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Abstract

Most of current computer-based facial expression analy-
sis methods focus on the recognition of perfectly posed ex-
pressions, and hence are incapable of handling the individ-
uals with expression impairments. In particular, patients
with schizophrenia usually have impaired expressions in
the form of “flat” or “inappropriate” affects, which make
the quantification of their facial expressions a challenging
problem. This paper presents methods to quantify the group
differences between patients with schizophrenia and healthy
controls, by extracting specialized features and analyzing
group differences on a feature manifold. The features in-
clude 2D and 3D geometric features, and the moment in-
variants combining both 3D geometry and 2D textures. Fa-
cial expression recognition experiments on actors demon-
strate that our combined features can better characterize
facial expressions than either 2D geometric or texture fea-
tures. The features are then embedded into an ISOMAP
manifold to quantify the group differences between controls
and patients. Experiments show that our results are strongly
supported by the human rating results and clinical findings,
thus providing a framework that is able to quantify the ab-
normality in patients with schizophrenia.

1. Introduction

Facial expressions have been widely used in clinical re-
search to study the affective and cognitive states, and psy-
chopathology of an individual. Specifically, the facial ex-
pression analysis has played a major role in the study of
schizophrenia, which is a neuropsychiatric disorder char-
acterized by deficits in emotional expressiveness [25]. Pa-
tients with schizophrenia are known to have impaired per-
formance in emotion processing, both in terms of recogniz-
ing and expressing emotions. Patients with schizophrenia
often demonstrate either or both types of impairment in fa-

cial expressions: “flat affect” (a severe reduction in emo-
tional expressiveness [14]) and “inappropriate affect” (in-
appropriate expression to intended emotions). In this paper,
we quantify the facial expression abnormality of patients
with schizophrenia by applying computer vision and pat-
tern recognition techniques and using both 3D surface data
and 2D texture images.

Clinicians currently rely on manual and subjective
methods to rate expressions, and the clinical research in
schizophrenia has focused on the perception and recogni-
tion capabilities of the patients, and not so much on the way
in which patients express emotions differently from healthy
controls. This has led to the need for sophisticated Auto-
mated Facial Expression Analysis (AFEA) methods, which
allow computers to analyze facial expressions [23, 11, 29].
The merits of automated facial expression analysis are two-
fold: AFEA can reduce the intensive human intervention
that is usually subjective, time-consuming and error prone;
AFEA can also provide quantitative analysis results. How-
ever, most of current AFEA methods mainly focus on
recognizing extreme and posed expressions, which are not
often seen in the real world. Such methods would have
difficulties in analyzing facial expressions of patients with
schizophrenia because of the expression impairments. Ex-
ample images are shown in Figure 1 (a) and (b), where the
patient failed to express when being asked to express sad-
ness and anger. Figure 1 (c) and (d) show other cases where
the expressions are not appropriately associated with the in-
tended emotions. Overall, the two deficits underline the fact
that the expression changes in patients with schizophrenia
are usually very subtle and do not follow the normal pattern
of expressions, thus being difficult to recognize by existing
facial expression recognition methods.

This paper presents a framework that addresses the chal-
lenging problem of quantifying the group differences be-
tween facial expressions of healthy controls and patients
with schizophrenia. Our method includes two main parts.
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First, features are extracted from 3D surface data and 2D
images to capture facial expression changes. These fea-
tures include 2D geometric features, 3D curvature features,
and moment invariants combining both 3D geometry and
2D textures. Second, the extracted features are embedded
into an ISOMAP manifold, in which the distances of data
to the control manifold are measured to quantify the group
difference between healthy controls and patients.

Our combined features outperform either 2D geomet-
ric or texture features in better recognizing actors’ expres-
sions, which demonstrates that the features can capture fa-
cial changes well. Also, the quantification in feature man-
ifold is able to identify subtle group differences between
patients and controls expression-wisely. The quantitative
results obtained from our method are consistent with the
human rating results and clinical findings. Furthermore, a
patient/control database for the clinical study of schizophre-
nia has been collected in this research.

(a) (b) (c) (d)
Figure 1. Images of patients with schizophrenia when being asked
to express: (a) sadness. (b) anger. (c) anger. (d) disgust

The rest of the paper is organized as follows. In Section
2, the previous work is reviewed. We then introduce the
protocol of data acquisition in Section 3. Our feature ex-
traction method is introduced in Section 4. We present the
methodology and experimental results of analyzing facial
expression abnormality in schizophrenia in Section 5. We
conclude the paper in Section 6.

