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Abstract

Matrix factorization is a key component for solving sev-
eral computer vision problems. It is particularly challeng-
ing in the presence of missing or erroneous data, which of-
ten arise in Structure-from-Motion. We propose batch algo-
rithms for matrix factorization. They are based on closure
and basis constraints, that are used either on the cameras or
the structure, leading to four possible algorithms. The con-
straints are robustly computed from complete measurement
sub-matrices with e.g. random data sampling. The cam-
eras and 3D structure are then recovered through Linear
Least Squares. Prior information about the scene such as
identical camera positions or orientations, smooth camera
trajectory, known 3D points and coplanarity of some 3D
points can be directly incorporated. We demonstrate our
algorithms on challenging image sequences with tracking
error and more than 95% missing data.

1. Introduction

Matrix factorization is an essential tool for solving sev-
eral computer vision problems including Structure-from-
Motion [20, 23], plane-based pose estimation [21], non
rigid 3D reconstruction [6] and motion segmentation [25].
When no data are missing or corrupted by outliers, an ef-
ficient algorithm based on Singular Value Decomposition
(SVD) can be used. However, missing and erroneous data
are certainly unavoidable in many real-life situations, and
they make factorization much more difficult. Furthermore,
the SVD-based algorithm makes it difficult to enforce con-
straints specific to the formulation or provided by prior in-
formation about the problem.

We propose algorithms for batch matrix factorization
with special attention given to the Structure-from-Motion
(SfM) problem. Closure or basis constraints on one of the
two factors are computed from complete measurement sub-
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matrices. For example, Camera Closure Constraints (CCC)
can be computed from their left kernel [24]. We investigate
three variations: Camera Basis Constraints (CBC), Struc-
ture Closure Constraints (SCC) and Structure Basis Con-
straints (SBC), that are respectively left basis, right ker-
nel and right basis of the measurement matrix. Our ex-
periments and comparison with other state-of-the-art batch
factorization algorithms show that basis constraints usually
give better results than closures, for both affine and perspec-
tive camera models. We also show that structure constraints
can be used first to compute the 3D structure instead of the
cameras, which allows to enforce directly constraints such
as known 3D points or known planar surface. In the case
of affine SBC, an approximation to the reprojection error is
minimized.

Organization. The next section reviews previous work
on factorization and Structure-from-Motion and points out
the main differences with ours. In §3, we give our nota-
tion and formally introduce the factorization problem with
his specialization to the affine Structure-from-Motion prob-
lem. Camera Closure Constraints (CCC) are first reviewed
in §3.1, then follows our contribution in §4. The details
are provided for the affine camera model and we discuss
how the theory applies to the perspective model in §5. Ro-
bustness is discussed in §6, experiments are described and
analyzed in §7, followed by conclusion in §8.

2. Previous Work
Structure-from-Motion can be formulated most gener-

ally as a bilinear (modulo homogeneous scale) inverse prob-
lem. The seminal work on affine factorization [23] however
showed that it could be relaxed to a bilinear problem for the
affine camera model. For perspective cameras, it can be for-
mulated similarly when the homogeneous feature point co-
ordinates are rescaled by their projective depth, which must
be estimated a priori [14, 20].

The algorithms for matrix factorization despite missing
data can be divided into three main categories: iterative,
batch and hierarchical. In the first one, factorization is per-
formed by minimizing directly the factorization error either
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by non-linear methods [7] or alternation [5, 13, 17]. How-
ever, the convergence to the global minimum is not guaran-
teed because they can get stuck in a local minimum. Al-
though good performances have been reported when ini-
tializing the algorithms with a random solution [7, 12, 17],
an initialization as close as possible to the global minimum
is recommended. Hierarchical approaches proceed by fac-
torizing overlapping sub-blocks of the measurement ma-
trix [8, 16]. The solutions are then merged in a hierarchical
manner, and care must be taken in choosing the merging
scheme. This allows to deal with very large factorization
problems.

