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Abstract

We present a minimal-point algorithm for finding funda-
mental matrices for catadioptric cameras of the parabolic
type. Central catadioptric cameras—an optical combina-
tion of a mirror and a lens that yields an imaging device
equivalent within hemispheres to perspective cameras—have
found wide application in robotics, tele-immersion and pro-
viding enhanced situational awareness for remote opera-
tion. We use an uncalibrated structure-from-motion frame-
work developed for these cameras to consider the problem
of estimating the fundamental matrix for such cameras. We
present a solution that can compute the para-catadioptirc
fundamental matrix with nine point correspondences, the
smallest number possible. We compare this algorithm to al-
ternatives and show some results of using the algorithm in
conjunction with random sample consensus (RANSAC).

1. Introduction

In this paper we present an algorithm that improves the
state-of-the-art in structure-from-motion (SfM) for omnidi-
rectional cameras, specifically concentrating on a type of
catadioptric' camera that uses a parabolic mirror and an or-
thographic lens. We present a minimal-point solver of fun-
damental matrices that when used in a RANSAC framework
improves reconstruction for uncalibrated para-catadioptric
cameras. Because of their wide field of view, both mirror-
and fisheye-based omnidirectional cameras have found a
number of applications in robotics, where an omnidirec-
tional camera can provide the situational awareness that a
tele-operator or an autonomous navigation system needs to
determine that there are no threats to a vehicle. Omni-
directional cameras have even found uses in realtors’ of-
fices, where they are used to give virtual tours to prospective
home buyers.

Mirror systems offer a number of advantages: an inex-
pensive way to obtain a 180° x 360°, i.e., hemispherical,
field-of-view (FOV), making them ideal for robotic appli-

1Cmfa—di—op—tric: mirror (cata) plus lens (dioptric).
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cations. For example, some catadioptric cameras provide
a 210° vertical FOV, or 105° from the optical axis, that
can provide a robot with 15° of coverage below the hori-
zon, whereas most fisheye lenses yield at most a 180° verti-
cal FOV. An important class of catadioptric systems are the
central catadioptric cameras [1]. Central catadioptric sys-
tems have a single effective viewpoint, meaning that within
a hemisphere they can be exactly warped into a perspec-
tive image taken from the same viewpoint without suffer-
ing from parallax. The para-catadioptric combination, or
parabolic mirror plus orthographic lens, is one such case
and para-catadioptric cameras are commercially available.
In this paper we focus on structure-from-motion for the
para-catadioptric case.

Structure-from-motion for omnidirectional cameras has
been an active area of research, starting with T. Svoboda et
al. [19] who first determined the form of the epipolar ge-
ometry for central catadioptric cameras. S.B. Kang [11],
and at the same time Chang and Hebert [3], first presented
discrete SfM estimators which apply traditional perspective
methods for SfM to calibrated catadioptric images. Later,
Geyer and Daniilidis [7] solved the uncalibrated structure-
from-motion problem for para-catadioptric systems by a
non-linear embedding image coordinates assuming both im-
age center and focal length are unknown. Simultaneously,
Fitzgibbon [6] considered self-calibration of a radial distor-
tion parameter from two views using a non-linear embed-
ding followed by a quadratic eigenvalue solver. Micusik and
Pajdla [13] extended Fitzgibbon’s approach, instead solving
a polynomial eigenvalue problem, to obtain results for more
highly distorted fisheye lenses. More recently Micusik et
al. have continued this line of research in [14]. In [14],
the authors provide a solution to uncalibrated SfM assum-
ing that the image center is known. In this paper we provide
a minimal point solver for the uncalibrated case including
unknown image center by applying tools from algebraic ge-
ometry.