2. Previous Work

2.1. Clinical Facial Expression Analysis

In clinical research, facial expressions are usually de-
scribed in two ways: expressions as combinations of action
units and universal expressions. The Facial Action Cod-
ing System (FACS) has been developed to describe facial
expressions using a combination of action units (AU) [8].
Each action unit corresponds to specific muscular activ-
ity that produces momentary changes in facial appearance.
The universal expression is studied as a whole representa-
tion of a specific type of internal emotion, without break-
ing up expressions into muscular units. Most commonly
studied universal expressions include happiness, anger, sad-
ness, fear, and disgust. In this study, universal expressions
are analyzed using the Facial Expression Coding System

(FACES), which has been designed to code facial behaviors
with multiple measurements, and to measure the duration
and valence of universal expressions [19]. Clinical studies
of schizophrenia analyze emotions usually use a combina-
tion of these methods. In this study, we compare the re-
sults of our computerized method with those of rating from
FACES.

2.2. Automated Facial Expression Analysis

Many automated facial expression analysis methods
have been developed [23, 11], while most of them focus on
the expression recognition. These methods can be catego-
rized based on the data and features they use, or the classi-
fiers created for the expression recognition. In summary, the
classifiers include Nearest Neighbor classifier [10], Neural
Networks [30], SVM [2], Bayesian Networks [4, 31], Ad-
aBoost classifier [2], Hidden Markov Model [20], and rule
based classifier [24]. The data used for AFEA can be 2D
images, video data, and 3D surface data, and there are dif-
ferent feature extraction methods for each type of data. We
now review some typical features as follows.

The commonly used 2D features include geometric fea-
tures and texture features. Geometric features represent
the spatial changes caused by facial expressions. Tian et
al. group the geometric features into permanent and tran-
sient features [30]. The permanent features include position
of lips, eyes brow, cheek, and any furrows that have be-
come permanent with age. The transient features include
facial lines and furrows that are not present at rest but ap-
pear with facial expressions. The texture features include
image intensity[1], image difference [10], edges [30], Ga-
bor wavelets [22], and manifold features [3]. Both PCA
features and image difference require precise alignment be-
tween images, which is difficult in real applications. The
edge features are also difficult to detect for subtle expres-
sion changes. In [22], approximately 1,000 Gabor wavelet
coefficients are extracted from a face grid for facial expres-
sion recognition as well as for race and sex recognition. In
[2], the Gabor wavelets are selected at different locations
and orientations using an AdaBoost algorithm, and are then
used to train a SVM for each facial expression or action unit.
Furthermore, the experiments in [38, 1] demonstrate that the
fusion of appearance features (Gabor wavelet or PCA fea-
tures) and geometric features can provide better accuracy
than only using either of them.

In video-based methods, the motion information is often
used to describe the facial deformations caused by expres-
sions. The motion information can be calculated from op-
tical flow methods [35, 36], or deformable models [9, 17].
In the work of Yacoob et al. [35], each facial expression
sequence is divided into three segments: the beginning, the
apex and the ending. Rules are defined to determine the
temporal model of facial expressions. Yeasin et al. present
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a two-stage method for recognizing facial expressions in
video [36]. Optical flow is first computed to recognize fa-
cial expressions at each frame, then the output at frame level
is fed to a discrete HMM for expression recognition in the
level of video. Besides motion information, the manifold
features are used for expression recognition in videos by ap-
plying a sampling-based probabilistic tracking scheme [3].

Recently, the use of 3D surface data for facial expres-
sions analysis has received attention as the 3D data provides
fine geometric information that is invariant to pose and illu-
mination changes. Yin et al. present a method to recognize
facial expression using primitive surface features [34]. The
method labels the surface data into twelve primitive features
based on the geometry. The label distributions on facial
regions are then used to recognize expressions. Their re-
sults show that 3D surface data can improve the recogni-
tion accuracy over only using texture features. However, as
several other methods, their method performs best on the
posed expressions of high intensity. Indeed, all the methods
described above suffer from this drawback and hence can-
not be used for recognizing expression changes in patients,
which are of low intensity and may not follow the regular
pattern of facial changes as in healthy people. Classifica-
tion based methods are unable to perform well on such data
as they have been trained on very different data sets. In the
following sections, we provide a framework to quantify the
facial expression abnormality of patients with schizophre-
nia, by combing 2D and 3D features.