Batch algorithms provide a solution for initializing itera-
tive algorithms with a low computational cost. They usually
minimize an approximation to the reprojection error to sim-
plify the optimization and avoid local minima [9, 14, 24]. In
the absence of noise, they find the global minimum. The ap-
proximation is done by computing the two factors through
two linear steps. Constraints on one of the two factors
are computed to span the whole solution space. Once the
first factor is estimated, the second one can be easily com-
puted. Non-linear and batch algorithms are usually consid-
ered complementary solutions. In [19], essential matrices
are used between pairwise views to estimate the motion of
all the cameras without the structure. This is similar to our
solution in philosophy although a very different approach is
taken.

It has been shown that the reconstruction problem is con-
siderably simplified when observing a reference plane in all
the images of the sequence [11, 22]. The structure con-
straints we propose handle this situation naturally. The so-
lution must still proceed in two steps, but has the benefit
that the objects do not need to be visible in all of the im-
ages. Finally, robustness is enforced one constraint at a
time, rather than globally [1, 2, 12], thereby allowing the
use of RANSAC-type algorithms.

3. Notation and Preliminaries
Notation. Matrices are in sans-serif, e.g. M, and ’joint
matrices’ in calligraphic characters, e.g. M. Vectors are al-
ways in bold, e.g. v. The matrix operator� is the Hadamard
element-wise product. Finally, P is the projective space.

Problem statement. The factorization of a matrix M
with missing data is formulated as the problem of finding
a weighted approximation of M with the closest rank r ma-
trix (AB) such that:

min
A,B

‖W(n×m) �
(
M(n×m) − A(n×r)B(r×m)

)
‖,

where M is called the measurement matrix composed of
points mj

p, and W is a weighting matrix with zeros for
missing elements in M. In some problems, constraints on

elements of A and B must be enforced, e.g. affine SfM. In
SfM, B is called the Joint Structure Matrix (JSM) and rep-
resents the 3D points qj ∈ P3, A = (P t) is the Joint
Projection Matrix (JPM) and consists of the stacked camera
projection matrices.

Affine SfM can be formulated as a rank-3 or a rank-4
factorization of a measurement matrix M, depending on
whether the input matrix has missing data or not (with the
exception of [5], where predictions are made for the missing
data). In the rank-3 case, the projection can be expressed
with:

mj
p(2×1) = Pp(2×3)q

j
(3×1) + tp(2×1) (1)

where an optimal choice for the joint translation vector t
can be computed as the column means of M. It can be
eliminated from (1), giving the centered measurement ma-
trix (M− t1T). The factorization of this matrix computed
using SVD is an optimal solution in terms of the reprojec-
tion error [23]. We have rank-4 when data are missing, so
the joint translation vector cannot be computed a priori. Bi-
linear matrix factorization [17] provides a solution as long
as the last row of the JSM is constrained to unity:

M(2n×m) =
(
P(2n×3) t

) (
Q(3×m)

1T

)
. (2)

3.1. Camera Closure Constraints (CCC)

We review the Closure Constraints [9, 10, 24] for affine
cameras and give a generic formulation for estimating
matching tensors between many views.
Deriving the constraints. Let M̂ be a sub-block of M
without missing data. Selecting a subset of views is done
by multiplying to the left by some row-amputated block-
diagonal matrix Π with (2 × 2) identity blocks. Select-
ing a subset of features is done similarly by multiplying to
the right by Γ, an identity matrix amputated of some of its
columns, yielding:

M̂(2n̂×m̂)
def= ΠMΓ.

In this case, the measurements can be expressed as:

M̂ = ΠMΓ = ΠPQΓ + Πt1TΓ = P̂Q̂+ t̂1T. (3)

We define µm as:
µm

def=
1
m

1(m×1),

which computes the column means of an (n×m) matrix by
multiplying to the right. We define the centered measure-
ment matrix as:

M̄ def= M̂ − M̂µm̂1T
(1×m̂), (4)

which does not equal (P̂Q̂) in general, as the row means
of the sub-blocks are not necessarily those of the complete



matrix. The SVD M̄ = UΣVT can be used to compute
optimal rank-3 factors given by the leading 3 columns of
U and 3 rows of ΣVT. The first factor gives the a solution
for the partial Joint Projection Matrix while the remaining
columns of U form a basis for the best approximation to the
left kernel of M̄, which we call centered matching tensor,
denoted N̄ . We have:

N̄TM̄ = 0,

and from (4):