Recently researchers have applied methods from alge-
braic geometry to solve long-standing practical problems in
computer vision. Nistér provided an efficient minimal 5-



point solver for essential matrices [16] that inspired some
of the work here. These techniques are generalized by
Stewénius, et al. in [17, 18] using methods such as Grobner
trace algorithms [20]. These solvers work by transform-
ing the problem to an eigenproblem by first computing a
Grobner basis and then finding a so-called action matrix for
multiplication by a monomial on the quotient ring defined
by the Grobner basis.

Our goal is to efficiently perform robust reconstructions
with para-catadioptric systems with little or no user super-
vision, and this process must by necessity be robust to out-
liers. Random sample consensus (RANSAC) [5] is typically
the method of choice for finding the inlier correspondences
in many structure-from-motion problems. See Hartley and
Zisserman [10] for a review of RANSAC from a SfM per-
spective. RANSAC is simple: randomly choose K of your
data points, generate a hypothesis from the K datapoints,
see how many inliers that model has, if this exceeds the
number of inliers for any previous model keep it, and re-
peat M times. It does not have high storage requirements;
it just needs time. If N’ of the original N datapoints are
inliers, then to maintain a minimum probability p of finding
the right model requires that )M, the number of RANSAC
iterations, be greater than log(1 — p)/log [1 — (N'/N)¥].
Therefore, in a RANSAC implementation it is generally de-
sirable to find a hypothesis generator for which K is as
small as possible. We provide a 9-point solver for generat-
ing a hypothesis for a para-catadioptric fundamental matrix
from 9 point correspondences. Taking into account the av-
erage number of real roots generated by the solver, we have
to test about 33% fewer hypotheses to achieve the same
level of reliability from the alternative—a 15-point solver—
in datasets, of which 50% are outliers.

Why not use the mirror’s silhouette to calibrate at least
the image center? Most of the time the mirror’s silhouette
can be very useful, however, it often occurs that the edge
of the mirror silhouette is blurred or has lens flares both
of which hamper its detection by automatic means. Fur-
thermore, optical elements on robotic platforms often move
during operation. It is both useful and interesting to develop
an approach that is robust to changes in calibration, includ-
ing the image center. We hope that some day an optical de-
vice might be constructed from lenses or clever catadioptric
designs that achieve the same projection model while min-
imizing obstruction by the camera’s reflection, or which do
not have a mirror silhouette.

The novelty in this paper is the development of a mini-
mal 9-point solver for para-catadioptric fundamental matri-
ces. In addition we characterize for the first time the con-
straint on para-catadioptric fundamental matrices in a set of
algebraic equations. We also provide a novel reconstruction
technique for para-catadioptric cameras that is able to auto-
matically calibrate focal length and image center. In the

last section we present experiments in simulation, which
show that in cases the 9-point algorithm provides motion
estimates up to three times better than the next alternative,
as well as show reconstructions obtained from images taken
with a para-catadioptric camera.

2. Background

In the perspective structure-from-motion problem, we use
homogeneous coordinates to linearize two and multi-view
structure-from-motion problems. Geyer and Daniilidis [8]
showed how to achieve a similar result for para-catadioptric
projections by embedding the uncalibrated image plane on
a sphere. One applies the inverse of stereographic projec-
tion, taking the image plane to the unit sphere via projec-
tion from the sphere’s north pole. The two-view problem
then becomes linear: there exists a 4 x 4 matrix F, called
the para-catadioptric fundamental matrix, that is linear in
the known point correspondences. It encodes the epipolar
geometry and can be decomposed into the motion between
the two cameras.

The difficulty with the theory provided in [8] and ear-
lier in [7], however, was that it lacked the capability to get
a good initial estimate on the space of fundamental matri-
ces. The manifold of para-catadioptric fundamental matri-
ces is not invariant to 4 x 4 orthogonal transformations,
and so there is no corresponding projection theorem like
there is for the manifold of perspective essential matrices, or
perspective fundamental matrices. Furthermore, until now
there had been no way to construct a para-catadioptric fun-
damental matrix from a minimum number of point corre-
spondences. We rectify this situation in section 4, but first
we give the necessary background material.

