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Abstract

We investigate the problem of finding the metric struc-

ture of a general 3D scene viewed by a moving camera with

square pixels and constant unknown focal length. While

the problem has a concise and well-understood formula-

tion in the stratified framework thanks to the absolute dual

quadric, two open issues remain.

The first issue concerns the generic Critical Motion Se-

quences, i.e. camera motions for which self-calibration is

ambiguous. Most of the previous work focuses on the vary-

ing focal length case. We provide a thorough study of the

constant focal length case.

The second issue is to solve the nonlinear set of equa-

tions in four unknowns arising from the dual quadric for-

mulation. Most of the previous work either does local non-

linear optimization, thereby requiring an initial solution, or

linearizes the problem, which introduces artificial degen-

eracies, most of which likely to arise in practice. We use

interval analysis to solve this problem. The resulting algo-

rithm is guaranteed to find the solution and is not subject

to artificial degeneracies. Directly using interval analysis

usually results in computationally expensive algorithms. We

propose a carefully chosen set of inclusion functions, mak-

ing it possible to find the solution within few seconds.

Comparisons of the proposed algorithm with existing

ones are reported for simulated and real data.

1. Introduction

Structure-from-Motion, the recovery of a metric recon-

struction, i.e. cameras and points, from images is a funda-

mental computer vision problem. Its extensive study over

the last few decades led to clear geometrical formulations

and numerous solution methods. One of the key results is

that a projective reconstruction can be computed from un-

calibrated images, providing that neither the cameras nor

the points lie on a critical surface. The projective recon-

struction is equivalent to the sought after metric one up to

an unknown upgrading homography of the projective space.
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Computing this homography from assumptions on the cam-

eras is a self-calibration problem, and is equivalent to re-

covering the unknown intrinsic parameters of the cameras.

Three main approaches can be distinguished from the lit-

erature. (i) The Kruppa equations [2, 10], requiring pairwise

epipolar geometry. (ii) The stratified approach, relying on

upgrading a projective reconstruction to affine, and linearly

solving for the affine-to-metric transformation. The former

is solved using the modulus constraint [12] or exhaustive

search [5]. (iii) Directly computing the projective-to-metric

upgrading homography [7]. Triggs [21] proposed a conve-

nient model with the so-called absolute dual quadric, en-

capsulating the plane at infinity and camera intrinsics in a

compact manner. [11] drew on this model for proposing a

linear algorithm dealing with the varying focal length case.

We tackle the self-calibration problem for a camera

with constant intrinsic parameters in Triggs’ absolute dual

quadric framework. More precisely, we assume that the

camera has square pixels and known principal point. Only

the constant focal length thus remains to be computed. Our

contributions deal with two important aspects of this prob-

lem.

First, section 3, we give a thorough study of the Critical

Motion Sequences (CMS) which are generic for this prob-

lem. These are camera motions for which self-calibration is

ambiguous, i.e. that defeat any self-calibration algorithm.

Sturm [15] gave a complete classification of the CMS for

constant, all unknown intrinsics. Note that CMS for which

the calibration can be partly performed only lead to spe-

cific methods, see [6, chap. 19]. An example is the purely

translational case for which the affine to metric upgrade is

not uniquely defined. The case of a varying focal length

with all other intrinsics known has been extensively stud-

ied [9, 13, 18], while, except for two cameras [19], the case

of a constant focal length remained open.

Second, section 4, we propose a deterministic method for

solving the nonlinear self-calibration problem which does

not introduce artificial CMS and does not require an initial

solution. Previous methods [11, 21] linearize the problem

to find an initial solution and refine it through iterative non-

linear optimization. The basic step towards linearization is

to neglect the rank deficiency of the dual absolute quadric.

Appart from being suboptimal, linearizing the problem in-

troduces artificial CMS, most of which likely to appear in
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practice. For instance, a fixating camera is not a generic

CMS but defeats linear algorithms. Iterative nonlinear opti-

mization is prone to falling in local minima, in particular if

the initial solution lies “too far” from the optima, sought af-

ter one. Our algorithm is based on Interval Analysis Global

Optimization. It finds the global minimum of the nonlin-

ear error function over the four unknown parameters – the

focal length and the plane at infinity. Computational time

is reasonable, the order of which ranges from few seconds

to a minute. Experimental results show that it scales lin-

early with the number of images while being almost unaf-

fected by the level of noise on the data. We note that self-

calibration based on Interval Analysis Global Optimization

and the Kruppa equations is proposed in [3]. This approach

is however different from ours, requiring hours to find the

solution, and subject to important singularities related to the

Kruppa equations.