N̄T
(
M̂ −M̂µm̂1T

)
= 0,

that rewrites as:(
N̄T −N̄TM̂µm̂

)︸ ︷︷ ︸
NT

(
M̂
1T

)
= 0, (5)

where appears the non-centered matching tensor N we
are seeking. Note that directly computing a tensor from
(M̂T 1)

T
would not be optimal in terms of reprojection er-

ror. Tensor N corresponds to the classical affine match-
ing tensor. The affine fundamental matrix has 4 degrees of
freedom, and the non-centered left kernel obtained from a
measurement matrix with four rows has 5 components up
to scale. A matching tensor computed from a matrix with
six rows is of size (3× 6) and has orthonormal rows, which
leaves 12 degrees of freedom like the affine trifocal tensor.

Estimating the Joint Projection Matrix. The unity con-
straint on the last row of the Joint Structure Matrix can be
expressed with extra rows in M and P:(

M
1T

)
=

(
P t

0(1×3) 1

) (
Q
1T

)
. (6)

Let:
D

def= ΠTN̄ ;

multiplying (6) by
(

Π 0
0 1

)
to the left and Γ to the right

and substituting in (5), we obtain:

(
DT −N̄TM̂µm̂

) (
P t
0 1

)
= 0,

DT
(
P t

)
=

(
0(1×3) N̄TM̂µm̂

)
.

Stacking every such constraint computed from different
sub-blocks of M in a single matrix equation, we get:DT

1
...

DT
l

 (
P t

)
=

0 N̄T
1 M̂1µm̂

...
...

0 N̄T
l M̂lµm̂

 .

The design matrix, denoted D def= (D1, . . . ,Dl)
T, is highly

sparse. This is exploited when computing the Linear Least
Square (LLS) solution. As explained in [9], choosing the
projection matrix of some of the cameras fixes the gauge of
the system and ensures a full-rank design matrix. The error
minimized by this method is difficult to interpret because it
is expressed in terms of matching tensors. Once the JPM is
estimated, the structure can be computed by affine triangu-
lation.

4. Batch Matrix Factorization for Affine SfM
and Generalization of CCC

4.1. Summary of the Algorithms

The algorithms we propose follow the typical steps of
batch algorithms: 1) Measurement sub-matrices without
missing data are found. 2) Each of these matrices is used to
compute a constraint, either on the partial Joint Projection
Matrix or partial Joint Structure Matrix. 3) The constraints
are combined to estimate one of the factors. 4) The second
factor is estimated by camera resectioning or triangulation.
5) Finally, non-linear or alternation methods refine the so-
lution.

4.2. Camera Basis Constraints (CBC)

We show how basis constraints can be used instead of
matching tensors. The partial JPM P can be computed
alone, i.e. without the joint translation vector. This is done
by aligning bases of the projection matrices of partial recon-
structions performed on measurement sub-matrices. Once
P is recovered, the joint translation vector and the struc-
ture can be computed together to minimize the reprojection
error.

Consider a centered sub-matrix M̄ of M and compute
its SVD M̄ = UΣVT. The 3 leading columns of U, denoted
Ū, form a basis of P̂ , that is, there is a 3×3 invertible matrix
Z (the aligning transformation) such that:

P̂ = ŪZ, (7)

leading to the Camera Basis Constraint:

ΠP = ŪZ. (8)

Because of the remark following (4), this is not trivial. To
demonstrate this, we note that multiplying an (n×m) ma-
trix by:

ϑm
def= I− 1

m
1(m×m) = I− µm1(1×m),

to the right subtracts the row mean from each of its entries.
Consequently:

M̄ = ΠMΓϑm̂ = ΠPQΓϑm̂ + Πt1TΓϑm̂ = ΠPQΓϑm̂,



since Πt1TΓϑm̂ = 0. Hence, the columns of M̄ are linear
combinations of those of ΠP , and since M̄ has rank 3, the
same is true of Ū.

4.2.1 Solving for the Joint Projection Matrix

Computing many CBC’s for different sub-blocks of the
measurement matrix amounts to performing partial affine
reconstructions. Solving for the Joint Projection Matrix is
done by: 1) aligning basis constraints to recover the reduced
JPM and 2) recovering the joint translation vector and the
structure.