3. Data Acquisition

There are some existing facial expression databases, in-
cluding the Japanese Female Facial Expression Database
[22], the CMU AU-Coded Facial Expression Database [16],
the Rutgers/UCSD Facial Action Coding System database
[2], and the Binghamton University 3D Facial Expression
(BU-3DFE) Database [37]. All the databases are mainly
designed for automated facial expression recognition. None
of them are designed for the clinical studies, especially, the
study of neuropsychiatric disorders such as schizophrenia,
as they mainly comprise of posed expressions which actu-
ally do not follow the true trend of expression changes, and
usually contain expressions of high intensity.

In our study, a database consisting of facial expressions
of both patients with schizophrenia and healthy controls has
been acquired under the supervision of psychiatrists. All the
participants, including patients and controls, are chosen in
pairs matched for the age, race, and gender. The pairings
will be used later in pairwise statistical analysis to ensure
that statistical effects are only due to the differences be-
tween patients and controls, and are not biased by age, race,
or gender. Each participant goes through two types of ses-
sions: posed and evoked expressions. In the posed session,
participants are asked to express five types of emotions, in-

cluding happiness, anger, fear, sadness and disgust, at mild,
moderate, and peak levels, respectively. In the evoked ses-
sion, participants are individually guided through vignettes
which are provided by the participants themselves and de-
scribe a situation in their life pertaining to each emotion.
In order to elicit evoked expressions, the vignettes are re-
counted back to the participants by the psychiatrist, who
guides them through all the three levels of expression inten-
sity for each emotion. Recruiting participants in this study
requires a lot of efforts because it needs to strictly follow
protocols, and it is difficult to find paired participants. The
patient/control database currently contains 24 participants,
and will include more participants in the future.

Figure 2. The capturing system setting

Images and videos are acquired during the interview with
participants. The capturing setting is illustrated in Figure
2. Participants sit on a well-adjusted chair, facing the cam-
eras. There are six polynocular stereo cameras and one
color camera, which are calibrated to provide texture and
geometric features [13]. Figure 3 shows examples of 3D
surface data and a texture image mapped on the surface.
The reconstruction accuracy is further improved by project-
ing a random IR pattern on the polynocular images and us-
ing fish-scales methods [26]. The surface reconstruction er-
rors are measured by comparing reconstruction results with
laser scanning results. Experiments show that about 90% of
surface points have error less than 2.5 mm, which is accu-
rate enough to measure expressions. There is also a video
camera capturing the videos for the facial expression analy-
sis. Our work using video data to analyze facial expressions
is beyond the scope of this paper.

4. Feature Extraction for Facial Expression
Analysis

This section introduces the feature extraction methods
we use for facial expression analysis. Our methods auto-
matically detect the fiducial landmarks at 2D images. Since
the correspondences between 3D surface data and 2D tex-
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(a) (b)
Figure 3. The 3D surface and texture of a participant. (a) surface
data. (b) texture mapped on surface data

ture have been established during camera calibration and re-
construction, the landmarks on 2D images also allow defin-
ing facial regions at both 2D and 3D data. Based on de-
fined facial regions, important features are extracted from
both 3D surface data and 2D textures. The features include
the 2D geometric features defined on 2D shapes, the curva-
ture features calculated from the 3D surface data, and the
moment invariants which combine both 3D geometry and
image texture. The extracted features characterize the fa-
cial changes caused by expressions, and are then used to
analyze facial expressions of patients with schizophrenia,
which will be discussed in Section 5.

4.1. Automatic Fiducial Landmarks Detection

Manually labeling fiducial landmarks is usually very
time-consuming, and subjective to the person who does the
labeling. To automate the process, we first detect faces
in images, and then detect fiducial landmarks inside faces,
using off-line trained face and fiducial landmark detec-
tors. An AdaBoost based face detector is applied to detect
frontal and near-frontal faces [33]. Inside detected faces,
our method identifies some important fiducial landmarks
using Active Appearance Model (AAM), which is a statis-
tical method to model face appearance as well as face shape
[6]. In our implementation that is modified from [27], the
face shape is defined by 58 landmarks, as shown in Figure
4.(a). Figure 4.(b) shows the fiducial landmarks detected
by AAM. These landmarks are used to define a set of facial
regions based on which the features will be extracted for
facial expression analysis.