Section 5 reports experimental evaluation and compar-

ison with other algorithms. Section 6 concludes and dis-

cusses the paper. Next section reviews some background.

2. Background

In some metric coordinate frame, the camera projec-

tion matrices are written as Pi
M = KiRi⊤

(

I| − ti
)

with

i = 1, ..., n, where Ki is the upper triangular calibration ma-

trix which encodes the intrinsic parameters, Ri represents

the orientation of the camera and ti the camera centre in

the world coordinate frame. The reconstruction problem is

equivalent to finding a 4×4 rectifying homography H to up-

grade the projective cameras Pi to Pi
M , such that Pi

M = PiH

for i = 1, ..., n. The absolute dual quadric Q∗∞ can be

represented by a 4 × 4, semi-definite, rank-3 matrix which

projects to the dual absolute conic ω∗ = KK⊤:

ω∗i = P
i
Q
∗

∞P
i⊤. (1)

This quadric encodes both the absolute conic Ω∞ and the

plane at infinity Π∞. In a metric coordinate frame, Q∗∞

has the form Î =

(

I 0

0⊤ 0

)

and in a projective frame

we have Q∗∞ = HÎH⊤. If intrinsic parameters are constant,

ω∗i ∼ ω∗j , where ∼ denotes equality up to a scale fac-

tor. For all known intrinsic parameters except the focal

length α and writing P1 as P1 = (I|0), we have ω∗1 =
diag(α2, α2, 1). Each image pair (1, j) gives us a set of

five equations:

ω
∗j
12 = 0 ω

∗j
13 = 0 ω

∗j
23 = 0

ω
∗j
11 = ω

∗j
22 α2ω

∗j
33 = ω

∗j
22 for j = 2, ..., n.

(2)

Solving for the 4 unknowns γ = α2 and Π∞ is possible for

n ≥ 2 images. There are mainly three approaches: (i) Lin-

ear method: It consists in keeping the first four equations

in (2), which are linear. (ii) Quasi-linear method: In [21],

Triggs linearizes the problem by introducing additional un-

knowns and by solving for the entries of Q∗∞ and ω∗j . (iii)

Nonlinear method: This is the direct approach. Local iter-

ative minimization methods are usually used. They require

a good initialization. The first two methods have two major

problems: First, the rank-3 constraint on Q∗∞ is not auto-

matically ensured (generally, this is imposed in a further

step). This means that the obtained plane at infinity cannot

be the supporting plane of the obtained absolute conic. Sec-

ond, they do not ensure either the positive semi-definiteness

condition on ω∗, preventing the Cholesky decomposition of

this latter. Notice that in the two view case, the problem is

equivalent to solve a quadratic equation.

In this work, we propose an algorithm based on the non-

linear formulation and on a global optimization method.

3. Generic Singularities

3.1. Previous Works

We distinguish the problems of recovering the intrinsics

from those of recovering the affine and Euclidean structures,

all three problems being usually packaged under the single

term self-calibration. These problems carry theoretical sin-

gularities i.e., degenerate configurations at which problems

have no solution or ambiguous solutions, which are gener-

ally due to (so-called critical) special camera motions. The-

oretical singularities are generic in the sense that they can-

not be overcome by any algorithm. In contrast, singularities

introduced by algorithms are called artificial.

As suggested in [17], self-calibration algorithms may be

classified into at least three groups, according to increasing

levels of singularities. The first includes algorithms which

only have the generic singularities. The second, which is

that of Pollefeys [11] and Triggs’ [21] linear algorithms,

add singularities by not enforcing the sought-after dual ab-

solute quadric to be rank-3. The last group – including algo-

rithms based on Kruppa equations – add more singularities

by not enforcing such quadrics to be the same for any pair of

views. Remind that our aim is to design a self-calibration

algorithm that falls into the first group i.e., whose imple-

mentation does not introduce additional/artificial singulari-

ties.

The first thorough study of critical motions for n ≥ 2
views is due to Sturm in [16], for constant intrinsics. A

generalisation progressively incorporating the assumptions

of known skew, aspect ratio and principal point has been

given by Kahl [8] even if the case of all known intrinsics

except a varying focal length has also been studied by Sturm

in [18]. Both authors have reported1 the following (generic)

critical motions for n > 2:

1. Optical axes are parallel i.e., cameras are translating.

1Even if the most complete analysis can be found in [18, §5].