Let l be the number of CBC’s. Aligning bases together
involves minimizing:

l∑
k=1

‖ŪkZk − ΠkP‖2 =
l∑

k=1

∥∥∥∥(
Πk −Ūk

) (
P
Zk

)∥∥∥∥2

,

which is a simple LLS system, that can be rewritten as:∥∥∥∥∥∥∥∥∥
Π1 −Ū1 0

...
. . .

Πl 0 −Ūl


︸ ︷︷ ︸

D


P
Z1

...
Zl


︸ ︷︷ ︸

X

∥∥∥∥∥∥∥∥∥
2

. (9)

Although the size of the design matrix D is quadratic in
the number of bases, the equation system can be minimized
efficiently. Indeed it is extremely sparse, and we do not
need to compute the aligning matrices Zk. The minimized
error is the alignment of the optimal cameras of partial re-
constructions. Although this error is algebraic, as when ex-
pressing the error in terms of matching tensor constraints,
our experiments suggest it is more stable, c.f . §7.

Once the partial JPM P is estimated, we propose two
approaches for estimating the translations and the structure.
The best solution comes from doing both at the same time,
by using an LLS formulation. It minimizes the reprojec-
tion error. This is because the orientation and intrinsics of
the camera are already estimated up to a (3 × 3) invertible
transformation G, which has no effect on the minimized er-
ror:

‖M−PQ− 1Tt‖ = ‖M−PGG−1Q− 1Tt‖. (10)

However, for a long sequence, this equation system uses
a lot of memory and is rather long to minimize. In this
case, it is more efficient to estimate only the joint translation
vector and then perform individual triangulation for each
feature track. To this end, we combine the computed basis Ū
with the translation t̄ = M̂µm̂ of the cameras of the partial
reconstructions. Thus, the camera alignment can also be
performed with:

Π
(
P t

)
=

(
P̂ t̂

)
=

(
Ū t̄

) (
Z v

0(1×3) 1

)
,

where matrices Û and Z are those from (8). The joint trans-
lation vector can be estimated by minimizing:∥∥∥∥∥∥∥∥∥D


t
v1

...
vl

−

t̄1

...
t̄l


∥∥∥∥∥∥∥∥∥

2

, (11)

where D is the design matrix of (9).
In [14], bases for cameras were computed from M̂, not

M̄ like we do. The partial reconstruction corresponding to
these cameras is not optimal. Furthermore, a method for
estimating t̂ from the bases independently of the structure
is not given. This is essential when dealing with very large
sequences or data corrupted by outliers (c.f . §6).

4.3. Structure Closure Constraints (SCC)

Structure Closure Constraint is the analogue of the CCC
applied to the Joint Structure Matrix. From (2), a match-
ing tensor is in the column space of Q and 1T. It can be
computed using SVD by minimizing:

‖M̂N‖2, subject to 1TN = 0.

Note that unlike the CCC, the SCC is not computed from a
centered input matrix. This is because the last row of the
JSM must be 1T. A more formal explanation is given in
§4.4. By accumulating many constraints, we can form a
design matrix D with:

Di
def= ΓNi.

By constructionD is rank deficient because each of its rows
vanishes on 1T. Hence, the right singular vector corre-
sponding to the smallest singular value, equal to zero, is
1/‖1‖. The estimate forQT is given by the next three right
singular vectors of D.

4.4. Structure Basis Constraints (SBC)

As with Camera Closures, using Structure Closures im-
plies minimizing a purely algebraic function difficult to in-
terpret. Structure Bases can be used to estimate partial re-
constructions which are then aligned together in a single
computation. From an SVD of M̄ = UΣVT, the three
leading columns of V estimate the structure, up to an affine
transformation, in the partial reconstruction corresponding
to M̂. However we prefer using V̄ as the three leading
columns of VΣT, as explained below. It can be aligned with
the structure through:

Q̂T = Z(3×4)

(
V̄ 1

)T
,

leading to the Structure Basis Constraint:

ΓTQT = ZV̄T.