3D facial regions can be automatically created from
the 2D shape, since the correspondence between 2D and
3D coordinates has been established during camera cal-
ibration and surface reconstruction. Figure 4.(c) shows
the landmarks and texture mapped on the surface. As-
suming that a 3D point (xi, yi, zi) has its correspondence
(ci, ri) on a 2D image, then for any facial region ωj =
{(cj1, rj1), (cj2, rj2), ..., } defined on a 2D image, we
can define its corresponding 3D facial regions as Ω =
{(xj1, yj1, zj1), (xj2, yj2, zj2), ...}. The benefit of building
the 2D and 3D facial region correspondence is that it avoids
the need for registration between two surface since the re-

gions defined on facial landmarks actually represent regions
of interests (ROI) across different faces.

(a) (b) (c)
Figure 4. Fiducial landmarks and 2D/3D correspondence. (a) 58
landmarks defined on face; (b) landmarks detected on an image;
(c) landmarks and textures mapped on the surface

4.2. 2D Geometric Features

In the acquisition setup, all the faces are at their frontal-
view facing the cameras. Therefore the 2D shapes directly
characterizes the facial changes. We define two types of
2D geometric features based on the 2D landmarks. One
type of 2D geometric features is defined as the area of fa-
cial regions to describe the global facial changes. There
are totally 28 regions defined on 58 fiducial points, as illus-
trated in Figure 5.(a). The 28 region areas are denoted as
(fg

1 , fg
2 , ...fg

28). There are also some facial actions which
are known to be closely related with expression changes.
Such facial actions include eye opening, mouth opening and
closing, mouth corner movement and eyebrow movement.
To describe such actions, we include another type of geo-
metric features, which specifically measure the distance be-
tween some fiducial points, as in Figure 5.(b). The distance
features are denoted as (fg

29, ..., f
g
37). As the combination of

two types of feature, the 2D geometric features are denoted
as fg = (fg

1 , fg
2 , ..., fg

37)

(a) (b)
Figure 5. Geometric features defined on fiducial landmarks for ex-
pression analysis. (a) 28 regions; (b) distance features

4.3. 3D Curvature Features

Our method extracts surface curvatures [18] to represent
the 3D geometry of faces. The surface curvatures have some
desirable properties for facial expression analysis: the cur-
vatures are insensitive to the rigid transformation of surface,
therefore the surface does not need accurate registration; the
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curvatures will change with the local geometric deforma-
tions caused by facial expressions. The surface curvatures
have been used in face recognition [12], face detection [5],
as well as in facial expression recognition [34].

The 3D surface data is denoted as (xi, yi, zi), i = 1, ..., n
where xi, yi and zi are the coordinates of i-th point at three
directions respectively, n is the number of the points on the
surface. A continuous method is applied to calculate the
curvatures by locally fitting the surface using a biquadratic
polynomial approximation. First, each point (xi, yi, zi) at
the original surface is re-defined in a local coordinate sys-
tem by shifting and rotation such that the surface normal at
local vertices equals to (0, 0, 1). For simplicity, we also use
(xi, yi, zi) to denote the points at the local coordinate sys-
tem. Then at each local point (xi, yi, zi), the surface can be
represented by

zi = ai
1 + ai

2x̃i + ai
3ỹi + ai

4x̃
2
i + ai

5x̃iỹi + ai
6ỹ

2
i (1)

where x̃i = x − xi and ỹi = y − yi. The points (x̃i, ỹi, z̃i)
are from the neighboring vertices of the point (xi, yi, zi).
The surface fitting using cubic functions provides similar
accuracy, but with more computational efforts. Based on
the surface fitting, the derivatives are zx = a2, zy = a3,
zxx = 2a4, zyy = 2a6, and zxy = a5. After surface fitting,
the mean curvature H and Gaussian curvature K [18] can
be calculated as Eqn (2).