We start with the para-catadioptric projection. We as-
sume that a convex parabolic mirror is placed in front of an
orthographically projecting camera so that the axes of the
two optics are parallel. The parabolic projection of a point
x = (z,y, ), the derivation of which we refer the reader to
[1], is given by:

f T Cx
ge(x) = s 22+ 22 L/}JF[CJ W

where (c,,c,) is the image center, f is the focal length,
and & = (cg, ¢y, f). We define the image center to be the
intersection of the mirror’s optical axis with the imaging
sensor, and f is the mirror’s focal length as measured by the
orthographic camera, i.e., measured in pixels. We assume
that the aspect ratio is 1.

There are two special cases. First, we do not allow x
to be 0. Second, there is a single point at infinity corre-
sponding to the optical axis above the focal point of the
mirror. We let g¢(0,0,2) = poo for all positive z, and let
R?" = R?2 U {ps } be ¢’s range.




If the camera is calibrated, that is, we know &, we can in-
vert formula (1) up to scale and end up with a calibrated unit
vector, which we can substitute in the perspective epipolar
constraint pTEq = 0. In general the camera may be uncali-
brated. Fortunately, though, the para-catadioptric projection
admits an exact linearization to account for unknown cali-
bration parameters. We embed the image coordinates in [P
using the inverse of stereographic projection, given by the
operator ~ :R?" — P3, which we define as follows:

[2u 0 —14 u? + 02 1+u2+1)2]T

and where Do, = (0,0,1,1). Each lifting lies on the unit
sphere in P3, and so satisfies pTQp = 0, where Q =
diag(1,1,1,-1).

The power of the embedding is the following law that
allows a commutation of a translation and scale in the plane
with a linear transformation of the projective unit sphere.
For each & = (cg, ¢y, f) there exists a 4 x 4 matrix K¢ such
that for all x:

—_— —~—

(x) = AKe qo,0,1)(%), ()

for some A(x), and where ¢(q,0,1)(x) is the canonical para-
catadioptric projection analogous to the canonical perspec-
tive projection (z/z,y/z). The matrix K is given below:

1 0 Cy —Cy
0 1 Cy —Cy
K§ — Ca cy ci+c§7f271 ci+c?2/ff2+1
Y 2f 2f
ey ey Gt [l G4+l
f f 2f 2f

Each K¢ is an element of the larger Lorentz group, de-
fined as:

0(3,1) = {A:ATQA=Q}.

Each Lorentz transformation A preserves the unit sphere
set-wise: if x satisfies xTQx = 0, then because A €
0(3,1), x’TATQAx = 0. The Lorentz group is a six-
dimensional Lie group having properties similar to that
of the group of rotations, O(3), and has a Rodrigues for-
mula with which we can parameterize O(3, 1) by its tangent
space.

The final tool is a substitution law. The substituion law
allows us to take any constraint for perspective projections
expressed in homogeneous coordinates, and turn it into a
constraint on liftings of para-catadioptric projections. For
every para-catadioptric projection p = g¢(x) there exists a
A such that:

Ax = [T 0] K 'p. 3)

Since this says that the right hand side is parallel to the di-
rection of x, of which p is the projection, we can treat the

entire right-hand side of the equation as the homogeneous
coordinates of the perspective projection of x. If we had
tried to invert g¢ directly, while not knowing &, we would
have obtain a non-linear constraint in p.