Note that unlike a CBC, an SBC cannot be aligned with a
(3 × 3) matrix. This is because the row space of V̄ is that
of:

ΠPQΓϑm̂= ΠP


Q̂1ϑm̂

Q̂2ϑm̂

Q̂3ϑm̂

1Tϑm̂

= ΠP


Q̂1 − Q̂1µm̂1(1×m)

Q̂2 − Q̂2µm̂1(1×m)

Q̂3 − Q̂3µm̂1(1×m)

0T

,

where the Q̂i’s are the rows of Q̂, that is, the row space of
V̄ is the one generated by the Q̂i’s and 1T, but not necessar-
ily only by the Q̂i’s. Partial reconstructions can be aligned
together by solving an equation system similar to (9).

Choosing the bases. Consider two partial reconstruc-
tions V̄ and V̄′. Aligning them together amounts to finding:

arg min
Z
‖V̄′ − ZV̄‖2. (12)

We show that when V̄ is chosen so that the corresponding
projection matrix P̂ is orthonormal, the 3D error approx-
imates the reprojection error [3]. Projecting the residual
given by (12) into the images corresponding to the block,
we obtain:

‖P̂V̄′ + 1Tt̂− (P̂ZV̄ + 1Tt̂)‖2 = ‖P̂V̄′ − P̂ZV̄‖2

= ‖P̂(V̄′ − ZV̄)‖2.

Thanks to the orthonormal property P̂T = P̂†, our error
function simplifies to:

tr
(
(V̄′ − ZV̄)T P̂TP̂︸ ︷︷ ︸

I(3×3)

(V̄′ − ZV̄)
)

= ‖V̄′ − ZV̄‖2.

The minimization is only exact if both V̄ and V̄′ have been
estimated without error in their respective partial recon-
struction. Hence, under noise, it only approximates the re-
projection error.

4.5. Enforcing Constraints

In many situations, prior knowledge about the configu-
ration of the scene structure is available. Examples are two
cameras with identical position and/or orientation, smooth
camera path, known 3D points and planar structure. In our
algorithms, a certain number of constraints can be enforced.
This is done when estimating the first factor. As a conse-
quence, one can only force constraints on either cameras or
structure.

Most of our equation systems are homogeneous, like (9).
In order to simplify the constrained optimization, a well
known trick is to select a gauge, i.e. to give a value to some
rows of X, and solve the resulting regression problem. A
valid gauge fixes the degrees of freedom of the affine am-
biguity, which makes the original design matrices rank de-
ficient. Once this is done, each column Xi of the solution

matrix X can be individually estimated by regression under
linear constraints, which is an instance of convex quadratic
programming [4]. Aligning two cameras together can be
done by choosing:

(
Pa ta

)
=

(
Pb tb

)
=

(
1 0 0 0
0 1 0 0

)
(
Pc tc

)
=

(
0 1 1 0
∗ ∗ ∗ ∗

)
Others can also be aligned through equality constraints
Pe − Pf = 0, or variable elimination.

Enforcing known 3D points can be done similarly with
structure constraints. The gauge is fixed with at least four
non-coplanar points. Three planar surfaces can also be en-
forced by forcing groups of points to have their (X, Y, Z)
coordinates to either (0, ∗, ∗), (∗, 0, ∗) or (∗, ∗, 0), where
∗ means the coordinate is not fixed1. For more than three
planes, their absolute equation has to be known. Observe
that the gauge is at least partially fixed by the points located
on the planes. Consequently, caution must be taken to en-
sure that these planes are really orthogonal up to an affine
transformation. Prior information from points and planar
structures can also be incorporated as long as the constraints
are compatible, i.e. the affine ambiguity is fixed by the same
matrix.

5. The Perspective Camera Model
In projective SfM, the point coordinates are multiplied

by their projective depth λj
p and the projection is performed

by (3× 4) matrices defined up to scale:

λj
p

(
mj

p

1

)
=

(
Pp(3×3) tp(3×1)

)
qj

(4×1)

where mj
p ∈ R2 is an interest point tracked throughout

the sequence and qj ∈ P3. We assume that the projec-
tive depths are estimated a priori. In our experiments, we
used the algorithm presented in [14]. Rank-4 factorization
is then performed without any restriction on qj , unlike for
the affine case. Closures and rank-4 bases are purely alge-
braic and are computed from M̂(3n̂×m̂) = ΠMΓ instead of
M̄. This is akin to what was presented in [14]. The main
difference is the way system (9) is minimized. They used
Matlab’s EIGS method to estimate four orthonormal solu-
tion vectors. We used a solution based on fixing one of the
bases Ūi to identity and solve the resulting sparse regres-
sion problem. Finally, we performed a QR factorization on
the estimated JPM to orthonormalize its columns. It was
suggested in [14] that gluing via points cannot be used with
the perspective camera model. We did not encounter this
limitation.