H(x, y, z) =
(1 + z2

y)zxx − 2zxzyzxy + (1 + z2
x)zyy

2(1 + z2
x + z2

y)3/2

K(x, y, z) =
zxxzyy − z2

xy

(1 + z2
x + z2

y)2
(2)

Based on the sign of Gaussian and mean curvatures,
points on the surface can be classified into different shapes,
i.e., the HK classification [32]. In our methods, the points
are labeled as elliptical concave (H < 0 and K > 0), sad-
dle ridge (H > 0 and K < 0), elliptic convex (H > 0 and
K > 0), and saddle valley (H < 0 and K < 0). In order to
characterize surface deformations, we calculate the distribu-
tion of each type of HK label at each face region. Assuming
that at j-th face region, the percentage of i-th curvature type
is hc

ij , the 3D curvature features are then denoted as fc:

fc = (hc
11, ..., h

c
ij , ..., h

c
4M ), (i = 1, ..., 4, j = 1, ...,M) (3)

We merge some small regions into bigger regions as in the
lower cheek and eyebrow regions, for better estimation of
HK label distributions. Finally, we calculate the HK label
distributions in 21 regions, i.e., M = 21 in Eqn. (3).

4.4. Moment Invariants Combining Texture and
Geometry

The above 2D and 3D geometric features have not uti-
lized the texture information provided in 2D images. Our

method further combines textures with geometric features
by calculating moment invariants. Assuming that a func-
tion g(x, y, z) is defined on the surface data (x, y, z), the
moment Mlmn that characterizes the spatial distribution of
g(x, y, z) on the surface is defined as:

Mlmn =
∫

x

∫
y

∫
z

xlymzng(x, y, z)dxdydz (4)

Here we use the Gabor wavelets as g(x, y, z) in the mo-
ment calculation, thus combining the texture information
with geometry.

To make the moment features invariant to global rigid
transformation, we use 3D moment invariants [21]. The
central moments are first computed to get translation in-
variant features. In central moments, the coordinates are
subtracted by the centroid x̄ = M100

M000
, ȳ = M010

M000
, and

z̄ = M001
M000

, i.e. Mlmn =
∫

x

∫
y

∫
z
(x − x̄)l(y − ȳ)m(z −

z̄)ng(x, y, z)dxdydz. Then three 3D moment invariants,
which have been known to be rotation invariant [21], are
calculated as Eqn. ( 5).

J1 = M200 + M020 + M002

J2 = M200M020 + M200M002 + M020M002 − M2
101

− M2
110 − M2

011

J3 = M200M020M002 − M002M
2
110 + 2M110M101M011

− M020M
2
101 − M200M

2
011 (5)

Considering the computational complexity, the Gabor
wavelets are only calculated around landmarks, and the Ga-
bor moment invariants are extracted for six facial regions,
such as eyes, eyebrows, mouth and nose. At each point, the
Gabor wavelets are computed at 3 scales and 6 directions.
Therefore, there are total 18 Gabor wavelet coefficients for
each point, resulting 18*3 moment invariants for each re-
gion. The moment invariants of the i-th Gabor coefficient
at the j-th region are denoted as J

(i,j)
1 , J

(i,j)
2 and J

(i,j)
3 re-

spectively. Finally we have the moment invariant features
defined as fm = (J (1,1)

1 , ..., J
(1,M)
1 , J

(1,1)
2 , ..., , J

(18,M)
3 ).

4.5. Feature Normalization

To remove the individual differences in the facial expres-
sions, extracted features are normalized in several ways.
First, each face shape is normalized to the same scale. We
use the width of face (the distance between two ears) for
scale normalization, since it won’t change with facial ex-
pressions. Second, the geometric features are normalized
by each subject’s neutral faces. For example, each 2D geo-
metric feature is divided by its corresponding value at the
neutral expression of the same person. Thus the geometric
features only reflect the ratio changes of 2D face geometry,
and individual topological differences are canceled. Third,
the intensity of face images is normalized by subtracting its

5



mean and then being divided by its standard deviation, in
order to minimize the affects of lighting and skin colors.
Finally, all the feature values are normalized to z-scores for
further analysis.

5. Quantifying Facial Expression Abnormality
in Schizophrenia

In this section, we first validate the extracted features via
designed facial expression recognition experiments on ac-
tors. The actors generally represent expressive people. The
validation results demonstrate that classifiers created using
our combined features are able to better distinguish differ-
ent facial expressions than only using 2D or texture features.
Then we proceed to quantify facial expression abnormality
in schizophrenia. As schizophrenia patients have demon-
strated low intensity, flat or inappropriate expressions, tra-
ditional facial expression recognition cannot achieves good
quantification results for all the expressions. Since we only
have a small sample set due to the difficulties of acquiring
patient/control data, we instead characterize the group dif-
ference of facial expressions in an ISOMAP manifold. For
the purpose of quantification, the distances to the control
manifold are used for the t-test to provide significance lev-
els for the group differences.