Now for the climax. We can write a bilinear epipolar
constraint in the lifted coordinates. For perspective views,
the essential matrix E = tR gives a bilinear epipolar con-
straint for a camera pair separated by a relative motion
(R,t), where R € O(3),t € R3 witht # 0,andab =axb
for all a and b. If we let:

p = Q§1(X) and q = QE2(RX+t)7

then using equation (3) we obtain the para-catadioptric
epipolar constraint:

q" KS"PTEPK,' p =0 )
N———

para-catadioptric
fundamental matrix (F)

where P = [I O] is the canonical perspective projection
from IP3 to P2,

Like the perspective fundamental and essential matrices,
the 4 x 4 para-catadioptric fundamental matrix is rank 2.
In P? the span of the two-dimensional nullspace of F is a
line through the unit sphere where the intersections are the
liftings of the two epipoles for the first view. Similarly FT
yield the epipoles for the second view.

3. The Manifold of Para-catadioptric
Fundamental Matrices

Our goal is to take a minimum number of point pairs
(pi»qi), which we will show is nine, and from them gener-
ate a hypothesis—a fundamental matrix F for which eqn. (4)
is satisfied by each point pair. Nister [16] solved the simi-
lar problem of finding an essential matrix from five points
by finding the roots of a set of algebraic equations, which
are derived from the cubic constraints on &, the manifold
of essential matrices. The space of para-catadioptric funda-
mental matrices is defined as follows:

F = {KTPTEPKG Ec &6 = (), f) )

Recall that £ = {Rt : R € O(3),t € Rt # 0}. We
derive the analogous algebraic constraint for this space.

The defining characteristic of the set of para-catadioptric
fundamental matrices is similar to that for the set of es-
sential matrices. A matrix E is an essential matrix iff
E = UT diag(1,1,0)V for some U,V € O(3). Even though
it is for an uncalibrated model, the constraint on F is sim-
ilar. Geyer and Daniilidis [9] showed that F € F iff F can
be written as

F = UTdiag(1,1,0,0)V,



where U, V € O(3,1). This constraint is equivalent to a
constraint on the roots of a characteristic equation, which in
this case is [FQFTQ — AI| = 0. We give here an equivalent
algebraic constraint whose proof we omit because of space
constraints.

Theorem 1. A real non-zero 4 x 4 matrix F is a catadioptric
fundamental matrix (can be decomposed into the form of

eqn. (4)) iff rank F = 2,
FQFTQF = %tr (FQF™Q) F, S

and the eigenvalues of both F Q FT and FTQF are positive.

This theorem’s three conditions yield sixteen cubic equa-
tions from the sixteen 3 x 3 minors that must be zero to con-
strain F to be rank 2, and sixteen cubic equations from eqn.
(5). The eigenvalue conditions yield two inequalities. In the
next section we derive a solver based on the 32 cubic equa-
tions. The solver ignores the inequality constraints, other
than to check each root afterwards. Before continuing, we
determine the number of points needed for the solver. We
cite the following theorem [9] which tells us that F is a
9-dimensional manifold, implying that nine points are suf-
ficient to determine F (up to a discrete number of homoge-
neous roots).

Theorem 2. [9] The space of para-catadioptric fundamen-
tal matrices, F, is isomorphic to a quotient of two groups:

F ~ 0(3,1) x O(3,1) / HF,
where
He = {(A,B) € 0(3,1) x O(3,1) : ATFB = F},
forany F € F. Furthermore, F is a manifold of dimension:
dimF = dimO(3,1) x O(3,1) — dimHg = 9.

This theorem uses the observation that the decomposi-
tion (5) implies that F is in one-to-one correspondence with
a partition of O(3, 1) x O(3, 1). Thus, the dimension of F is
the dimension of O(3, 1) x O(3, 1) minus the dimension of
any one partition, which is the redundancy. The redundancy
is characterized by the dimension of the stabilizer H of any
one F. We can choose any F, so we choose diag(1,1,0,0)
and calculate that dim Hf = 3.

In summary, 9 points constrain are sufficient to solve for
a para-cadiotpric fundamental matrix, and Theorem 1 gives
32 cubic equations that we can use as the constraint with
which to solve for F.