2. Camera centres are aligned. All camera optical axes

coincide except at, at most, two positions at which they

can be arbitrarily oriented.

3. Camera centres move on two conics, one ellipse E and

one hyperbola H, lying on orthogonal planes that meet

in the focal axis of E, such that E and H have, as princi-

pal vertices, the foci of H and E, respectively. Optical

axes lie on the supporting planes and are tangent to the

supported conic at each position.

Before going further, we set up some general back-

ground i.e., for any camera model.

In the sequel, the term virtual conic will refer to some

proper purely imaginary conic i.e., whose real order-3 ma-

trix is definite in its supporting plane. If Φ ∈ R
3×3 rep-

resents a conic, then Φ∗ ∈ R
3×3 represents its dual (en-

velope) and Q∗Φ ∈ R
4×4 represents the associated rank-3

(disk) quadric in 3-space [14].

D ⊂ K will denote some subset of the group K of upper

triangular order-3 matrices, determined by the constraints

on intrinsics at our disposal. In accordance with [8, 18], a

motion sequence M is critical for the Euclidean reconstruc-

tion (or simply critical) if there exists a virtual conic Φ on

some plane Π such that its dual image φ∗i ∼ PiQ∗ΦP
i⊤ sat-

isfies:

φ∗i = D
i
D

i⊤, D
i ∈ D (3)

and Q
∗

Φ ≁ Q
∗

∞. (4)

M is critical for the affine reconstruction if M is critical

and Π ≁ Π∞. M is critical for recovering the intrinsics

if M is critical and φ∗i
≁ ω∗i. Note that M is critical

for the Euclidean reconstruction if it is critical for the affine

reconstruction or for recovering the intrinsics.

3.2. Unknown Constant Focal Length

We now describe the generic singularities for n ≥ 2
views of a camera, with all known intrinsics except a con-

stant focal length α. We will refer to this case as the un-

known constant focal length case or simply “our case”.

For an unknown (possibly varying) focal length α, it has

been shown [8, 18] that projection matrices can be consid-

ered as “calibrated” i.e., Pi = Ri⊤
(

I | −ti
)

, requiring that,

in (3), D be the subgroup of diagonal matrices subject to

condition (H1) below. Now, in our case, as α is supposedly

constant, we will additionally require the relation (H2) to

be satisfied:

• (H1) D11 = D22, D ∈ D;

• (H2) φ∗i
11/φ∗i

33 = φ∗j
22/φ∗j

33, 1 ≤ i, j ≤ n.

Clearly, critical motions for an unknown constant focal

length belong to the set of critical motions for an unknown

varying focal length as (H2) is simply an equivalence rela-

tion on D.

Only virtual conics on finite planes have to be consid-

ered. For virtual conics on Π∞, criticality is independent

of camera positions and only depends on camera orienta-

tions [8, 18]. It has been shown that, under (H1), a motion

is critical for the intrinsics but not for the affine structure if

and only if all optical axes are parallel. Of course, it also

holds under (H2).

Proposition 1 (Critical Camera Positions) Let Φ be a

virtual conic on some finite plane Π. In the unknown con-

stant focal length case, a necessary condition for a motion

sequence to be critical w.r.t. Φ is that the camera centres

be:

• (P1) at two different positions;

• (P2) at three/four distinct positions corresponding to

the vertices of a right triangle/of a rectangle.

Proof. As in [8, §8.3], we choose a Euclidean frame in

which Φ has, as supporting plane, Π with equation z = 0
and associated quadric Q∗Φ = diag(d1, d2, 0, d3), assuming

d1 ≥ d2 and d1, d2, d3 > 0. Thus, Q∗Φ projects to:

φi∗ ∼ P
i
Q
∗

ΦP
i⊤ = R

i⊤Φ∗i
∞R

i, (5)

where Φ∗i
∞ = diag(d1, d2, 0) + d3t

iti⊤;

Φi
∞ is the conic generated by intersecting Π∞ with the ith

projection cone of Φ, whose vertex is the camera centre ti.

Assume the position ti to be critical w.r.t. Φ i.e., equa-

tion (5) holds with (H1) and (H2) being satisfied, cf. §3.2.