5.1. Validation on Actor Database

An actor database, which has been collected during our
previous study [13], is used to validate our feature extrac-
tion method via facial expression recognition experiments.
The actor database contains a total of 32 professional ac-
tors. The actors were guided by professional theater direc-
tors based on the Russian acting principles through each of
the four emotions: anger, fear, happiness, and sadness, at
three levels of intensity. Among all the actors, there are 9
actors whose images and surface data have both been ac-
quired. In the following experiments, we use the data of the
9 subjects for validation.

We first cascade all the features together to form a com-
bined feature vector f = (fg, f c, fm). PCA is applied
on f to reduce its dimensionality, followed by the LDA
to distinguish different facial expressions. Since there are
four expressions in the actor database (with no disgust be-
ing acquired for the actors), the dimensionality of the LDA
subspace equals to 3. We then build a probabilistic K-NN
classifier [15] in the LDA subspace. Our experiments show
that the probabilistic K-NN classifier actually outperforms
the commonly used SVM. The reasons are as follows: the
probabilistic K-NN naturally handles multi-class problems
while the SVM is essentially a binary classifier; in our case,
the SVM needs to optimize the parameters to fit the limited
number of training samples, which potentially causes the
over-fitting.

We perform a leave-one-sample-out cross validation on
the actor database. During the validation, each sample will
be left from training once and only once. The validation
accuracy is then averaged over all the samples. The valida-
tion results are displayed in Table 1. The overall facial ex-
pression accuracy is 83.0%. We also perform a leave-one-
sample-out cross validation, in which each time all the data
from one person is left from training. Since we only have to-
tally 9 subjects, the leave-one-subject-out validation is more
difficult than leave-one-sample-out validation. As the re-
sult, we obtain an overall recognition accuracy of 71.3%
for the leave-one-subject-out validation.

Table 1. Confusion matrix of the cross validation on actors
Expression Happiness Anger Fear Sadness
Happiness 84.2% 5.2% 5.3% 5.3%

Anger 3.8% 80.8% 7.7% 7.7%
Fear 3.7% 14.8% 81.5% 0%

Sadness 7.4% 7.4% 0% 85.2%

Also, different features are compared with each other us-
ing leave-one-sample-out cross validation. We perform fa-
cial expression recognition using only 2D geometric fea-
tures, using the combined 2D and 3D geometric features,
using the Gabor features, and using our combined features.
The Gabor features are calculated at 45 landmarks exclud-
ing those at the face outline. Table 2 shows the compari-
son results, which demonstrate that by combining 2D and
3D features, the facial expression analysis accuracy can be
largely improved, with our combined features producing the
best results.

Table 2. Comparison of different features

Features 2D geometric 2D geometric Gabor Our combined
features + 3D curvatures features features

Average
accuracy 72.4% 74.5% 74.0% 83.0%

Our validation is further compared with human rating re-
sults. In the previous study, 41 students were recruited as
human raters from undergraduate and graduate courses in
psychology at the Drexel University. The raters were dis-
played each face, and were asked to identify the emotional
content of the face. As the result, the human raters were
able to correctly identify 77% correct for anger, 67% cor-
rect for fear, 98% for happiness, and 67% for sadness. The
overall accuracy of human raters is 77.8%, which is com-
parable with our cross validation accuracy, i.e., 71.3% for
leave-one-subject-out validation and 83.0% for leave-one-
sample-out validation.
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5.2. Quantifying Group Differences between
Healthy Controls and Patients in Manifold

The actors used for the facial expression experiments in
Section 5.1 are experts in posing expressions. They are in
general more expressive than the normal people, and are
also more expressive than the healthy controls and patients
in our study. This is confirmed by the human rating results
showed in Table 3. Students with domain knowledge were
asked to rate the evoked expressions of the 12 patients and
controls that participated in the study. The faces were rated
using the method of FACES [19] by reviewing captured
video data. The videos provide rich information, therefore
the rating results are more robust than those using single im-
ages. However, the human raters can only correctly identify
a low percentage (mostly 40% to 70% except for happiness)
of intended emotions, for both controls and patients. In such
a case, automated facial recognition methods will fail due to
the underlying inexpressiveness of individuals. On the other
hand, the rating results indeed show differences for controls
and schizophrenia patients. We want to quantify potential
group differences by applying the extracted features, which
have been demonstrated to be able to capture facial expres-
sion changes from the previous validations.