4. A 9-point Algorithm

The 9-point algorithm takes nine point correspondences of
the form p; = (u1,4,v1,) and q; = (uz2,4,v2,;), and gives a
para-catadioptric fundamental matrix that defines an epipo-
lar geometry that all nine points satisfy exactly. The 9-
point algorithm has three major steps: (1) determine a basis
for the solution from the nullspace of a coefficient matrix;
(2) extract the coefficients of 32 polynomials obtained by
substituting the unknown linear combination into the fun-
damental matrix constraints; and (3) solve the system by
constructing a Grobner basis.

We start by taking equation 4 and writing the following
linear constraint:

—_~—

(w15, v1,4) @ (u2,4,v2,)) vecF =0, (6)

a;

where ® is the Kronecker product so that a; is a row-vector
containing all the information from observation pair ¢, and
vecF is F reshaped to a column matrix. We stack the vec-
tors a; for nine observations into a 9 x 16 matrix A. We
compute the 7 vectors vec F; through vec F7 that form an
orthonormal basis for the nullspace of A, i.e., AvecF; =0
and vec F; vec F; = 0;,; for all 4 and j. The nullspace vec-
tors correspond directly to seven 4 x 4 matrices F; to F7 and
the solution F must be of the form
6
F=x0Fg+ > xiF; )
i=1

for some scalars o through zg. Since the nine equations
generated by (4) are homogeneous in F, we set zp = 1.

To solve for F, we need to substitute the expression for
F given in (7) into the algebraic equations characterizing
F: equation (5) and the rank 2 constraint. The substitution
yields a system of 32 degree three polynomial equations in
21 through x¢. The problem will be how to solve for these
six unknown variables.

Substituting F from (7) into equation (5) yields 16 of the
32 third order polynomial equations. That F is rank 2 pro-
vides the remaining 16 equations. In particular, if F is rank
2 then all 3 x 3 sub-matrices of F have zero determinants.
There are 16 such sub-matrices and each determinant is a
degree three polynomial. In general the coefficients of these
32 polynomials are linearly independent.

Our next step is to compute a Grobner basis for the ideal
defined by this set of equations. We will use the graded
reverse lexicographic order on the monomials. To make it
easier to describe this process we will use the following

e A set of polynomial equations is always represented
on the form MX = 0 where M is a matrix of scalars
and X is a vector of monomials ordered in Graded Re-
verse Lexicographic order. We will let M stand for the
equations MX = 0.



e Gauss-Jordan elimination with a prerecorded sequence
of pivot columns is denoted GJ. Effectively we are
using a Grobner Trace [20].

e To make notation easier we permit ourselves to write
M to mean “Take the polynomial equations repre-
sented by M and multiply these equations by x and
represent the result as a scalar matrix.”

e To select equations from a set of equations we select
rows of a matrix. We let M(a : b) mean rows a to b of
M.

The start system is represented by a 32 x 84 matrix M
which is of full rank. A Grobner basis can be found through
the following four steps:

My = GJ(Mo), ®)
_ZL'1M1(12 1 32
ZCQMl 12: 32
1‘3M1 12 : 32
z4Mq (12 : 32

(

My = GJ (

1(
.T5M1(12 132

1(

(

(

(

; ()
| zeM1 (12 : 32
[24M2(90 : 98
.’L‘5M2 90 : 98

IGMQ 90 : 98
| 23M; (13 : 31

My = GJ : (10)

—_ — N N O N
]

My GI [ M| . (11)

‘We have now computed a Grobner basis. There are several
ways to go from a Grobner basis to the solutions, we choose
to first compute the 64 x 64 action matrix A,, for multipli-
cation by x; in the quotient ring defined by M. The action
matrix [4] is a generalization of the compainion matrix for
univariate polynomials to multivariate polynomials and de-
scribe the effect of multiplication with a polynomial modulo
a Grobner basis. In practice the action matrix is computed
by copying certain partial rows from M. The left eigenvec-

tors of A,, then encode the 64 solutions for (x1,...,xg)
and we can compute the solutions for F by inserting into
Equation 7.