Hence, thanks to the spectral decomposition of Φ∗i
∞, one

infer from (H1) that two of its eigenvalues λi
1, λ

i
2, λ

i
3 are

equal and, from (H2), the constraint λi
1λ

i
2/(λi

3)
2 = κ2 for

some fixed κ > 0. As said earlier, by (only) using the con-

straint resulting from (H1), the authors of [8, 18] obtain, as

locus L(H1) of critical positions, the union of two real cen-

tral conics, one ellipse in the yz-plane and one hyperbola in

the xz-plane. In the yz-plane, the obtained ellipse is rep-

resented by matrix L1, cf. (6); it is centered at the origin O
with Oy and Oz as symmetry axes.

Now, only assume that (H2) holds. Let us determine

what is the locus L(H2) in the yz-plane, induced by apply-

ing the constraint resulting from (H2). We easily establish2,

that L(H2) is a degenerate conic, with matrix L2, cf. (7),

consisting of two distinct real parallel lines, being symmet-

ric about the axis Oz.

L1 = diag (d1d3, (d1 − d2)d3, (d2 − d1)d1) , (6)

L2 = diag
(

0, d2d3,−d2
1κ

2
)

. (7)

Since two conics meet at four points, we infer that the com-

mon points of L1 and L2 are, in our case, the four vertices

of a rectangle, whose homogeneous yz-coordinates are:

[±
√

(d1 − d2)(d2 − d1κ2), ±d1κ,
√

d2d3]
⊤. (8)

2Due to lack of space, the details are omitted.



Critical motions in the unknown constant focal length case Self-calibration ambiguity

1 All cameras having parallel axes. (A)

2 Four cameras, with centres defining a rectangle ; optical axes lie in the supporting plane of

the rectangle and for each pair of cameras with adjacent centres, axes are symmetric about the

symmetry axis of the rectangle separating the two centres.

(P)

3 Three cameras, out of the four cameras of case 2 (so defining a right triangle). (P)

4 Two cameras, out of the four cameras of case 2, providing they have adjacent centres (optical

axes intersect in a real finite point, with the centres being equidistant from this point).

(P)

5 Two cameras having coinciding axes. (P)

Table 1. List of all critical motions for known skew, aspect ratio and principal point and unknown constant focal length α. Ambiguities are

classified as (A) if Π∞ can be recovered and (P) if neither α nor Π∞ can be recovered.

As d1 ≥ d2, all these are real providing d1 ≥ d2 ≥ d1κ
2.

Similar results are obtained in the xz-plane, except that

the four vertices must satisfy d1κ
2 ≥ d1 ≥ d2 to be real. As

the two above inequalities cannot simultaneously hold for

non-zero coordinates, there are at most four (real) positions

that can be critical.

A first special case (C1) must be considered if d1 = d2

i.e., if Φ is a circle. In this case, L1 “degenerates”to the

(repeated) Oz axis while L2 is unchanged: their intersec-

tion yields two distinct points, being symmetric about Oy.

A second case (C2) is when d2/d1 = κ2, for which (8)

also reduces to the same two points. Similar results can be

obtained in the xz-plane for exactly the same conditions.

3.2.1 Critical Camera Orientations

From each of the critical positions (P1) and (P2) listed in

proposition 1, we now determine the critical camera orienta-

tions i.e., sufficient conditions for the motions to be critical.

Proposition 2 In the case of all known intrinsics except a

focal length, the critical orientations are the same whether

the focal length be varying or constant.

Proof. Only the “unsigned” directions of optical axes have

to be considered. Indeed, if a camera orientation is critical,

then it is also critical for any rotation around the optical

axis or reversed direction. The study of critical motions

in [8, 18] gives rise to two cases, according to whether Φ

is a circle, corresponding to the previously mentioned case

(C1) in proof of proposition 1, or an ellipse. If Φ is a circle,

a direction is critical if and only if it is orthogonal to the

supporting plane of Φ for all n − m cameras, with m ∈
{0, 1, 2}, and arbitrary for the m others. The configuration

m > 0 happens when Φ∗i
∞ ∼ I, from which we infer that

(H2) is also satisfied, cf. equation (5). If Φ is an ellipse,

the direction is critical if and only if it is parallel to tangents

of any conic of L(H1) lying on its supporting plane. Thus,

the fact that directions are uniquely determined or in some

configuration such that (H2) holds ends the proof.

By proposition 2, we inherit the results of [8, 18] and can

adjust them to the unknown constant focal length case.