1Details will be provided in a technical report.
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Figure 1. Comparison of the algorithms for the simulated se-
quence. M-P stands for Martinec-Pajdla [14], P.F. for Powerfac-
torization [17], D.N. for Damped Newton [7] and b. for the best
solution out of the 15 trials. Left) Affine model. Right) Perspec-
tive model (SCC not shown).

6. Robustness
To deal with outliers, we use random sampling to com-

pute each Closure/Basis Constraint. Once the camera path
or 3D points have been computed, we rely again on random
sampling to perform robust triangulation or resection. We
do not reject points directly from the computed matching
tensors, which can leave certain outliers behind. We avoid
performing the optimization using a robust (non-convex)
cost function, that would typically have a lot of local min-
ima, or using alternation with re-weighting.

For CBC, we rely on (11) to compute the position of
the cameras, because the estimation of the structure and the
translation vectors in a single step (i.e. using (10) ) would be
computationally expensive in a random sampling strategy.

7. Experiments and Analysis
We compared our three algorithms to Guilbert et al.

[9], Martinec-Pajdla [14], Hartley-Schaffalitzky [17] and
Buchanan-Fitzgibbon [7] methods on simulated and real
sequences. Powerfactorization and Damped Newton were
used respectively for the affine and perspective camera
model. They were limited to 1000 iterations, which was
sufficient to attain convergence from a random solution in
most cases. The tracks were sorted in order of appearance
in the sequence and we assumed that the resulting measure-
ment matrix was approximately band-diagonal as in fig-
ure 4. Heuristics were used to find complete sub-blocks,
making sure that constraints are approximately equally dis-
tributed among the cameras or the 3D points, depending on
the constraint type.

Simulation. The simulated sequence consisted of 50
cameras and around 900 3D points with a lot of occlusion,
resulting in around 96% missing data. In figure 1, the al-
gorithms are compared for both camera models at different
levels of Gaussian noise. Our results strongly suggest that
Camera Basis performs best, especially under affine projec-
tion. Under perspective projection, Closure and Structure
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Basis gave similar results with a slight advantage to SBC
in the presence of very high noise. The advantage van-
ished when projective depths were exact (not shown here).
Hence, SBC seems to be the most robust to erroneous pro-
jective depths. The CBC method performed slightly better
than Martinec-Padjla’s, a likely result of our balancing of
the constraints. Structure Closures performed rather poorly.
This is not surprising, at least for the affine case, since it
is the only one of our algorithms whose constraint is not
optimal. Powerfactorization and Damped Newton provided
good performance in the best case, but on average, they did
not converge to satisfying solutions.

Most of the computation time was spent finding com-
plete sub-blocks from the measurement matrix. The time
for solving the two factors was almost negligible. Hence,
a good algorithm performs well even with a small number
of constraints. We compared CCC and CBC on this criteria
with the simulated sequence as well as with the Teddy Bear
sequence (c.f . figure 2 and 3(a)). The number of closures
had to be nearly twice as large as that of bases to obtain a
comparable average reprojection error. The maximal repro-
jection error also suggests more stability for bases.