These steps might seem complicated but we will on ac-
ceptance of the paper provide Matlab source-code online.
The solver runs in 0.062s on a 2.4G H z Athlon CPU. Most
of the time is spent on eliminations, mainly on the last ma-
trix.

5. Calibration and the 15-Point Algorithm

Para-catadioptric cameras, and in fact many omnidirec-
tional cameras, are very easy to calibrate. Almost ev-
ery construct—conics, images of lines, radial distortion—
reveal information about the location of the image center,

and depending on the camera type, the focal length or scale
parameters. In the para-catadioptric camera, the intrinsic
parameters can be very easily recovered from a fundamen-
tal matrix involving the same camera taken at two locations,
i.e., the intrinsic parameters are the same and K¢, = Kg,.
The intrinsic parameters can be recovered almost directly
from the nullspaces of F. This gives an alternative method
for estimating fundamental matrices which we call the 15-
point algorithm.

Since we only encode image center and focal length,
& = (cz, ¢y, f) is in one-to-one correspondence with the
homogeneous vector KO, where O = (0,0,0,1)”. We
call the resulting transformation of the origin E

£ = [2fc, 2fcy, —1+E+E+ 2 1+E+E+ 2]
As it turns out, one can show that this point represents
an imaginary circle representing the image of the absolute
conic [8]. What is imp~ortant from the point of view o~f cali-
bration, is that PKglf = PO = 0. Consequently F¢&; =0

and FT&, = 0. Furthermore, if & = &, then
~ F
5 :N |:FT:| )

where A is the nullspace operator. This is true in the ab-
sence of noise and as long as N (F) # N (FT) (i.e., as long
as the rotation axis is not parallel to the translation axis).

This allows us to combine a 15-point linear algorithm
with the calibration invariant above to compare with the 9-
point algorithm. Like in the 8-point algorithm for funda-
mental matrices, we construct the coefficient matrix from
equations (6), and determine the 1D nullspace that gives
us an estimate vec Fo. In general Fy ¢ F and there is no
projection mechanism by which we can average singular
values. Instead we choose any point on N'(F) within the
sphere (both Fq’s nullspaces must intersect the sphere oth-
erwise this method fails) and let this be El Similarly we
choose a & inside the sphere and on AV/(FT). We then con-
struct an estimate of an essential matrix as follows:

_ -7 —1pT
E, = PK52 FOK&P .

where again P = [I 0]. If Fy were a para-catadioptric fun-
damental matrix, then Eg would be an essential matrix. In
general it is not, so we project Eg = UT diag(cy, 02, 03)V
to E; = UT diag(1,1,0)V on the essential manifold. Then,

Fo = KEPTEIPK,, .

is the estimate obtained from the 15-point algorithm.

Figure 2 shows an example of the nullspaces of funda-
mental matrices recovered from a sequence of images. The
nullspaces nearly intersect a single point in space. This
intersection point is 2 which we can recover from the
nullspaces via usage of an SVD operation.



6. Optimization and Reconstructions

The purpose of the 9-point algorithm is to obtain any initial
estimate at all. We will see in the next section that the 15-
point algorithm gives estimates which are poor initializers
for motion estimation. Furthermore, when we do not know
what data points are inliers, the 9-point algorithm allows us
to efficiently apply RANSAC to find the inliers. In either
case, we must apply a non-linear optimization method to
improve motion and structure estimates. We use the follow-
ing normalized cost function suggested in [9]:

n NT ~ 2
oF) = Y (@ Fp)” (12)
%

T
d(piran) di Fpi

This cost function is an analog to the normalized epipolar
cost for perspective cameras.

For reconstruction we used a combination of: (1) 9-point
and 15-point algorithms implemented in C and Matlab, and
combined with a vanilla RANSAC implementation; (2) the
affine-invariant Harris detection and descriptor implementa-
tions provided by Mikolajczyk et al. [15]; (3) and the Sparse
Bundle Adjustment (SBA) package by Lourakis and Argy-
ros [12]; and (4) a custom SBA driver written in Mathemat-
ica.