• Given critical positions (P1), critical orientations are:

– either (O1a) arbitrary or

– (O1b) such that optical axes coincide.

• Given (P2), they are (O2) such that the optical axes of

any pair of adjacent cameras i.e., whose centres cor-

respond to adjacent vertices of the rectangle, are sym-

metric about the symmetry axis of the rectangle sep-

arating their two centres while not being parallel; all

four axes cannot intersect in a single real point.

Critical orientation (O1a) only applies to case (C2) given in

the proof of proposition 1, which entails criticality only for

affine structure.

3.2.2 Describing All Critical Camera Motions

All the critical motions in the unknown constant focal

length case are listed in Table 1. Except for pure transla-

tions, the only motions that are likely to occur in practice

are when centres correspond to only p = 2 different po-

sitions. At 2 < p ≤ 4 critical positions (coinciding with

vertices of some right triangle or rectangle), some ambigui-

ties can be removed by using cheirality invariants [6, chap.

21]. This is reassuring regarding our motivation to design a

self-calibration algorithm with the fewest singularities.

4. A Guaranteed Solution Method

We describe how Interval Analysis (IA) and particularly

IA-based Global Optimization finds the global optimum

of nonlinear objective functions arising in computer vision

problems. We do not give an extensive review of the back-

ground, which can be found in [4]. IA is an arithmetic of in-

tervals such as x = [x, x], defined by two real bounds. One

interest of IA is its ability of bounding the range of a func-

tion. An inclusion function f of a function f over a mul-

tidimensional interval X = ([x1, x1], ..., [xn, xn]), called

a box, is an interval f = [f, f ] containing the range of f



over X: f (X) ⊆ f (X). By good “inclusion functions”,

we mean those with tight bounds around the range of f .

IA-based Global Optimization is a global deterministic

guaranteed optimization method. From a general (nonlin-

ear, non convex) objective function f to be minimized and

from an initial box X0, it returns a box which encloses

the global minimum of f , if it exists. It consists of: (i)

A Branch and Bound algorithm to subdivide X0 into sub-

boxes Xi; (ii) An interval inclusion function f for any Xi;

(iii) Several tests to reject Xi if it does not contain the global

minimum. Taking into account constraints in the parameter

space is possible. Exhaustive examination of the whole so-

lution space is a NP-hard problem. Therefore, good inclu-

sion functions, allowing to reject boxes as early as possible

in the optimization process, are required to achieve accept-

able computational time. The latter varies from a few sec-

onds to several days depending on f .

Finding good inclusion functions is difficult. The dif-

ficulties arise from properties of IA such as: (i) Sub-

distributivity: If x,y, z are three intervals, then x × (y +
z) ⊆ x×y+x×z; (ii) Variable dependencies: x−x 6= 0.

If each variable appears only once in an inclusion function,

then the thighest bounds can be easily formulated. Unfortu-

nately, this case is unlikely to happen in real problems. (iii)

Wrapping: A box is always mapped into a box, introducing

pessimism on the bounds.

One possible inclusion function for a rational function

f is the so-called natural extension. This is obtained by

replacing the real variables by intervals in f . It is known

that this solution gives pessimistic bounds. A better solu-

tion consists in rewriting this natural extension by factor-

izing variables and by avoiding repetitions to improve the

bounds. Better inclusion functions can be computed using

decompositions such as Taylor expansion but the related im-

plementation is less straightforward.

Computational time may be reduced with several tricks.

One of them consists in reducing the size of the initial box

by propagating constraints, scaling the unknowns or using

analytical derivatives of the objective function. Two ma-

jor packages are freely available: GlobSol3 and ALIAS4.

GlobSol only needs a well rewritten natural extension and

automatically differentiates it whereas ALIAS requires an-

alytical bounds for the function and possibly for its deriva-

tives.

The use of IA-based Global Optimization in computer

vision is somewhat marginal. The self-calibration prob-

lem (five unknowns), based on the Kruppa equations, is

treated in [3]. Computational times over one hour for a

few images are reported. In [1], a guaranteed solution for

the plane-based self-calibration problem, using a simplified

camera model (three unknowns), is obtained in less than one

3http://interval.louisiana.edu/GlobSol
4http://www-sop.inria.fr/coprin/logiciels/ALIAS

minute.