Real sequences. We compared batch algorithms and
Powerfactorization on five real sequences, four affine and
one perspective, (c.f . table 1). To take them out of the
comparison, we removed the outliers in each of the se-
quence using the robust CBC-based algorithm (see test be-
low). For the Dinosaur sequence, the algorithm of Guil-
bert et al. and Martinec-Pajdla obtained a better mean re-
projection error than what they reported in their paper, re-
spectively 5.4 and 2.57 pixels. This is probably because
we used more constraints (around 350). Computation time
on an AMD Athlon 64 3500+, in Matlab, for the cam-
era estimation (not including sub-block search) were 0.01
and 0.29 seconds for CCC and CBC (for which five dif-
ferent gauges were tested) and 0.34 seconds for Martinec-
Pajdla. On the larger Teddy bear sequence, computation
time were respectively 0.49, 0.73, 0.91 seconds (not includ-
ing the translations since it was much longer minimizing
(10) than (11) ). Structure Constraint based algorithms were
slower because their equation systems are larger. Iterative



Mean (max) reprojection error in pixels
Sequence

(# Img., # 3D pts, # 2D pts, miss. data)
CCC [9] CBC SCC SBC [3] P.F. [17] M-P [14]

Dinosaur (36,2683,11832,96.9%) 0.56 (5.49) 0.49 (4.62) 0.65 (7.27) 0.66 (7.12) 1.75 (73.1) 0.56 (6.99)
Book (95, 254, 10253, 89%) 0.54 (6.86) 0.50 (5.59) 0.55 (5.25) 0.56 (5.66 ) 0.54 (5.96) 2.56 (41.1)

Building (194, 779, 17233, 97%) 0.86 (14.4) 0.95 (22.8) 1.24 (17.5) 1.21 (21.5) (3.45) 256.8 1.28 (39.2)
Teddy Bear (196, 2480, 93589, 95%) 0.65 (8.14) 0.65 (8.14) 4.67 (174.5) 1.13 (35.3) 1.91 (38.8) 4.453 (96.97)

Desk (66, 2483, 26771, 95.9%) 0.99 (43.36) 0.87 (19.5) 3.93 (132.66) 1.44 (45.18) —- 0.83 (24.4)

Table 1. Comparison between batch methods and Powerfactorization for four real sequences. All were reconstructed using the affine
camera model except for the Desk sequence. The best solutions are in bold.

algorithms achieved convergence after a few hundred iter-
ations, resulting in minutes, if not hours, of computation.
When initialized using a batch method, only a few iterations
were necessary.

The Desk sequence (c.f . figure 4, 5 and 6(c) ) was recon-
structed using the perspective algorithms and the one based
on affine CBC. In the former case, outliers were removed
before factorization using fundamental matrices. All batch
algorithms but the one based on SCC provided satisfying re-
sults. The reconstruction shown in figure 6(c) is the result of
refining the solution with Mahamud et al. method followed
by self-calibration. Projective and Euclidean bundle adjust-
ment improved the reconstruction only slightly. We also
achieved reconstruction by initializing a Euclidean bundle
adjustment with the robust algorithm based on affine CBC.
After convergence, the recovered focal length was similar
to the one recovered using projective reconstruction.

Outliers issue. The performance of CCC and CBC for
handling outliers was also tested similarly to [18]. Up to
7 % outliers where added to the Dinosaur sequence. This
gives up to 7n % unusable n-view constraints (we used up
to 4). The constraints were computed from robustly selected
sub-blocks. Thus, as the number of outliers increased, the
number of points used to compute the constraints decreased.
We tested: 1) the percentage of recovered valid outliers,
2) the percentage of removed points that were in fact in-
liers (false positive) and 3) the average reprojection error of
the reconstruction using the original data set. Our results
are shown in figure 3(b) and 3(c).

8. Conclusion

We presented algorithms for efficient batch matrix fac-
torization. Constraints on measurement sub-matrices are
combined to estimate one of the two factors. We extended
Trigg’s Camera Closure Constraints to Structure Closure
Constraints and proposed Camera and Structure Basis. Ex-
perimental results showed that Basis Constraints fared bet-
ter than state-of-the-art methods on most of our tests, with
simulated and real sequences and both for affine and per-
spective camera models. Future work will focus on the mea-
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Figure 3. Comparison between CCC and CBC with real data. a)
number of constraints for the Teddy Bear sequence. For added
outliers in the Dinosaur sequence: b) percentage of outliers re-
covered and percentage of false positive, c) average reprojection
error of the original data.

0 500 1000 1500 2000 2500

0

50

100

150

2D tracks

C
a
m

e
ra

s

Figure 4. Tracks (blue/dark) and detected outliers (green/light)
from the Desk sequence.

surement sub-matrix search and selection mechanism, and
on experiments for enforcing a priori on the structure.
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