Table 3. Accuracy of human rating for evoked expressions
Expressions Happiness Sadness Anger Fear Disgust

Controls 89.2% 39.1% 71.2% 63.6% 55.9%
Patients 65.7% 57.2% 53.4% 50.0% 53.4%

As supported by human ratings, the facial expression ab-
normality in schizophrenia is only demonstrated in a group.
Facial expression recognition methods may not be sufficient
to distinguish individual patients from controls. Therefore,
instead of performing facial expression recognition on pa-
tients, we perform a statistical analysis using extract fea-
tures to quantify the group differences between patients and
controls. Our method first embeds facial expression features
into a manifold, and then measures the group differences on
the manifold. In this method, the ISOMAP manifold learn-
ing algorithm is used to obtain a lower dimensional em-
bedding of the original high dimensional features, as it can
preserve geodesic distances and provide a non-linear man-
ifold [28]. After obtaining the ISOMAP embedding, the
paired t-test is performed to quantify the group differences
between healthy controls and patients. In the group differ-
ence testing, the distance of each participant to the manifold
of healthy controls is calculated as features for the statisti-
cal testing. We choose the minimum distance to the control
manifold for the testing because the control manifold itself
is more cohesive than the patients manifold which could be
scattered due to the impaired expression, and controls are
used as the baseline for any clinical study.

For the purpose of paired comparison between controls

and patients, we applied an out-of-sample ISOMAP exten-
sion [7]. This extension specifies landmarks, and only uses
the distances to the landmarks for the embedding. In our ex-
periments, each paired control and patient will be left once
and only once from the landmarks, and then mean distance
di from i-th participant to the manifold obtained from the
remaining healthy controls is computed. Finally, we obtain
a set of paired data, i.e., {dc

1, d
c
2, ...} and {dp

1, d
p
2, ...} where

dc
i and dp

i are distances from i-th paired control and patient,
for the t-test. Since the pairs have been selected by match-
ing their gender, race and age, the statistical analysis results
are not biased by these factors. The t-test is performed for
each expression respectively, and the p-values obtained are
shown in Table 4.

Table 4. P-values of the t-test for different expressions

Expressions Happiness Sadness Anger Fear Disgust
Posed 0.0636 0.8246 0.1971 0.2310 0.5668

Evoked 0.0820 0.4636 0.4755 0.0596 0.0247

The p-values represent the significance level of the group
differences. Table 4 shows the group difference at the sig-
nificance level around 0.05 in the evoked fear and disgust.
The results are consistent with human rating results. Al-
though group difference in other emotions are at a lower
significance perhaps due to the small sample size and high
variability in the data, we observe trends of difference be-
tween the two groups. We expect the results of statisti-
cal analysis to improve with more data acquired in the fu-
ture. Furthermore, the analysis results clearly show that
the group differences in evoked expressions are more sig-
nificant than in posed expressions. Also the emotion of
fear shows high group difference between patients and con-
trols. Both of these results are significant in the light of
fact that schizophrenia patients show greater impairment in
anger and fear, and group differences have clinically been
observed better in evoked expressions [13].

6. Conclusion

In this paper, we present methods to quantify facial ex-
pression abnormality in schizophrenia. We made two ma-
jor contributions. First, we present a combined feature ex-
traction method, which models both 2D and 3D geometry
together with textures. The features are demonstrated to
provide better accuracy in actors’ recognizing facial expres-
sions. Second, we analyze the facial expression abnormality
of schizophrenia patients. The feature distance of partici-
pants to the healthy control manifold are used for the paired
t-test. Our statistical analysis results are well correlated
with human ratings and clinical findings that schizophre-
nia patients have impaired facial expression. Our method
is general and applicable to the further study of other clin-
ical conditions that cause deficits in expressiveness such as
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autism and Parkinson’s disease. The future work will con-
tinue collecting more paired participants (patients and con-
trols) for the statistical analysis. We also plan to combine
the 3D data with the video data for the facial expression
analysis, as well as creating point-wise expression change
maps for further improvement.
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