The objective function we use is the sum of squares

of the residuals corresponding to equations (2). Four un-

knowns are involved, namely the focal length and the plane

at infinity. The initial box is set to a large domain (see sec-

tion 5). Note that we could reduce this initial box by prop-

agating cheirality constraints [6, chap. 21]. As an inclu-

sion function, we used the natural extension of the equa-

tions and applied automatic factorizations with the Maple

software. Experience has shown that factorization has to be

done first by the focal length, then by the other unknowns.

As an example, the factorized expression of the residual

α2ω
∗j
33 − ω

∗j
22 is:

α2(α2(−(Pj
32)

2 + p1(−(Pj
34)

2p1 + 2Pj
31P

j
34)+

p2(−(Pj
34)

2p2 + 2Pj
32P

j
34) − (Pj

31)
2) + ((Pj

22)
2+

p1((P
j
24)

2p1 − 2Pj
21P

j
24) + p2((P

j
24)

2p2 − 2Pj
22P

j
24)+

(Pj
21)

2 − (Pj
33)

2 + p3(−(Pj
34)

2p3 + 2Pj
33P

j
34)))+

(Pj
23)

2 + p3((P
j
24)

2p3 − 2Pj
23P

j
24),

(9)

where Π∞ = (p1, p2, p3, 1). To assess the benefit of the

rewriting, figure 1 shows the evaluation of two inclusion

functions of this residual: the matricial form α2ω
∗j
33 − ω

∗j
22

and the expression (9). In this figure, the inclusion func-

tions are evaluated on boxes which enclose exactly the true

plane at infinity on boxes which enclose exactly the true

plane at infinity and whose intervals for the focal length are

100 pixels wide. The bounds obtained from the factorized

inclusion function are significally tighter than the bounds

without rewriting. This effect is amplified when we con-

sider the square of the residuals and when the parameters of

the plane at infinity are also considered as variables in the

box. Our implementation uses the GlobSol package with

automatic differentiation.

0 500 1000 1500 2000
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Figure 1. Examples of bounds of two inclusion functions of

a residual used in the objective function, without factorization

(empty boxes) and with factorization (hatched boxes).
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Figure 2. Mean relative error on the focal length (a), mean 3D error (b) and computation time (mean and standard deviation) (c) for varying

noise level and 10 images. (d), (e), (f): Same criteria for varying number of images and a 1 pixel noise level. Squares stand for Lin,

diamonds for QLin and circles for GNLin.

5. Results

Our approach has been validated on synthetic and real

data. A software implementation is available online5.

5.1. Synthetic Data

The experimental setup is composed of 100 points ran-

domly distributed in a 3D sphere of unit radius. The 3D

points are seen in n images with side length 256 pixels.

Cameras have a fixed focal length of 1000 pixels, square

pixels and principal point fixed at the image centre. They

are randomly placed at a mean distance of 2.5 ± 0.25
units from the scene origin. Each camera fixates a ran-

dom point located in a sphere of 0.1 unit radius centred

at the origin. Gaussian noise is added to the 2D projected

points. Projective bundle adjustment is used to compute

noise contaminated cameras. Cameras are standardized so

that the focal length is scaled around unity. We compared

the linear method (Lin), the quasi-linear method (QLin),

described in section 2, and our approach, the guaranteed

nonlinear method (GNLin). The initial search box is set to

[100, 10000] for the focal length and [−109, 109]3 for the

plane at infinity. We measure the mean relative error on

the focal length and the mean 3D error. The 3D error is

5http://www.irit.fr/˜Benoit.Bocquillon

the mean distance between the true 3D points and the re-

contructed 3D points, obtained from Euclidean rectification

and alignment. It is expressed as a percentage of the scene

size. All results are averages over 50 trials.

In the first experiment, n is fixed to 10 images and the

noise level is varied from 0 to 3 pixels. As expected, the

3D error and the error on the focal length (figures 2.a and

2.b) are lower for GNLin than for Lin and QLin. The reason

is that the rank and the positive semi-definiteness condition

are implicitly enforced in GNLin. For all methods, the error

increases linearly with the noise level. For clarity reasons,

error bars are not displayed on the figures. The standard

deviation on the focal length error, for a 3 pixel noise, are

5% for Lin, 2.5% for QLin and 0.3% for GNLin.

In the second experiment, the noise level is fixed to 1
pixel and n is varied from 4 to 20 images. Again, GNLin

has the lowest error (figures 2.d and 2.e). We can also see

that a few images are sufficient to obtain a good result. Al-

though the computation time (figures 2.c and 2.f) required

to find the global minimum is significantly larger than for

the other methods (less than a second), it is reasonable. It

increases linearly against the number of images while being

weakly dependent on noise.