To generate the reconstruction in the next section, we use
the following steps:

1. For every pair of frames, apply the 9-point-based
RANSAC algorithm to a list of best matched affine-
invariant Harris features as measured by their SIFT de-
scriptors.

2. Improve fundamental matrix estimates by minimizing
(12) using Levenberg-Marquardt, or a robust version
of Levenberg-Marquardt using the kernel ve2 + x
where x is a summand in (12).

3. Calibrate the camera by intersecting the nullspaces of
single fundamental matrices to obtain points, and then
apply mean-shift to isolate the peak of the distribution;
or, apply RANSAC to find nullspaces close to coinci-
dent to a single point.

4. Build a model by using a pair of frames to start, and
then building on to the model a frame at a time using a
linear 6-point algorithm for registering a 3D point set
to image points in a calibrated camera. Use SBA to
refine estimates.

7. Experiments

In our implementation the 9-point algorithm performs at
a tenth of the speed of the 15-point algorithm. These times
may be improved with greater attention to optimization in
the implementation; but we are hampered by the number

of roots generated, for example, see the histogram of the
number of real roots in Figure 3. A benefit of the 9-point
algorithm that we see in simulation results, is its ability to
provide an estimate that is on average closer to a basin of
attraction closer to the true value.

Figure 1 shows images and a reconstruction from the im-
ages. Here we used twelve images for which the calibration
was initially unknown. A video of this model will be a part
of the supplemental material.

In Figures 4 and 5 we show the results of simulations
in which we apply RANSAC followed by non-linear opti-
mization to fit a fundamental matrix to noisy point corre-
spondences. We tested four variants: Levenberg-Marquardt
minimization initialized by RANSAC based on either the
9-point algorithm or the 15-point algorithm; and a robust
version of the Levenberg-Marquardt algorithm mentioned
in section 6, again either initialized by the 9-point or the
15-point algorithms.

The errors as a function of pixel noise are shown in Fig-
ure 5. The image size was 1000 x 1000 and the camera had
a 210° field-of-view. The noise was varied between 1 and
16 pixels stepping in factors of 2. The intrinsic parameters
do not show large variation across algorithms, however the
motion estimates do. Across the board the two 9-point vari-
ants outperform the 15-point variants, in some cases almost
by a factor of 4. As noise increases the marginal benefit
decreases.

Because of the high-dimension of the optimization
space, fitting the epipolar geometry can become ill-
conditioned when the baseline is small. This will affect cal-
ibration to some degree, and so as to try guage the effects of
these factors we plot in Figure 4 a scatter-plot of the parallax
in rotation corrected images vs. calibration error. Variance
in image center decreases with increasing median parallax.

8. Conclusion

We have demonstrated a minimal point solver for para-
catadioptric fundamental matrices that we show is useful
in a RANSAC framework, and which provides an initializa-
tion that is more accurate than a linear algorithm. A number
of interesting problems remain open: How can we take into
account prior calibration information, such as incorporat-
ing a constraint that the intrinsic parameters be equal? This
would reduce the number of points required, and also lower
the dimension of the problem, possibly improving perfor-
mance at small baselines.
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Figure 1. Top: Subset of twelve images used to perform 3D reconstruction. Bottom: Point cloud of reconstructed area near building.

Figure 2. If a fundamental matrix F is known to have K; = K
then, in the absence of noise, the nullspaces of F and FT inter-
sect in a single point that encodes the intrinsic parameters. Here
we show the spans of the nullspaces for a set of estimated funda-
mental matrices, which nearly intersect in a single point; we use
the intersections to calibrate the camera. Note that the nullspaces
intersect the sphere at the two epipoles represented on the sphere.
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