3, and 4.4 as Method 2,3
and 4 respectively.

We manually annotated one stereo pair in every sequence
with 83 landmarks. Using this as an initial correspondence
estimate, we refined the landmark locations in the right im-
age using the method described in Section 4.1, both using
the provided fundamental matrix and assuming it is un-
known. The 3D reconstruction of one of the subjects in
the database is shown in Figure 2. As expected, the re-
construction using the manual annotations without refine-
ment yielded a poor reconstruction. More surprisingly how-
ever, the reconstruction using landmarks refined with the
supplied fundamental matrix also resulted in a poor recon-
struction. In fact, using landmarks refined with an unknown
fundamental matrix resulted in a much more qualitatively
pleasing reconstruction. On closer inspection, we found
that the fundamental matrix built from the supplied intrinsic
and extrinsic camera parameters is erroneous. To see this, in
Figure 3 the epipolar line of a landmark in the left image is
drawn on the right image. Notice that the line does not pass
through the same physical point in the right image (outer



Figure 2. 3D Reconstruction of the reference image of subject f5
in AVOZES. Top row: stereo pair with manual annotations and
triangulation shown. Bottom row (left to right): 3D reconstruction
using manual annotations, refined annotations with unknown F,
refined with F from supplied camera parameters.

Figure 3. Epipolar error of supplied camera parameters. Left: Im-
age with fixed landmark. Right: Epipolar line of point in left im-
age.

corner of right eye). Although only of the order of two to
three pixels, the error here has the effect that the landmarks
are constrained to move along epipolar lines which do not
contain the same image structures. This in-turn yields the
color constancy assumption, used to drive the refinement
process, invalid.

Nonetheless, we ran the monocular tracking method and
its three stereo extensions on the eight sequences from the
database at different settings ofwS . To allow direct compar-
ison between results, the initial correspondence in the first
frame for all methods is set to the landmarks refined with
unknown F. The monocular method was run independently
on each of the streams in the stereo sequences. The quality
of the model built using correspondences from each trial is
calculated as described in Section 5.1 using images in both
streams of the stereo sequences. Plots of Qs against Qt for
all sequences are shown in Figure 4.

Methods 3 and 4, which utilized the supplied camera pa-
rameters, gave inconsistent results, outperforming Method
1 for some settings of wS , for example in plot (e) of Fig-
ure 4, but inconclusive over the whole set of experiments.
However, Method 2 consistently outperformed Method 1 in
almost all trials, in some cases by a significant margin (see
plots (b) and (d) in Figure 4). From this we conclude that
incorporating scene geometry does provide a useful con-
straint for automatic correspondence finding in sequences,
however it is sensitive to the accuracy of the assumed scene
geometry.

6. Conclusion

We have presented a new method for automatic corre-
spondence finding in image sequences by utilizing a track-
ing perspective. Three extensions to stereo sequences were
also presented accounting for different stereo scenarios.
Preliminary results show that the tracking paradigm works
well in the monocular setting. We also found that epipolar
constraints are capable of improving results further, how-
ever, they are sensitive to the accuracy of the camera pa-
rameters used.

There are a number of possibilities to improve on the
current results. Temporal filtering of the landmark motion
may improve the results. Also, utilizing an incremental lin-
ear model learning method, for example [17], rather than a
fixed adaptive template may also improve the fitting process
as variations in directions previously seen in the sequence
can be accounted for by the texture model.
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