In order to see what happens near artificial degeneracies

arising in Lin and GLin, we tested the following camera



0 1 2 3 4 5
0

20

40

60

80

pointing sphere radius (%)

3
D

 e
rr

o
r 

(%
)

3D Error vs. Pointing Sphere Radius

GNLin

Lin

QLin

0 1 2 3 4 5
0

50

100

150

pointing sphere radius (%)

3
D

 e
rr

o
r 

s
td

 (
%

)

3D Error std vs. Pointing Sphere Radius

GNLin

Lin

QLin

(a) (b)

0 1 2 3 4 5
0

20

40

60

80

100

sphere radius (%)

fo
c
a
l 
le

n
g
th

 e
rr

o
r 

(%
)

Focal Length Error vs. Sphere Radius

GNLin

Lin

QLin

0 1 2 3 4 5
0

50

100

150

200

sphere radius (%)

fo
c
a
l 
le

n
g
th

 s
td

 e
rr

o
r 

(%
)

Focal Length Std Error vs. Sphere Radius

GNLin

Lin

QLin

(c) (d)
Figure 3. (a) and (b): Mean relative 3D error and standard devia-

tion for a motion near the “fixating cameras” singularity. (c) and

(d): Mean relative error on the focal length and standard deviation

for a motion near the “aligned optical axes” singularity. All the

distances are expressed as a percentage of the scene size. Squares

stand for Lin, diamonds for QLin and circles for GNLin.

motions.

Fixating cameras. Cameras are placed as previously de-

scribed except that all their optical centres lie on a plane.

Each camera fixates a random point in a sphere of radius

r centred at the origin. The singularity occurs at r = 0.

Figures 3.a and 3.b show that the 3D error is important for

r < 2% of the scene size. Our algorithm is not affected by

the singularity, finding the correct answer in all cases.

Aligned optical axes. All the optical centres are aligned

at different positions. All cameras look at the origin, ex-

cept for one camera whose orientation is arbitrary. To move

away from this singularity, cameras look in a sphere of ra-

dius r1 and the optical centres are located in a sphere of

radius r2 centred on the critical position. Due to lack of

space, we show results for r1 = r2 = r only. Mean relative

error on the focal length and standard deviation are reported

in figures 3.c and 3.d. The error for Lin and QLin are quite

important below 5% of the scene size. QLin is very unsta-

ble. GNLin is not affected by the singularity.

5.2. Real data

We took 4 images, shown on figure 4, by moving around

a building, so that the motion happens to be near the “fixat-

ing camera”, a critical motion for Lin and QLin. We semi-

automatically detected and matched 63 interest points lying

in the two dominant planes of the scene. To get the pro-

jective cameras, we used Sturm-Triggs projective factoriza-

tion [20], followed by projective bundle adjustment. Lin

and QLin failed in the sense that they gave meaningless so-

lutions. GNLin converged within 17 seconds on a 1.7GHz

Core Duo computer and found a 3604 pixels focal length.

From this focal length and the retrieved plane at infinity, a

Euclidean rectification was made on the 3D points obtained

from the projective reconstruction. Figure 4.e shows a top

view of the 3D point cloud. The ratio between the two wall

lengths was evaluated to 1.36, obtained from real measure-

ments, whereas our reconstruction has a ratio of 1.35. In the

same way, the angle between the two reconstructed planes

is equal to 91.7 degrees. We tried to add other images to

the sequence to get off the singularity: Lin and QLin have

remained very unstable, often failing or giving bad recon-

structions in terms of distance ratio and angle (see figure

4.e). Therefore, these methods cannot be used in practice

for this kind of motion. On the contrary, GNLin has always

given an acceptable solution.

6. Conclusion and Future Work

This paper has addressed two issues associated with met-

ric reconstruction in the case of all known intrinsic param-

eters except a constant focal length. First, we described

the critical motion sequences for that case. Second, we

proposed a self-calibration algorithm which does not intro-

duce artificial singularities. It is based on Interval Analysis

Global Optimization and is able to find the guaranteed so-

lution within few seconds. We also noticed that the linear

or quasi-linear methods are very unstable, even away from

singular cases. These results show that such methods are

sometimes difficult to use in practice.
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